首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have fabricated all-metal lateral spin-valve devices consisting of two permalloy electrodes and an interconnecting aluminum strip. The micromagnetic behavior of the device has been imaged with a magnetic-force microscope in external magnetic fields at room temperature. During a single cooling cycle at temperatures between 2 and 120 K we have measured the anisotropic magnetoresistance of both electrodes and the magnetoresistance of the entire device. In the latter, we can clearly identify the contributions of the anisotropic magnetoresistance and the mesoscopic spin-valve effect.  相似文献   

2.
Using the two-point conductivity formula, we numerically evaluate the giant magnetoresistance (GMR) in magnetic superlattices with currents in the plane of the layers (CIP), from which the effect of the interfacial roughness and magnetization configuration on the GMR is studied. With increasing interfacial roughness, the maximal GMR ratio is found to first increase and then decrease, exhibiting a peak at an optimum strength of interfacial roughness. For systems composed of relatively thick layers, the GMR is approximately proportional to ,where is the angle between the magnetizations in two successive ferromagnetic layers, but noticeable departures from this dependence are found when the layers become sufficiently thin. Received 21 September 1998 and Received in final form 22 December 1998  相似文献   

3.
Current in heterogeneous tunnel junctions is studied in the framework of the parabolic conduction-band model. The developed model of the electron tunneling takes explicitly into account the difference of effective masses between ferromagnetic and insulating layers and between conduction subbands. Calculations for Fe/MgO/Fe-like structures have shown the essential impact of effective mass differences in regions (constituents) of the structure on the tunnel magnetoresistance of the junction.  相似文献   

4.
Current-perpendicular-to-plane magnetoresistance was measured for ferrimagnetic Co/Gd multilayers which have twisted spin structure accompanied with spin-flop transition. The influence of twisted spin structure on the electronic transport was exclusively obtained, eliminating the effect of anisotropic magnetoresistance. MR curves showed a downturn around the spin-flop field, suggesting that the formation of twisted spin structure leads to a negative resistance change.  相似文献   

5.
The influence of the Cu layer thickness on the magnetic and magnetotransport properties has been investigated in Ta/NiFe/Cu/NiFe/FeMn spin valves. The magnetization and magnetoresistance measurements were carried out for magnetic field applied along the easy-axis direction. A phenomenological model, which assumes formation of a planar domain wall at the anti-ferromagnetic side of the interfaces as well as bilinear coupling between the ferromagnetic layers, was used to derive the anisotropy characteristics and orientation of each NiFe layer magnetization. The anisotropy and spin valve magnetoresistance were simulated numerically and compared with the experiment. It was found that the anisotropy magnetoresistance is negligible and that there is a poor agreement for the spin-valve one, which was attributed to the model (valid for ferromagnetic layers in single-domain state only) used for its calculation. It was found that the increase of the Cu layer thickness provokes a decrease of the interdiffusion between the NiFe and FeMn layers, and, as consequence, changes of the uniaxial anisotropy of the pinned NiFe layer, of the exchange interaction between the pinned NiFe layer and the FeMn ones, as well as of the exchange-bias field of the pinned NiFe layer.  相似文献   

6.
The granular composites of (1−x)La0.7Sr0.3MnO3/xSrFe12O19 [(1−x)LSMO/xSFO] were prepared. The magnetic, electrical, and magnetoresistive properties of the composites were investigated systematically. Two magnetic transitions originating from LSMO and SFO are observed for x=0.05, 0.10, and 0.20. The addition of hard-magnetic SFO ferrite leads to the increased substantially resistivity of the composites and the shift of insulating-metallic transition temperature TIM correlated with LSMO. Enhanced low-field magnetoresistance (LFMR) in the composites can be mainly attributed to the enhanced spin disorder and spin-dependent tunneling at LSMO grain boundaries induced by the interaction between LSMO and SFO ferrite. The transport mechanisms in detail are analyzed in LSMO/SFO composite system.  相似文献   

7.
The electrical and magnetic properties of Co/ITO multilayers with various ITO layer thickness are studied. Negative giant magnetoresistance with a maximum of −1.9% at room temperature and −2.57% at 15 K are observed. The magnitudes of GMR oscillate with a period of about 1 nm when varying the thickness of ITO layer.  相似文献   

8.
We show for a simple d-band TB Hamiltonian that noncollinear magnetic configurations can contribute to large inverse giant magnetoresistance (IGMR) ratios. We make a systematic study as a function of band filling, magnetic moment and canting angle for some simple model examples and use the outcome of this study to interpret the experimentally observed IGMR ratios on LaMn2Ge2.  相似文献   

9.
A tunnel magnetic junction is considered with magnetic hard and magnetic soft layers of cubic symmetry. The magnetic switching of the layers is analyzed for a magnetic field perpendicular to the initial magnetizations. In such a situation, an additional peak in the tunnel magnetoresistance ratio appears at the magnetic field value that is substantially lower than the anisotropy field of the soft layer.  相似文献   

10.
Giant magnetoresistance of Co–Fe–B/Cu multilayers fabricated in the sputtering atmosphere, where the amount of oxygen impurity is varied, is discussed in connection with their interfacial roughness. The magnetoresistance (MR) ratio of Co–Fe/Cu multilayers is enhanced by up to 33% when the oxygen content is varied between 10 and 100 ppm of processing Ar gas. The enhancement of the MR ratio was due to the flattening effect of impurity oxygen on the multilayer interfaces: the root mean square roughness of the multilayer was decreased from 7.5 to 5 Å. With increasing boron content in Co–Fe layers, however, the enhancing effect of MR ratio by oxygen diminished and nearly vanished for 12 at%-B–(Co–Fe) case. The strong affinity of boron for oxygen is suggested as a probable mechanism.  相似文献   

11.
Two-dimensional electron gas systems modulated by a lateral magnetic superlattice are proposed and the related magnetoresistance effect is described in this work. It is found that the magnetoresistance (MR) ratio of the given structures depends strongly on the uniform magnetic field, and the peaks of the MR ratio depressed linearly with the increase of the uniform magnetic field. This feature can be utilized in practical linear magnetoresistance (LMR) devices.  相似文献   

12.
[Co(30 Å)/Pt(x Å)]20 multilayers with the Pt layer thicknesses varying from 5 Å to 20 Å were characterized structurally by high angle X-ray diffraction, X-ray reflectivity, X-ray absorption spectroscopy and magnetically by X-ray magnetic circular dichroism. It is found that the structure and magnetic properties of Pt have a strong correlation with the Pt layer thickness. The 20 Å thickness Pt layer is not almost influenced by the adjacent Co layer and the nearest neighbors are dominated by Pt-Pt shells. With decreasing Pt layer thickness, the nearest neighbors are gradually dominated by Pt-Co shells and the Pt-Co intermixing regions also remarkable increase at the interfaces, especially for the 5 Å thickness Pt layer. The orbital and spin magnetic moments as well as the ratio morb/mspin all decrease systematically with increasing Pt layer thickness, indicating that the interface atoms are polarized by direct Pt-Co hybridization, but that the adjacent layers are polarized by Pt-Pt interactions.  相似文献   

13.
In this paper, we present a study of the magnetic coupling and magnetoresistance (MR) properties in Fe/Si1-xAgx multilayers with a granular Si1-xAgx spacer layer. We have found that, with increasing silver content (x) in a silicon matrix, the magnetic state of multilayers changes from a nonmagnetic coupling state to weak antiferromagnetic around the percolation point of the ~2.4 nm thick spacer Si1-xAgx. The MR measurements also reveal an abrupt increase of MR near the same percolation point. These changes are ascribed to the formation of the percolation path in the granular spacer.  相似文献   

14.
Fe-Pt thin films were deposited by rf sputtering on an MgO substrate heated at different temperatures to induce the formation of the perpendicular Fe-Pt L10 phase with a different grain morphology on the nanometer scale. All films are characterized by a mazelike pattern of FePt nanograins with interconnected bases. MFM images and magnetization curves indicate that all samples have a strong perpendicular magnetic anisotropy arising from (0 0 1) growth. The temperature behaviour of the electrical resistance indicates that a percolating path exists for conduction electrons in the mazelike pattern. The magnetoresistance was measured as a function of magnetic field (applied longitudinally) and temperature in the ranges −70 kOe<H<+70 kOe and 4 K<T<150 K, respectively. All samples display a complex behaviour of the electrical resistance as a function of applied field. The role of the different magnetoresistance effects (both intrinsic and extrinsic) measured in these FePt thin films is elucidated.  相似文献   

15.
用射频磁控溅射方法制备了系列Co SiO_2 不连续磁性金属绝缘体多层膜 (DMIM) .经研究发现 :对 [SiO_2 (2 4nm) Co(t) ]2 0 体系 ,在Co层厚度小于 2 5nm时 ,Co层由连续变为不连续 ;Co层不连续时 ,其导电机理为热激发的电子隧穿导电 ,lnR与T- 1 2 接近正比关系 ;隧道磁电阻 (TMR)在Co层厚度为 1 4nm时出现极大值 - 3% .DMIM的性质不仅与磁性金属层厚度密切相关 ,而且与绝缘层厚度有密切的关系 .在固定Co层厚度为 1 9nm的情况下 ,研究了TMR随SiO_2 层厚度的变化关系 ,并给出定性的解释 .对 [SiO_2 (2 4nm) Co(2 0nm) ]2 0 的样品研究了TMR随温度的变化关系 ,发现TMR随温度的变化有一极大值 ,结合Helman的理论 (Phys.Rev .Lett,37,14 2 9(1976 ) ) ,认为是颗粒之间存在磁性耦合的结果  相似文献   

16.
The resistance of CPP spin valve is a continuous function of the angle θ between the magnetizations of both ferromagnets. We use the circuit theory for non-collinear magnetoelectronics to compute the angular magnetoresistance of CPP spin valves taking the spin accumulation in the ferromagnetic layers into account.  相似文献   

17.
We report here on resistance and magnetoresistance (MR) studies of ultrathin Co/Au(111) single sandwiches and bilayers with perpendicular magnetization. Resistance of the films was measured in situ in ultrahigh vacuum, during depositions and as a function of a perpendicular applied magnetic field. A large MR variation with the thickness of Au coverage was observed and compared to calculations. The coercive field of the Co films shows a drastic variation with the Au coverage thickness, which reflects the theoretical anisotropy variation. It was measured as a function of temperature. For the first time, the effect of interlayer interaction on the resistivity of a Co bilayer during the growth of Co top layer, is evidenced and compared to calculations. Finally, hysteresis loops of strongly antiferromagnetically coupled bilayers are investigated. Received 3 November 1998 and Received in final form 18 January 1999  相似文献   

18.
We present in this paper several results concerning the preparation by means of electrolysis and characterization of Co-Ni-Mo thin films. Co-Ni-Mo thin films with different molybdenum content in the range 0-25 at% Mo were prepared from a complex solution containing ions of Co, Ni and Mo, using galvanostatic control, on aluminum substrates. The effects of applied current density on the morphology, magnetic, magnetoresistance, and optical properties of the electrodeposited Co-Ni-Mo films were investigated. The applied current density significantly influenced the film composition and their magnetic properties. The increase of molybdenum content in Co-Ni films (up to 25 at% Mo) enhances the resistivity, but it reduces the magnetoresistance effect. We report the first observation of magnetoresistance as high as 8% in Co-Ni-Mo thin films.  相似文献   

19.
江阔 《物理学报》2010,59(4):2801-2807
通过对La0.8Sr0.2Mn1-yCoyO3(y≤02)饱和磁矩和输运的测量,研究了Co对La0.8Sr0.2MnO3的磁电阻影响机制.结果表明,在La0.8Sr0.2Mn1-yCoyO3y≤02)中Co3+离子是低自旋态.由于Mn3+—O—Co3+—O—Mn3+类型的磁交换与Mn3+-Mn4+离子间双交换作用相比较弱,Curie温度TC附近的磁电阻随着Co掺杂量的增加而降低.与此相反,由于Co2+离子与eg巡游电子的反铁磁交换耦合作用,低温区间的磁电阻随着Co掺杂量的增加而升高. 关键词: 低自旋 磁电阻 磁交换作用  相似文献   

20.
Using magnetron sputtering, we have prepared Co-Fe-B/tunnel barrier/Co-Fe-B magnetic tunnel junctions with tunnel barriers consisting of alumina, magnesia, and magnesia-alumina bilayer systems. The highest tunnel magnetoresistance ratios we found were 73% for alumina and 323% for magnesia-based tunnel junctions. Additionally, tunnel junctions with a unified layer stack were prepared for the three different barriers. In these systems, the tunnel magnetoresistance ratios at optimum annealing temperatures were found to be 65% for alumina, 173% for magnesia, and 78% for the composite tunnel barriers. The similar tunnel magnetoresistance ratios of the tunnel junctions containing alumina provide evidence that coherent tunneling is suppressed by the alumina layer in the composite tunnel barrier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号