首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
In ultra-short laser pulse ablation from dielectric crystals two different ablation regimes are observed: 1) At laser intensities well below the single shot damage threshold, Coulomb explosion upon multiphoton surface ionization is the dominant process, yielding electrons and fast positive ions. 2) At higher laser intensities, ablation exhibits signs of hyper-thermal emission (phase explosion) as a result of rapid hot electron thermalization. This regime is characterized by massive etching, mostly of neutral particles. The transition from regime one to two is associated with the appearance of an additional, slower group of positive ions, saturation in the positive ion yield, and the occurrence of negative ions. PACS 61.80.Ba; 61.82.Ms; 79.20.Ds  相似文献   

2.
We have investigated the laser fluence dependence of the ion emission process in ultrafast laser ablation of graphite using a time-of-flight technique. Two regimes of ion emission have been identified: (1) a highly nonlinear laser absorption process accompanied by generation of a transient electrical field on the surface and collisionless emission of ions due to electrostatic repulsion; (2) a saturation regime for laser power absorption characterised by nearly equal kinetic energy of ejected carbon clusters. We also show the effect of the surface temperature on the emitted clusters’ stability and the influence of nonlinearity on the intensity autocorrelation traces.  相似文献   

3.
To study the solid Cu ablation in vacuum, two different laser sources operating at 1064 and 308 nm wavelength are employed at similar values of laser fluences. The infrared laser is a Q-switched Nd:Yag having 9 ns pulse width (INFN-LNS, Catania), while the ultraviolet one is a XeCl excimer having 20 ns pulse width (INFN-LEA, Lecce). Both experiments produced a narrow angular distribution of the ejected material along the normal to the target surface. The ablation showed a threshold laser power density, of about 7 and 3 J/cm2 at 1064 and 308 nm, respectively, below which the ablation effect was negligible. The laser interaction produces a plasma at the target surface, which expands very fast in the vacuum chamber. Time-of-flight (TOF) measurements of the ion emission indicated an average ion velocity of the order of 4.7×104 and 2.3×104 m/s for the infrared and ultraviolet radiation, respectively. We also estimated approximately the corresponding temperature of the plasma from which ions originated, i.e. about 106 and 105 K for IR and UV wavelength, respectively. A discussion of the analysis of the ablation mechanism is presented. At the used laser power densities the produced Cu ions showed ionisation states between 1+ and 5+ in both cases.  相似文献   

4.
A Nd:YAG laser with 109 W/cm 2 pulse intensity, operating at 532 nm wavelength, is used to ablate Ta and Cu targets placed in vacuum. The ablation process generates a plasma in front of the target surface, which expands along the normal to target surface. The ion and electron emissions from the plasma were measured by Faraday cups placed at different angles with respect to the normal to target surface. In the range of laser intensities from 107 to 109 W/cm2, the fast electron yield is lower than the ion yield and it increases at higher laser intensities. The ablation threshold, the emission yield, the ion and electron average energies and the plasma ion and electron temperatures were measured for ion and fast electron streams.  相似文献   

5.
By combining new studies of the surface topography and the emission characteristics of particles during interaction of ultra-short-laser radiation with surfaces, in particular during laser ablation, three different types of general processes (sub 100 fs electronic processes like Coulomb explosion (CE) or field ion emission by surface optical rectification (SOR), processes related to electronic plasma (FEP) formation (typically a few hundred fs time scale) and thermal ablation (TA)) could be identified to explain ultra-short-laser ablation of matter at laser intensities around the ablation threshold. In particular, the identification of the unique appearance of individual, localized nano-hillocks, typically a few nm in height and with a diameter below typically 50 nm, can be regarded as characteristic for a strong localized potential energy deposition to the electronic system resulting in CE or SOR. The observation and possibility of CE even on metals has implications beyond the field of laser ablation. A remarkable result observed concerns the similarities between laser ablation and sputtering with highly charged ions.  相似文献   

6.
In order to develop a femtosecond laser ablation (fsLA) ion source for TOF mass spectrometry, we have analyzed time-resolved images of laser-induced fluorescence from Sm+ ions produced by fsLA of a solid samarium in electric fields. The polarity and the strength of electric fields had a remarkable effect on the expansion of Sm+ ions. Moreover, accelerating electric fields elongated the duration of the ion emission from the samarium surface in fsLA, which degraded time-focusing of the ions. We have found that suppression the continuous ion emission caused by fsLA in electric fields is most important in TOF measurements.  相似文献   

7.
We investigated the ion laser-produced plasma plume generated during ultrafast laser ablation of copper and silicon targets in high vacuum. The ablation plasma was induced by ≈50 fs, 800 nm Ti:Sa laser pulses irradiating the target surface at an angle of 45°. An ion probe was used to investigate the time-of-flight profiles of the emitted ions in a laser fluence range from the ablation threshold up to ≈10 J/cm2. The angular distribution of the ion flux and average velocity of the produced ions were studied by moving the ion probe on a circle around the ablation spot. The angular distribution of the ion flux is well described by an adiabatic and isentropic model of expansion of a plume produced by laser ablation of solid targets. The angular distribution of the ion flux narrows as the laser pulse fluence increases. Moreover, the ion average velocity reaches values of several tens of km/s, evidencing the presence of ions with kinetic energy of several hundred eV. Finally, the ion flux energy is confined in a narrow angular region around the target normal.  相似文献   

8.
A study of visible laser ablation of silicon, in vacuum, by using 3 ns Nd:YAG laser radiation is reported. Nanosecond pulsed ablation, at an intensity of the order of 1010 W/cm2, produces high non-isotropic emission of neutrals and ionic species. Mass quadrupole spectrometry, coupled to electrostatic ion deflection, allows estimation of the energy distributions of the emitted species from plasma. Neutrals show typical Boltzmann-like distributions while ions show Coulomb-Boltzmann-shifted distributions depending on their charge state. Time-of-flight measurements were also performed by using an ion collector consisting of a collimated Faraday cup placed along the normal to the target surface. Surface profiles of the craters, created by the laser radiation absorption, permitted to study the ablation threshold and ablation yields of silicon in vacuum. The plasma fractional ionization, temperature and density were evaluated by the experimental data. A special regard is given to the ion acceleration process occurring inside the plasma due to the high electrical field generated at the non-equilibrium plasma conditions. The angular distribution of the neutral and ion species is discussed.  相似文献   

9.
A study of VIS laser ablation of graphite, in vacuum, by using 3 ns Nd:YAG laser radiation is reported. Nanosecond pulsed ablation gives an emission mass spectrum attributable to Cn neutral and charged particles. Mass quadrupole spectroscopy, associated to electrostatic ion deflection, allows estimation of the velocity distributions of several of these emitting species within the plume as a function of the incident laser fluence. Time gated plume imaging and microscopy measurements have been used to study the plasma composition and the deposition of thin carbon films. The multi-component structure of the plume emission is rationalized in terms of charge state, ions temperature and neutrals temperature. A special regard is given to the ion acceleration process occurring inside the plasma due to the high electrical field generated in the non-equilibrium plasma conditions. The use of nanosecond laser pulses, at fluences below 10 J/cm2, produces interesting C-atomic emission effects, as a high ablation yield, a high fractional ionization of the plasma and presence of nanostructures deposited on near substrates.  相似文献   

10.
We investigated the subpicosecond laser ablation of copper and fused silica under 100 fs laser irradiation at 800 nm in vacuum by means of fast plume imaging and time- and space-resolved optical emission spectroscopy. We found that, to the difference of copper ablation, the laser-generated plasma from a fused silica target exhibited one “main” component only. The “slow” plasma component, observed during copper ablation and usually assigned to optical emission from nanoparticles was not detected by either plasma fast imaging or optical emission spectroscopy even when fused silica targets were submitted to the highest incident fluences used in our experiments. The characteristic expansion velocity of this unique component was about three times larger than the velocity of the fast plume component observed during copper ablation. The dependence of laser fluence on both plasma expansion and ablation rate was investigated and discussed in terms of ablation efficiency and initiation mechanisms.  相似文献   

11.
By adopting a fast photography and time-resolved optical emission spectrometry, we have investigated the effects of transverse magnetic field on the expansion dynamics and enrichment of Zn atoms and Zn+ ions in a plume produced by laser ablation of a Zn target in oxygen atmosphere. Plume splitting due to the magnetic field was apparent but the splitting patterns of Zn and Zn+ were totally different. The surface morphology and photoluminescence characteristics also changed significantly. In particular, the growth rate increased by as much as 2.4-4.3 times compared to the conventional PLD method.  相似文献   

12.
2 O5 targets in oxygen ambient are presented. Line assignments indicate the presence of the excited Ta(I), Ta(II), and TaO in the plume. At higher oxygen pressure, a single peak appears in the TaO emission spectrum from the laser ablation of Ta while two peaks corresponding to a fast and a slow component of TaO emission are observed from the laser ablation of the Ta2O5 target by time-resolved emission spectroscopy. The delay times after laser pulse corresponding to two components of TaO emission from the laser ablation of Ta2O5 have been investigated as a function of oxygen pressure, laser fluence, and observation distance from the target surface. The two components of TaO emission could be attributed to different pathways for the generation of excited TaO molecules. A blast wave model is proposed to describe the behavior of the excited TaO in the plume of laser ablation of Ta2O5. Received: 1 February 1997/Accepted: 12 March 1997  相似文献   

13.
脉冲激光诱导Cu靶产生发光羽的特性分析   总被引:1,自引:1,他引:0  
黄庆举 《光子学报》2006,35(11):1636-1639
通过在不同的环境气压下拍摄脉冲激光烧蚀金属Cu诱导产生的发光羽,获取了不同区域具有不同颜色特征的发光羽照片.结果发现:发光羽的颜色随环境气压的改变而变化.采用空间分辨光谱技术,测定了激光诱导金属Cu靶产生发光羽辐射强度的空间分布,以及不同烧蚀环境气压对发光羽辐射强度的影响.研究了脉冲激光烧蚀Cu表面诱导发光的动力学过程,建立了可能的发光羽分区模型,对发光羽的不同区域发光粒子的激发机理进行了探讨,并用之定性地解释了所观察的实验现象.结果分析表明:脉冲激光诱导Cu产生的发光羽可以分为三个区域,不同区域的发光机理不同,Cu原子和Cu离子的激发机理不完全相同.  相似文献   

14.
Molecular imaging by Mid-IR laser ablation mass spectrometry   总被引:1,自引:0,他引:1  
Mid-IR laser ablation at atmospheric pressure (AP) produces a mixture of ions, neutrals, clusters, and particles with a size distribution extending into the nanoparticle range. Using external electric fields the ions can be extracted and sampled by a mass spectrometer. In AP infrared (IR) matrix-assisted laser desorption ionization (MALDI) experiments, the plume was shown to contain an appreciable proportion of ionic components that reflected the composition of the ablated target and enabled mass spectrometric analysis. The detected ion intensities rapidly declined with increasing distance of sampling from the ablated surface to ∼4 mm. This was rationalized in terms of ion recombination and the stopping of the plume expansion by the background gas. In laser ablation electrospray ionization (LAESI) experiments, the ablation plume was intercepted by an electrospray. The neutral particles in the plume were ionized by the charged droplets in the spray and enabled the detection of large molecules (up to 66 kDa). Maximum ion production in LAESI was observed at large (∼15 mm) spray axis to ablated surface distance indicating a radically different ion formation mechanism compared to AP IR-MALDI. The feasibility of molecular imaging by both AP IR-MALDI and LAESI was demonstrated on targets with mock patterns. Presented at the 9-th International Conference on Laser Ablation, 2007 Tenerife, Canary Islands, Spain  相似文献   

15.
A pulsed-field time-of-flight mass spectrometric (TOFMS) technique was used to investigate the expansion dynamics of the ionic species ejected from the visible (λ=532 nm) laser ablation of cobalt target at low laser fluence less than 1 J/cm2. The temporal evolution of Co+ ions was studied by varying the delay time of the ion repelling pulse with respect to the laser irradiation, which provides significant information on the ablated plume characterization. The obtained TOF mass spectra were well fitted by shifted Maxwell–Boltzmann distributions on a stream velocity, commonly used to describe the measured velocity distributions. The TOF distribution of Co+ ions showed a bimodal distribution with fast and slow velocities. These velocities show a decreasing tendency with delay time, which is attributed to the gas collisions between the plume ejecta and to the related gas dynamics. The present results suggest that the in situ measurements of the most probable velocity of ablated ions along the normal to the solid target can be accomplished by the simple technique of a laser ablation/TOFMS.  相似文献   

16.
The production of ions via laser ablation for the loading of radiofrequency (RF) ion traps is investigated using a nitrogen laser with a maximum pulse energy of 0.17?mJ and a peak intensity of about 250?MW/cm2. A?time-of-flight mass spectrometer is used to measure the ion yield and the distribution of the charge states. Singly charged ions of elements that are presently considered for the use in optical clocks or quantum logic applications could be produced from metallic samples at a rate of the order of magnitude 105 ions per pulse. A linear Paul trap was loaded with Th+ ions produced by laser ablation. An overall ion production and trapping efficiency of 10?7 to 10?6 was attained. For ions injected individually, a dependence of the capture probability on the phase of the RF field has been predicted. In the experiment this was not observed, presumably because of collective effects within the ablation plume.  相似文献   

17.
We have observed the motion of Sm+ ions as well as Sm atoms produced by femtosecond laser ablation of a solidified samarium solution sample on substrates by using a planar laser-induced fluorescence method. Kinetic energies of both Sm+ ions and Sm atoms increase as the electrical conductivity of the substrate decreases, which suggests the effect of surface charging. The kinetic energy of Sm+ ions is larger than that of Sm atoms for a variety of substrates due to the further electrical acceleration by the surface charge. The knowledge of ion motion will be the key information for the optimization of femtosecond laser simultaneous atomization and ionization of organic and inorganic samples on substrates.  相似文献   

18.
采用WP4-光学多道分析仪对准分子激光轰击Y_1Ba_2Cu_3O_x超导靶产生的等离子体辐射进行了空间分辨测量和研究。实验结果表明,在靶面的邻近区(d<0.4mm),等离子体辐射为较强的连续谱,并迭加有Y、Ba原子和Y~+、Ba~+离子基态电子跃迁的自吸收线。Y、Ba、Cu原子和相应的一价离子以及金属氧化物分子激发态的发射谱线仅在距靶面为0.4mm以外的区域出现。光谱的测量结果支持靶面表层发生爆炸、出射分子簇团和固体微粒的激光烧蚀沉积动力学机制解释。  相似文献   

19.
We present an experimental characterization describing the characteristics features of the plasma plume dynamics and material removal efficiency during ultrashort, visible (527 nm, ≈300 fs) laser ablation of nickel in high vacuum. The spatio-temporal structure and expansion dynamics of the laser ablation plasma plume are investigated by using both time-gated fast imaging and optical emission spectroscopy. The spatio-temporal evolution of the ablation plume exhibits a layered structure which changes with the laser pulse fluence F. At low laser fluences (F<0.5 J/cm2) the plume consists of two main populations: fast Ni atoms and slower Ni nanoparticles, with average velocities of ≈104 m/s for the atomic state and ≈102 m/s for the condensed state. At larger fluences (F>0.5 J/cm2), a third component of much faster atoms is observed to precede the main atomic plume component. These atoms can be ascribed to the recombination of faster ions with electrons in the early stages of the plume evolution. A particularly interesting feature of our analysis is that the study of the ablation efficiency as a function of the laser fluence indicates the existence of an optimal fluence range (a maximum) for nanoparticles generation, and an increase of atomization at larger fluences. PACS 52.50.-b; 52.38.Mf; 79.20.Ds; 81.07.-b  相似文献   

20.
The parameters of fast particles generated upon the interaction of 1019 W/cm2 laser pulses with solid targets are studied. The spatial and energy parameters of fast ions are investigated. It is found that approximately 1–3% of the laser energy is transformed to the energy of mega-and submegaelectronvolt ions at laser pulse intensities ≥1018 W/cm2. It is shown experimentally that an ion beam is directed perpendicular to the target surface. The analytic and numerical simulations agree with experimental results and predict the propagation of fast electrons in the mirror direction with respect to the incident laser beam and of ions perpendicular to the target. The theoretical calculations are compared with the experimental output and spectra of fast electrons and ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号