首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By means of molecular dynamics simulations we study the structure and dynamics of water molecules in contact with a model hydrophobic surface: a planar graphene-like layer. The analysis of the distributions of a local structural index indicates that the water molecules proximal to the graphene layer are considerably more structured than the rest and, thus, than the bulk. This structuring effect is lost in a few angstroms and is basically independent of temperature for a range studied comprising parts of both the normal liquid and supercooled states (240K to 320K). In turn, such structured water molecules present a dynamics that is slower than the bulk, as a consequence of their improved interactions with their first neighbors.  相似文献   

2.
A time-resolved X-ray absorption study of the structural dynamics of liquid water on a picosecond timescale is presented. We apply femtosecond midinfrared pulses to resonantly excite the intramolecular O–H stretching band of liquid water and monitor the transient response in the oxygen K-edge absorption spectrum with picosecond X-ray pulses. In this way, structural changes in the hydrogen bond network of liquid water upon an ultrafast temperature jump of approximately 20 K are investigated. The changes of the X-ray absorption as induced by such a temperature jump are about 3.2%. This demonstrates that our method serves as a sensitive probe of transient structural changes in liquid water and that combined infrared-laser–synchrotron experiments with substantially shorter X-ray pulses, such as generated with a femtosecond slicing scheme, are possible.  相似文献   

3.
A molecular dynamics simulation is performed for water confined within carbon nanotubes with diameters 11.00 A and 12.38A. Under pressures from 0.1 MPa to 500MPa the simulations are carried out by cooling from 300 K to 240K. Water molecules tend to transform from disordered to ordered with different configurations (square, pentagonal, hexagonal and hexagonal plus a chain). It is concluded that denser structures may appear under high pressures.  相似文献   

4.
Several evidences have helped to establish the two-state nature of liquid water. Thus, within the normal liquid and supercooled regimes water has been shown to consist of a mixture of well-structured, low-density molecules and unstructured, high-density ones. However, quantitative analyses have faced the burden of unambiguously determining both the presence and the fraction of each kind of water “species”. A recent approach by combining a local structure index with potential-energy minimisations allows us to overcome this difficulty. Thus, in this work we extend such study and employ it to quantitatively determine the fraction of structured molecules as a function of temperature for different densities. This enables us to validate predictions of two-state models.  相似文献   

5.
We report the first infrared pump-x-ray probe study of the structural dynamics of liquid water. Femtosecond infrared excitation via the O–H stretching band induces an ultrafast temperature jump that gives rise to changes in the hydrogen bond network. Such changes are probed via the transient x-ray absorption at the oxygen K edge using 70 ps x-ray pulses from a storage ring source. We measure spectra and time evolution of the transient x-ray absorption and calibrate the absolute change of temperature. Our work paves the way for future studies with femtosecond x-ray probe pulses.  相似文献   

6.
王燕  袁虹君 《中国物理快报》2007,24(11):3276-3279
Molecular dynamics simulations are performed for water confined in carbon nanotubes with various diameters (11.0-13.8 A ). The simulations under an isobaric pressure (one atmosphere) by lowering temperatures from 300 K to 190K are carried out. Water molecules within variously sized tubes tend to transform from disorder to order with different configurations (four-water-molecule ring, six-water-molecule ring and seven-water-molecule ring) at phase transition temperatures, which may be lowered by the increasing tube radius. It is also found that the configurations of water in (10, 10) tube are not unique (seven-molecule ring and seven-molecule ring plus water chain).  相似文献   

7.
We present the results of extensive molecular dynamics computer simulations in which the high frequency dynamics of silica, i.e. for frequencies ν > 0.5 THz, is investigated in the viscous liquid state as well as in the glass state. We characterize the properties of high frequency sound modes by analyzing J l(q,ν) and J t(q,ν), the longitudinal and transverse current correlation function, respectively. For wave-vectors q > 0.4 ?-1 the spectra are sitting on top of a flat background. The dynamic structure factor S(q,ν) exhibits for q > 0.23 ?-1 a boson peak which is located nearly independent of q around 1.7 THz and for which the intensity scales approximately linearly with temperature. We show that the low frequency part of the boson peak is mainly due to the elastic scattering of transverse acoustic modes with frequencies around 1 THz. The strength of this scattering depends on q and is largest around q = 1.7 ?-1, the location of the first sharp diffraction peak in the static structure factor. By studying S(q,ν) for different system sizes we show that strong finite size effects are present in the low frequency part of the boson peak in that for small systems part of its intensity is missing. We discuss the consequences of these finite size effects for the structural relaxation. Received 27 June 2000 and Received in final form 9 January 2001  相似文献   

8.
Using the methods of statistical mechanics we have shown that a homogeneous water network is unstable and spontaneously disintegrates to the nonhomogeneous state (i.e. peculiar clusters), which can be treated as an ordinary state of liquid water. The major peculiarity of the concept is that it separates the paired potential into two independent components—the attractive potential and the repulsive one, which in turn should feature a very different dependence on the distance from the particle (a water molecule in the present case). We choose the interaction potential as a combination of the ionic crystal potential and the vibratory potential associated with the elastic properties of the water system as a whole. The number ℵ of water molecules that enters a cluster is calculated as a function of several parameters, such as the dielectric constant, the mass of a water molecule, the distance between nearest molecules, and the vibrations of nearest molecules in their nodes. The number of H2O molecules that comprise a cluster is estimated as about ℵ ≈ 900, which agrees with the available experimental data. Presented at the 2nd International Conference “Physics of Liquid Matter: Modern Problems” (September 2003, Kyiv, Ukraine)  相似文献   

9.
The phase behavior of water is a topic of perpetual interest due to its reinai kable anomalous properties and importance to biology,material science,geoscience,nanoscience,etc.It is predicted confined water at interface can exist in large amounts of crystalline or amorphous states.However,the experimental evidence of coexistence of liquid water phases at interface is still insufficient.Here,a special folding few-layers graphene film was elaborate prepared to form a hydrophobic/hydrophobic interface,which can provide a suited platform to study the structure and properties of confined liquid water.The real-space visualization of intercalated water layers phases at the folding interface is obtained using advanced atomic force microscopy(AFM).The folding graphene interface displays complicated internal interfacial characteristics.The intercalated water molecules present themselves as two phases,low-density liquid(LDL,solid-like)and high-density liquid(HDL,liquid-like),according to their specific mechanical properties taken in two multifrequency-AFM(MF-AFM)modes.Furthermore,the water molecules structural evolution is demonstrated in a series of continuous MF-AFM measurements.The work preliminary confirms the existence of two liquid phases of water in real space and will inspire further experimental work to deeply understanding their liquid dynamics behavior.  相似文献   

10.
Recently suggested microscopic theory of collective dynamics of a liquid has been used to successfully explain the detailed experimental dynamic structure factor of liquid mercury at room temperature, observed experimentally recently using high resolution inelastic X-ray scattering for various momentum transfers lying in the range 3 nm−1–37.1 nm−1.  相似文献   

11.
The recently proposed scaling law relating the diffusion coefficient and the excess entropy of liquid [Samanta A et al. 2004 Phys. Reu. Lett. 92 145901; Dzugutov M 1996 Nature 381 137], and a quasi-universal relationship between the transport coefficients and excess entropy of dense fluids [Rosenfeld Y 1977 Phys. Rev. A 15 2545],are tested for diverse liquid metals using molecular dynamics simulations. Interatomic potentials derived from the glue potential and second-moment approximation of tight-binding scheme are used to study liquid metals.Our simulation results give sound support to the above-mentioned universal scaling laws. Following Dzugutov,we have also reached a new universal scaling relationship between the viscosity coefficient and excess entropy.The simulation results suggest that the reduced transport coefficients can be expressed approximately in terms of the corresponding packing density.  相似文献   

12.
R. Ruberto  M.P. Tosi 《Physics letters. A》2009,373(11):1083-1088
We report molecular-dynamics simulations of self-diffusion and structure in a pseudoclassical model of liquid and crystalline ZnCl2 over a wide region of the pressure-temperature plane. The model parameters are adjusted to reproduce a liquid structure of corner-sharing ZnCl4 tetrahedra at the standard freezing point and the measured diffusion coefficients as functions of temperature on the sfp isobar. We find that compression first weakens the intermediate-range order of the melt near freezing into a fourfold-coordinated crystal structure, and then drives at higher temperatures a novel liquid-liquid transition consisting of two broad steps: (i) a transition in which the Zn atoms start to leave their tetrahedral cages, followed by (ii) a structural transition from a covalent network of Cl atoms to a dissociated ionic liquid which then freezes into a sixfold-coordinated crystal. Good agreement is found with data from X-ray diffraction experiments under pressure.  相似文献   

13.
王燕  董顺乐 《中国物理快报》2007,24(4):1099-1102
Molecular dynamics simulation is employed to study structural evolution during compressing low density amorphous ice from one atmosphere to 2.5 GPa. The calculated results show that high density amorphous ice is formed under intermediate pressure of about 1.0GPa and O-O-O angle ranges from about 83°to 113° and O-H…O is bent from 112° to 160°The very high density amorphous ice is also formed under the pressure larger than 1.4 GPa and interstitial molecules are found in 0.3-0.4 A just beyond the nearest O-O distance. Low angle O-H… O disappears and it is believed that these hydrogen bonds are broken or re-bonded under high pressures.  相似文献   

14.
In nonlinear voter models the transitions between two states depend in a nonlinear manner on the frequencies of these states in the neighborhood. We investigate the role of these nonlinearities on the global outcome of the dynamics for a homogeneous network where each node is connected to m = 4 neighbors. The paper unfolds in two directions. We first develop a general stochastic framework for frequency dependent processes from which we derive the macroscopic dynamics for key variables, such as global frequencies and correlations. Explicit expressions for both the mean-field limit and the pair approximation are obtained. We then apply these equations to determine a phase diagram in the parameter space that distinguishes between different dynamic regimes. The pair approximation allows us to identify three regimes for nonlinear voter models: (i) complete invasion; (ii) random coexistence; and – most interestingly – (iii) correlated coexistence. These findings are contrasted with predictions from the mean-field phase diagram and are confirmed by extensive computer simulations of the microscopic dynamics.  相似文献   

15.
16.
The local atomic structure of an amorphous NiZr2 alloy is identified by using x-ray diffraction, transmission electron microscopy, and differential scanning calorimeter. Based on the experimental results, molecular dynamics simulation is performed to investigate the glass formation of liquid NiZr2 alloy. Some relevant features of the pair correlation functions are in good agreement with those obtained by experiment. The pair analysis parameters are calculated, suggesting that there exist icosahedral ordering, four-fold symmetrical bipyramid and triangular- faced polyhedral units in the amorphous NiZr2 structure. The result is beneficial to open avenues toward the understanding of fundamental theoretical problems of glass formation of simple binary alloys.  相似文献   

17.
The molecular layering at liquid-solid interface in a nanofluid is investigated by equilibrium molecular dynamics simulation. By tracking the positions of the nanoparticle and the liquid atoms around the spherical nanoparticle, it was found that an absorbed slip layer of liquid is formed at the interface between the nanoparticle and liquid; this thin layer will move with the Brownian motion of the nanoparticle. Through the analysis of the density distribution of the liquid near the nanoparticle it is found that the thickness of the layering is about 0.5 nm under the parameters used in the Letter.  相似文献   

18.
Dynamic heterogeneities, i.e. the presence of molecules with different mobilities, have been established as one of the key features of the physics of supercooled liquids. Here we study in detail how the mobility of an individual molecule fluctuates with time. Our analysis is based on a time series of molecular dynamics simulations for a low molecular weight glass-former, propylene carbonate. We find that the variation of mobility with time of initially slow molecules significantly differs from that of initially fast molecules. We explicitly show the relation to the rate memory parameter which recently has been introduced to quantify the mobility fluctuations as observed via multidimensional NMR experiments. In this way qualitative agreement between simulation and experiment can be established although the time scales of simulation and NMR experiment differ by many orders of magnitude. Received 10 April 2000 and Received in final form 21 September 2000  相似文献   

19.
We discuss the symmetry properties and the macroscopic behavior of a nematic liquid crystal phase with D2d symmetry. Such a phase is a prime candidate for nematic phases made from banana-shaped molecules where the usual quadrupolar order coexists with octupolar (tetrahedratic) order. The resulting nematic phase is nonpolar. While this phase could resemble the classic D ∞h nematic in the polarizing microscope, it has many static as well as reversible and irreversible properties unknown to nonpolar nematics without octupolar order. In particular, there is a linear gradient term in the free energy that selects parity leading to ambidextrously helical ground states when the molecules are achiral. In addition, there are static and irreversible coupling terms of a type only met otherwise in macroscopically chiral liquid crystals, e.g. the ambidextrous analogues of Lehmann-type effects known from cholesteric liquid crystals. We also discuss the role of hydrodynamic rotations about the nematic director. For example, we show how strong external fields could alter the D2d symmetry, and describe the non-hydrodynamic aspects of the dynamics, if the two order structures, the nematic and the tetrahedratic one, rotate relative to each other. Finally, we discuss certain nonlinear aspects of the dynamics related to the non-commutativity of three-dimensional finite rotations as well as other structural nonlinear hydrodynamic effects.  相似文献   

20.
Molecular dynamics simulations of linear C78H158 were conducted to investigate the dynamics of individual chains under shear. The distribution of the end-to-end vector exhibited Gaussian behavior at low shear rates; however, it displayed a bimodal form at high shear rates as rotational motion of the individual chains effectively lowered the vector's magnitude. Correlations between the components of the end-to-end vector revealed multiple time scales associated with the fluid response: the Rouse time, and several that were associated with the deformation and rotational dynamics of the fluid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号