首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Lignin modifications resulting from different photochemical pre-treatments were studied using chemiluminescent methods. In the oxidation of lignin in NaOH solutions at 25°C, the intensity increased with increasing temperature and can be described by an Arrheniustype exponential equation with an activation energy of 25.8 ± 2.7 kJ/ mol. The oxidation of lignin model compounds under these conditions indicated 1O2 OH′, and O2 generation. Chemiluminescence of the luminol/H2O2/Fe2+ system was used to study decomposition products of lignin upon irradiation. Unirradiated lignin proved to be an excellent radical trap, an effect initially abolished upon irradiation. At longer irradiation times, however, the radical trapping behavior was restored. The action of the perodidase/H2 O2 system onlignin was also investigated using chemiluminescence. Behavior very similar to that using luninol was observed. The intensity increases with increasing time of irradiation up to an optimum value. More prolonged irradiation results in total quenching of the cheiluminescemce. This is indicative of depolymerization and posterior aggregation.  相似文献   

2.
3.
Fe3+-doped TiO2 composite nanoparticles with different doping amounts were successfully synthesized using sol-gel method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and ultravioletvisible spectroscopy (UV-Vis) diffuse reflectance spectra (DRS). The photocatalytic degradation of methylene blue was used as a model reaction to evaluate the photocatalytic activity of Fe3+/TiO2 nanoparticles under visible light irradiation. The influence of doping amount of Fe3+ (ω: 0.00%–3.00%) on photocatalytic activities of TiO2 was investigated. Results show that the size of Fe3+/TiO2 particles decreases with the increase of the amount of Fe3+ and their absorption spectra are broaden and absorption intensities are also increased. Doping Fe3+ can control the conversion of TiO2 from anatase to rutile. The doping amount of Fe3+ remarkably affects the activity of the catalyst, and the optimum efficiency occurs at about the doping amount of 0.3%. The appropriate doping of Fe3+ can markedly increase the catalytic activity of TiO2 under visible light irradiation. __________ Translated from Journal of Northwest Normal University (Natural Science), 2006, 42(6): 55–56 [译自: 西北师范大学学报(自然科学版)]  相似文献   

4.
王媛  张彭义 《化学学报》2010,68(4):345-350
254nm紫外光辐照下,溶解性Fe3+的存在有效促进了全氟辛酸(PFOA)的光化学降解.Fe3+浓度为30μmol·L-1时,Fe2(SO4)3,FeCl3和Fe(NO3)3三种溶解性铁盐对PFOA的降解和脱氟没有显著的差别.过量的SO24-与Fe3+具有较强的形成配合物的能力,由软件Visual MINTEQ2.52计算得出,Fe3+与过量的SO42-形成Fe(SO4)+和Fe(SO4)-2两种形态的配合物,其分配比的总和占16.32%,从而减少了PFOA与铁离子形成配合物的机会,进而抑制了其有效的光化学降解;过量的Cl-与Fe3+形成一配位的FeCl2+,其生成量仅占所有铁物种形态总和的0.12%,对PFOA的降解没有明显的影响,理论计算与实验结果相一致.羟基自由基捕获剂-异丙醇的加入未抑制PFOA的降解,二氧化钛的存在亦未促进其降解,进一步表明Fe3+诱导PFOA的光化学降解不是羟基自由基直接作用的结果.  相似文献   

5.
用酸催化溶胶-凝胶法制备了Fe3+掺杂TiO2/凹凸棒(Fe3+-TiO2/ATP)复合光催化剂,对其结构、微观形貌、光吸收性能和可见光下的光催化性能进行了表征。XRD和TEM测试结果表明,Fe3+-TiO2/ATP具有较好的热稳定性,经450 ℃热处理后的ATP晶体结构基本保持不变,锐钛矿TiO2均匀的分布在ATP表面,TiO2颗粒之间无团聚,且平均粒径小于纯TiO2。UV-Vis-DRS测试结果表明,Fe3+的掺杂可明显增强复合光催化剂对可见光的吸收,光响应范围拓展到了整个紫外-可见光区。在可见光下,Fe3+-TiO2/ATP复合光催化剂对亚甲基蓝具有很好的催化降解活性。Fe3+-TiO2/ATP的反应速率常数分别为TiO2/ATP、P25和纯TiO2的1.37、4.83和6.51倍。复合光催化剂的沉降性能优于纯TiO2和P25,易于分离。  相似文献   

6.
Hexaflumuron, one of the benzoylphenylurea insect growth regulators, can be leached into surface water and thus having a potential impact on aquatic organisms. In this study, the photodegradation processes of hexaflumuron under high‐pressure mercury lamp irradiation were assessed. The photodegradation kinetics were studied, as were the effects of pH, different light sources, organic solvents and environmental substances, including nitrate ions (NO3?), nitrite ions (NO2?), ferrous ions (Fe2+), ferric ions (Fe3+), humic acid, sodium dodecyl sulfate (SDS) and hydrogen peroxide (H2O2). Three photodegradation products in methanol were identified by gas chromatography‐mass spectrometry (GC‐MS). In general, the degradation of hexaflumuron followed first‐order kinetics. In the four media studied, the photodegradation rate order was n‐hexane > methanol > ultrapure water > acetone. Faster degradation was observed under high‐pressure mercury lamp irradiation than under xenon lamp irradiation. The pH had a considerable effect, with the most rapid degradation occurring at pH 5.0. The photodegradation rate of hexaflumuron was promoted in the presence of NO3?, NO2?, Fe2+, humic acid, SDS and H2O2, but inhibited by Fe3+. Moreover, the presumed photodegradation pathway was proposed to be the cleavage of the urea linkage.  相似文献   

7.
Summary In this paper the variation of diffusion, through filter paper strips by the ascending method, of citrate complexes of Cu2+, Ni2+, Co2+ and Fe3+ has been studied using 50%, 55% and 60% ethanol as solvents. The Rf value is found to be less with higher concentrations of ethanol used. It has been noted that with 50% ethanol the Rf value increases with the addition of citrate and finally tends to become constant with high concentrations of citrate ions. In 55% ethanol the Rf value becomes constant at a later stage. In 60% ethanol it is noted that the Rf value does not change with small additions of citrate, but on increasing its concentration the Rf value begins to diminish.Part II see Z. analyt. Chem. 165, 81 (1959).  相似文献   

8.
For the first time, the time dependence of [H2O2] and [Fe2+] was followed during the aerobic oxidation of ethanol by Fenton's reagent. It was found that part of the ethanol was oxidized by dissolved O2 via the transient formation of H2O2. A model was set up based on FeO2+ as the key intermediate. Both one‐ and two‐equivalent oxidations of ethanol occur, the former producing radical species derived from ethanol. No free radicals derived from H2O2 play part in the system. The relevant rate constants or their ratios were determined. The mechanism accounted successfully also for the anaerobic oxidation of ethanol. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 541–553, 2008  相似文献   

9.
The use of H2O2 and UV irradiation to remove organic ligands in a chromium(III) complex for the subsequent chromium analysis is reported. The Advanced Oxidation Process (AOP) using a 5.5-W UV lamp, H2O2 and Fe2+/Fe3+ as catalyst (photo Fenton process) was found to give complete and quantitative Cr(III) → Cr(VI) conversion and removal of ligands in chromium(III) propionate [Cr3O(O2CCH2CH3)6(H2O)3]NO3, a biomimetic chromium species, as subsequent chromium analyses by the 1,5-diphenylcarbazide method and atomic absorption revealed. The current process eliminates the need for mineralization and/or dissolution of the matrix in order to remove the organic ligand, the traditional pretreatments of a sample for metal analysis. Studies to optimize the conditions for the oxidation processes, including the use of Fe2+/Fe3+ catalyst, length of UV irradiation, H2O2 concentration, pH, power of UV lamp, and reactor size, are reported.  相似文献   

10.
Abundant and toxic hydrogen sulfide (H2S) from industry and nature has been traditionally considered a liability. However, it represents a potential resource if valuable H2 and elemental sulfur can be simultaneously extracted through a H2S splitting reaction. Herein a photochemical‐chemical loop linked by redox couples such as Fe2+/Fe3+ and I?/I3? for photoelectrochemical H2 production and H2S chemical absorption redox reactions are reported. Using functionalized Si as photoelectrodes, H2S was successfully split into elemental sulfur and H2 with high stability and selectivity under simulated solar light. This new conceptual design will not only provide a possible route for using solar energy to convert H2S into valuable resources, but also sheds light on some challenging photochemical reactions such as CH4 activation and CO2 reduction.  相似文献   

11.
The light-gated organocatalysis via the release of 4-N,N-dimethylaminopyridine (DMAP) by irradiation of the [Ru(bpy)2(DMAP)2]2+ complex with visible light was investigated. As model reaction the acetylation of benzyl alcohols with acetic anhydride was chosen. The pre-catalyst releases one DMAP molecule on irradiation at wavelengths longer than 455 nm. The photochemical process was characterized by steady-state irradiation and ultrafast transient absorption spectroscopy. The latter enabled the observation of the 3MLCT state and the spectral features of the penta-coordinated intermediate [Ru(bpy)2(DMAP)]2+. The released DMAP catalyzes the acetylation of a wide range of benzyl alcohols with chemical yields of up to 99 %. Control experiments revealed unequivocally that it is the released DMAP which takes the role of the catalyst.  相似文献   

12.
Fe3+ doped mesoporous TiO2 with ordered mesoporous structure were successfully prepared by the solvent evaporation-induced self-assembly process using P123 as soft template. The properties and structure of Fe3+ doped mesoporous TiO2 were characterized by means of XRD, EPR, BET, TEM, and UV–vis absorption spectra. The characteristic results clearly show that the amount of Fe3+ dopant affects the mesoporous structure as well as the visible light absorption of the catalysts. The photocatalytic activity of the prepared mesoporous TiO2 was evaluated from an analysis of the photodegradation of methyl orange under visible light irradiation. The results indicate that the sample of 0.50%Fe–MTiO2 exhibits the highest visible light photocatalytic activity compared with other catalysts.  相似文献   

13.
An ethanol biosensor based on alcohol dehydrogenase (ADH) attached to Au seeds decorated on magnetic nanoparticles (Fe3O4@Au NPs) is presented. ADH was immobilized on Fe3O4@Au NPs, which were subsequently fixed by a magnet on a carbon paste electrode modified with 5 % (m : m) MnO2. Optimum conditions for the amperometric determination of ethanol with the biosensor were as follows: working potential +0.1 V (vs. Ag/AgCl); supporting electrolyte: 0.1 M phosphate buffer solution at pH 6.8 containing 0.25 mM of the coenzyme (NAD+); working electrode: carbon paste with magnetically attached Fe3O4@Au NPs (0.012 mg ? cm?2 electrode area) with immobilized alcohol dehydrogenase (120 units per cm2 of electrode area). Linearity between signal and concentration was found for the range from 0.1 to 2.0 M ethanol (r2=0.995) with a detection limit of 0.07 M, a sensitivity of 0.02 µA ? mM?1 ? cm?2, a reproducibility of 4.0 % RSD, and a repeatability of 2.7 % RSD. The results for the determination of ethanol in alcoholic beverages showed good agreement with gas chromatography (GC) with recovery of 96.0 – 108.8 %.  相似文献   

14.
The existence of homoserine lactone in Pisum sativum seedlings is demonstrated. L-Homoserine lactone reacts with hydroxylamine, at neutral or alkaline pH, to form homoserine hydroxamic acid. Procedures are described for preparing L-homoserine lactone and L-homoserine hydroxamic acid. The hydroxamic acid yields a color with maximum absorbance at 492 nm with Fe3+ in 0.25 N HCl. This reaction permitted assay for total homoserine and homoserine lactone. Six-day old Pisum sativum seedlings, with cotyledons removed, were extracted with 90% ethanol. Evaporation of the ethanol and addition of Na2SO4 solution and toluene and centrifugation removed protein lipids and esters. After clarification with activated charcoal, homoserine lactone content was estimated by reaction with NH2OH and Fe3+ reagents. For total homoserine, protein precipitation was with 2 N HCl and toluene. Evaporation to dryness at 60 °C under vacuum converted all homoserine to the lactone. The values found for total homoserine (μmols/g, wet weight) and preformed lactone (%) with the various growth media used were as follows: nitrate 87.4 (14.7%), NH2OH 75.2 (6.3%), water 70.5 (7.9%), urea 56.4 (18.9%). Acetic anhydride added to homoserine hydroxamic acid forms acetohydroxamic acid, which yields a color with maximum absorbance at 505 nm with Fe3+. This color reaction is seven times as sensitive as the reaction of Fe3+ with homoserine hydroxamic acid itself.  相似文献   

15.
Kinetics of the oxidative destruction of para-chlorophenol in a combined iron-persulfate system under the action of simulated sunlight was studied. It was shown that, under additional photoirradiation, a deep conversion of chlorophenol and main intermediate products of its destruction is provided, with iron compounds serving not only as catalysts, but also as photochemical oxidation sensitizers. The degree of mineralization of para-chlorophenol and products of its oxidation under a photoactivated treatment for two hours reached a value of 60%, whereas that in the “dark” reaction did not exceed 1%. In the combined oxidizing system S2O 8 2– /Fe2+/UV-Vis, a considerable synergic effect was observed due to the formation of reactive oxygen intermediate both via decomposition persulfate and through reduction of Fe3+ from inactive Fe3+ intermediates.  相似文献   

16.
以有机碱四甲基氢氧化铵(TMAH)为沉淀剂合成了纳米Fe3O4和Co2+掺杂的纳米Fe3O4粒子。分别讨论了碱用量,铁盐溶液浓度,反应温度,有机碱及PEG-4000的分散性等因素对纳米Fe3O4的形貌影响。结果表明,所合成的纳米Fe3O4为30nm左右的反尖晶石型面心立方结构,有机碱除了起沉淀剂作用,还能够提高纳米Fe3O4的分散性。本文还讨论了不同Co2+掺入量的纳米Fe3O4粒子的磁性质,结果表明Co2+掺杂的纳米Fe3O4粒子的矫顽力在不同掺入量的下有较大的改变。当Co2+掺入量为10.0%时,纳米Fe3O4的矫顽力达到最大值,为1628Oe。  相似文献   

17.
用固相反应合成法合成了光催化剂Fe2BiTaO7,通过XRD、SEM、TEM、紫外-可见漫反射等表征方法对其组织结构及光催化性能进行了研究。结果表明Fe2BiTaO7为立方晶系烧绿石结构,空间群为Fd3m,禁带宽度为1.72 e V。通过比较Fe2BiTaO7、P25TiO2、掺氮Ti O2和Bi2In Ta O7的可见光光催化降解罗丹明B,发现Fe2BiTaO7降解效果及催化活性均高于其它催化剂,并且Fe2BiTaO7降解罗丹明B效率是掺氮二氧化钛的1.5倍。Fe2BiTaO7降解罗丹明B的曲线符合一级动力学,一级动力学常数为0.022 93 min-1。研究了罗丹明B可能的降解路径和Fe2BiTaO7在可见光下降解苯酚的效果。Fe2BiTaO7(可见光)光催化剂系统适用于纺织工业废水处理。  相似文献   

18.
A sensitive and selective fluorescence quenching method for the determination of Fe2+ with 1,10‐phenanthroline was developed. The fluorescence intensity of 1,10‐phenanthroline at λex of 266 run and λem of 365 nm was constant in the range of pH 4.0 to 10.0 and decreased linearly upon addition of Fe2+ to its solution. This decrease was mainly due to a static quenching effect caused by the formation of a non‐fluorescent complex of Fe2+ with 1, 10‐phenanthroline. The total amount of iron was determined by using hydroxylamine hydrochloride to reduce Fe3+ to Fe2+. The linear range was from 5.0 × 10–7 to 2.0 × 10–5 mol/L with a detection limit of 2.4 × 10–8 mol/L at 3s?. The quenching constant of Fe2+ to 1,10‐phenanthroline was calculated to be (5.70 × 0.05) × 104 L/mol at 25 °C. Effects of foreign ions on the determination of Fe2+ were investigated. The results of the new method for the determination of iron in tap water and natural water samples were in good agreement with those obtained by graphite atomic absorption spectrometry.  相似文献   

19.
The interaction of BSA and FeIII complexes ([FeIII(gly)(H2O)4]2+, [FeIII(ida)(H2O)3]+, and [FeIII(nta)(H2O)2], gly—glyane, ida—iminodiacetic acid, nta—triglycolamic acid) as well as the sonocatalytic damage to BSA was studied by UV-vis and fluorescence spectra. In addition, the influences of ultrasonic irradiation time and FeIII complex concentration were also examined on the sonocatalytic damage to BSA. The results showed that the fluorescence quenching of BSA solution caused by the FeIII complexes belonged to the static quenching process. The BSA and FeIII complexes interacted with each other mainly through weak interaction and coordinate actions. The binding association constants (K) and binding site numbers (n) were calculated. The results were as follows: K 1 = 0.5353 × 104 l mol−1 and n 1 = 0.9812 for [FeIII(gly)(H2O)4]2+, K 2 = 1.4285 × 104 l mol−1 and n 2 = 1.0899 for [FeIII(ida)(H2O)3, and K 3 = 0.4411 × 104 l mol−1 and n 3 = 0.9471 for [FeIII(nta)(H2O)2]. Otherwise, under ultrasonic irradiation the BSA were obviously damaged by the FeIII complexes. The damage degree rose up with the increase of ultrasonic irradiation time and FeIII complex concentration. And that, [FeIII(nta)(H2O)2] exhibited in a way higher sonocatalytic activity than [FeIII(gly)(H2O)4]2+ and [FeIII(ida)(H2O)3]+.  相似文献   

20.
用固相反应合成法合成了光催化剂Fe2BiTaO7,通过XRD、SEM、TEM、紫外-可见漫反射等表征方法对其组织结构及光催化性能进行了研究.结果表明Fe2BiTaO7为立方晶系烧绿石结构,空间群为Fd3m,禁带宽度为1.72eV.通过比较Fe2BiTaO7、P25TiO2、掺氮TiO2和Bi2InTaO7的可见光光催化降解罗丹明B,发现Fe2BiTaO7降解效果及催化活性均高于其它催化剂,并且Fe2BiTaO7降解罗丹明B效率是掺氮二氧化钛的1.5倍.Fe2BiTaO7降解罗丹明B的曲线符合一级动力学,一级动力学常数为0.02293 min-1.研究了罗丹明B可能的降解路径和Fe2BiTaO7在可见光下降解苯酚的效果.Fe2BiTaO7(可见光)光催化剂系统适用于纺织工业废水处理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号