首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The surface of lanthanide(III)-doped LaPO4 nanoparticles was modified by reaction with an alcohol, leading to a covalent bond between the ligand and the particle surface. The surface of lanthanide(III)-doped LaF3 nanoparticles was modified to alter the solubility of the nanoparticles and study the influence of surface effects on the luminescence of lanthanide ions doped in the nanoparticles. The coordinated organic ligands can be modified by a quantitative exchange reaction in solution or by using functionalized ligands during the synthesis. Variation of the ratio of ligand to core reagents had a significant influence on the size of the nanoparticles. Smaller nanoparticles were formed with a higher ligand ratio. The optical properties of these nanoparticles show a strong dependence on nanoparticle size, indicating the influence of quenching probably by CH and OH groups at or near the surface of the nanoparticle cores. The luminescence lifetime of LaF3/Eu nanoparticles varied from 6.5 to 7.4 ms for nanoparticles with an average size of 7.1 to 8.4 nm. A significant reduction of the quenching from the surface of the nanoparticles was obtained by the synthesis of core-shell nanoparticles, in which a shell of LaF3 was grown epitaxially around the doped core nanoparticles. This leads to an increase in the luminescence lifetime of the Eu3+ ion and the observation of emissions from the 5D2 energy level, in addition to emissions from the 5D1 and 5D0 levels. The quantum yield of LaF3/Ce,Tb nanoparticles could be increased from 24 to 54% by the growth of a LaF3 shell around the nanoparticles.  相似文献   

2.
Two calix[4]azacrowns, capped with two aminopolyamide bridges, were used as ligands for the complexation of lanthanide ions [Eu(III), Tb(III), Nd(III), Er(III), La(III)]. The formation of 1:2 and 1:1 complexes was observed, and stability constants, determined by UV absorption and fluorescence spectroscopy, were found to be generally on the order of log beta(11) approximately 5-6 and log beta(12) approximately 10. The structural changes of the ligands upon La(III) complexation were probed by 1H NMR spectroscopy. The two ligands were observed to have opposite fluorescence behaviors, namely, fluorescence enhancement (via blocking of photoinduced electron transfer from amine groups) or quenching (via lanthanide-chromophore interactions) upon metal ion complexation. Long-lived lanthanide luminescence was sensitized by excitation in the pi,pi band of the aromatic moieties of the ligands. The direct involvement of the antenna triplet state was demonstrated via quenching of the ligand phosphorescence by Tb(III). Generally, Eu(III) luminescence was weak (Phi(lum) 相似文献   

3.
Lanthanide chelates are excellent labels in ligand binding assays due to their long lifetime fluorescence, which enables efficient background reduction using time-resolved measurement. In separation-free homogeneous assays, however, some compounds in the sample may cause quenching of the lanthanide fluorescence and extra steps are required before these samples can be measured. In this study we have evaluated whether europium chelates packed inside a polystyrene nanoparticle are better protected from the environment than individual Eu(III)-chelates, and do these particles have higher tolerance against known interfering compounds (bivalent metal ions and variation of pH). We also tested whether metal ions had any effect on a fluorescence resonance energy transfer (FRET) based detection of a bioaffinity binding reaction. The presence of metal ions or variation of pH did not affect the fluorescence of the Eu(III)-chelate dyed nanoparticles, while significant decrease of the fluorescence was detected with a 9-dentate Eu(III)-chelate. Metal ions also decreased the fluorescence lifetime of the 9-dentate Eu(III)-chelate from 0.960 to 0.050 ms. Coloured metal ions caused a minor decrease in sensitised emission generated by FRET when Eu(III)-chelate dyed nanoparticles were used as donor labels. The decreased signal was due to the absorption of the sensitised emission by the coloured metal ions, since the metal ions had no effect on the lifetime of the sensitised emission. Thus the Eu(III)-chelate dyed nanoparticles are preferred labels in homogeneous bioaffinity assays, when interfering compounds are known to be present.  相似文献   

4.
The luminescent nanoparticles were prepared by encapsulating the [LnL4]? (Ln = Eu, Tb; L = BTFA, HFAA, TTFA, TFAA) complexes anion into the silicon framework. We firstly synthesized a series of novel siloxy-bearing lanthanide complex precursor, and then encapsulated them into the silica sphere by a modified Stöber process. As a result, four europium and two terbium tetrakis β-diketonate complexes functionalized silica sphere nanoparticles were obtained and characterized in detail using Fourier transform infrared spectra, X-ray diffraction, scanning electronic microscope, thermogravimetric analysis, luminescence excitation and emission spectroscopy, luminescence lifetime measurements, and diffuse reflectance UV–Vis spectroscopy. The result shows that these luminescent nanoparticles maintain the distinctive luminescence character of lanthanide chelate including broad excitation spectra, line-like emission spectra, high quantum efficiency, and long luminescent lifetime, which makes them great potential application in the synthesis of luminescent nanoparticle.  相似文献   

5.
The novel polymeric formates of general formula [(Fmd)Ln(III)(HCOO)(4)](∞) (Fmd(+) = NH(2)-CH(+)-NH(2); Ln = Eu (1), Gd (2), Tb (3), Dy (4)] were synthesized through solvothermal methods in formamide solutions. The compounds are isotructural; they crystallize in the orthorhombic C222(1) chiral space group. The coordination geometry at the metal centers is square antiprismatic (coordination number eight), with each formate ligand bridging adjacent lanthanide ions. The overall negative three-dimensional (3D) framework charge is balanced by the formamidinium cations sitting inside the channels along the a axis, forming extensive N-H···O hydrogen bonding with the surrounding cage. All the compounds have been characterized through single-crystal/powder X-ray diffraction, IR spectroscopy, and TG-MS analysis. Finally, their luminescence and magnetic properties have been assessed, leading to remarkable emission intensities, especially for the Tb(III) compound (Φ = 0.83), with corresponding lifetime decays in the micro (Dy) and millisecond (Tb, Eu) time scale. A weak but sizable antiferromagnetic interaction has been observed for the Gd(III) derivative.  相似文献   

6.
The synthesis and photophysical properties of novel luminescent ruthenium(II) bipyridyl complexes containing one, two, or six lower rim acid-amide-modified calix[4]arene moieties covalently linked to the bipyridine groups are reported which are designed to coordinate and sense luminescent lanthanide ions. All the Ru-calixarene complexes synthesized in this work are able to coordinate Nd(3+), Eu(3+), and Tb(3+) ions with formation of adducts of variable stoichiometry. The absorbance changes allow the evaluation of association constants whose magnitudes depend on the nature of the complexes as well as on the nature of the lanthanide cation. Lanthanide cation complex formation affects the ruthenium luminescence which is strongly quenched by Nd(3+) ion, moderately quenched by the Eu(3+) ion, and poorly or moderately increased by the Tb(3+) ion. In the case of Nd(3+), the excitation spectra show that (i) the quenching of the Ru luminescence occurs via energy transfer and (ii) the electronic energy of the excited calixarene is not transferred to the Ru(bpy)(3) but to the neodymium cation. In the case of Tb(3+), the adduct's formation leads to an increase of the emission intensities and lifetimes. The reason for this behavior was ascribed to the electric field created around the Ru calix[4]arene complexes by the Tb(3+) ions by comparison with the Gd(3+) ion, which behaves identically and can affect ruthenium luminescence only by its charge. However, especially for compounds 1 and 3, it cannot be excluded that some contribution comes from the decrease of vibrational motions (and nonradiative processes) due to the rigidification of the structure upon Tb(3+) complexation. In the case of Eu(3+), compounds 1, 2, and 4 were quenched by the lanthanide addition but the quenching of the ruthenium luminescence is not accompanied by europium-sensitized emission which suggests that an electron-transfer mechanism is responsible for the quenching. On the contrary, compound 3 exhibits enhanced emission upon addition of Eu(3+) (as nitrate salt); it is suggested that the lack of quenching in the [3.2Eu(3+)] adduct is due to kinetic reasons because the electron-transfer quenching process is thermodynamically allowed.  相似文献   

7.
Lin YW  Huang CC  Chang HT 《The Analyst》2011,136(5):863-871
Monitoring the levels of potentially toxic metal (PTM) ions (e.g., Hg(2+), Pb(2+), Cu(2+)) in aquatic ecosystems is important because these ions can have severe effects on human health and the environment. Gold (Au) nanomaterials are attractive sensing materials because of their unique size- and shape-dependent optical properties. This review focuses on optical assays for Hg(2+), Pb(2+), and Cu(2+) ions using functionalized Au nanomaterials. The syntheses of functionalized Au nanomaterials are discussed. We briefly review sensing approaches based on changes in absorbance resulting from metal ion-induced aggregation of Au nanoparticles (NPs) or direct deposition of metal ions onto Au NPs. The super-quenching properties of Au NPs allow them to be employed in 'turn on' and 'turn off' fluorescence approaches for the sensitive and selective detection of Hg(2+), Pb(2+), and Cu(2+) ions. We highlight approaches based on fluorescence quenching through analyte-induced aggregation or the formation of metallophilic complexes of Au nanodots (NDs). We discuss the roles of several factors affecting the selectivity and sensitivity of the nanosensors toward the analytes: the size of the Au nanomaterial, the length and sequence of the DNA or the nature of the thiol, the surface density of the recognition ligand, and the ionic strength and pH of the buffer solution. In addition, we emphasize the potential of using new nanomaterials (e.g., fluorescent silver nanoclusters) for the detection of PTM ions.  相似文献   

8.
We have synthesized a new macrocyclic ligand, N,N'-Bis[(6-carboxy-2-pyridyl)methyl]-1,7-diaza-12-crown-4 (H 2bp12c4), designed for complexation of lanthanide ions in aqueous solution. The X-ray crystal structure of the Gd (III) complex shows that the metal ion is directly bound to the eight donor atoms of the bp12c4 ligand, the ninth coordination site being occupied by an oxygen atom of a carboxylate group of a neighboring [Gd(bp12c4)] (+) unit, while the structure of the Lu (III) analogue shows the metal ion being only eight-coordinate. The hydration numbers obtained from luminescence lifetime measurements in aqueous solution of the Eu (III) and Tb (III) complexes suggest an equilibrium in aqueous solution between a dihydrated ( q = 2), ten-coordinate and a monohydrated ( q = 1), nine-coordinate species. This has been confirmed by a variable temperature UV-vis spectrophotometric study on the Eu (III) complex. The structure of the complexes in solution has been investigated by (1)H and (13)C NMR spectroscopy, as well as by theoretical calculations performed at the DFT (B3LYP) level. The results indicate that the change in hydration number occurring around the middle of the lanthanide series is accompanied by a change in the conformation adopted by the complexes in solution [Delta(lambdalambdalambdalambda) for q = 2 and Lambda(deltalambdadeltalambda) for q = 1]. The structure calculated for the Yb (III) complex (Lambda(deltalambdadeltalambda)) is in good agreement with the experimental structure in solution, as demonstrated by the analysis of the Yb (III)-induced paramagnetic (1)H shifts.  相似文献   

9.
A new water-soluble Pybox ligand, 1, has been synthesized and found to crystallize in the monoclinic P2(1)/n space group with unit cell parameters a = 6.0936(1) ?, b = 20.5265(4) ?, c = 12.0548(2) ?, and β = 90.614(1)°. In the crystal, a water molecule is bound through hydrogen-bonding interactions to the nitrogen atoms of the oxazoline rings. This ligand was used to complex a variety of lanthanide ions, opening up new avenues for luminescence and catalysis in aqueous environment. These complexes are highly luminescent in aqueous solutions, in acetonitrile, and in the solid state. Aqueous quantum yields are high at 30.4% for Eu(III), 26.4% for Tb(III), 0.32% for Yb(III), and 0.11% for Nd(III). Er(III) did not luminesce in water, but an emission efficiency of 0.20% could be measured in D(2)O. Aqueous emission lifetimes were also determined for the visible emitting lanthanide ions and are 1.61 ms for Eu(III) and 1.78 ms for Tb(III). Comparing emission lifetimes in deuterated and nondeuterated water indicates that no water molecules are coordinated to the metal ion. Speciation studies show that three species form successively in solution and the log β values are 5.3, 9.6, and 13.8 for Eu(III) and 5.3, 9.2, and 12.7 for Tb(III) for 1:1, 2:1, and 3:1 ligand to metal ratios, respectively.  相似文献   

10.
A newly designed terephthalic acid substituted amphiphilic L-glutamide was found to form organogels in DMSO and a broad range of metal ions, from simple Na(+), Li(+) to Cu(2+), Ni(2+), Eu(3+) and Tb(3+), could turn the self-assembled nanostructure into a uniform helical twist.  相似文献   

11.
The effect of Y(III) and Gd(III) coactivator ions on the intensity of Eu(III) and Tb(III) luminescence in monomer and polymer mixed-metal complexes was studied. Isomorphic replacement of Eu(III) and Tb(III) ions by Y(III) and Gd(III) ions in macromolecular complexes led to sensitization of Eu(III) and Tb(III) ion luminescence. A mechanism of columinescence was suggested. It involves a charge transfer and the ligand orbitals and the vacant orbitals of Eu(III) and Tb(III) ions and coactivators.  相似文献   

12.
A series of doped CeF(3): RE(3+) (RE(3+): Tb(3+), Eu(3+) and Dy(3+)) nanoparticles were synthesized, with the aim of obtaining a white light emitting composition, by a simple polyol route at 160°C and characterized by X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), Fourier transform infrared spectroscopy (FT-IR) and photoluminescence. Uniformly distributed and highly water-dispersible rectangular nanoparticles (length ~15-20 nm, breadth ~5-10 nm) were obtained. The steady state and time resolved luminescence studies confirmed efficient energy transfer from the host to activator ions. Lifetime studies revealed that optimum luminescence is observed for 2.5 mol% Dy(3+) and 7.5 mol% Tb(3+). The energy transfer efficiencies (Ce(3+) to activators) were found to be 89% for CeF(3): Tb(3+) (7.5 mol%) nanoparticles and 60% for CeF(3): Dy(3+) (2.5 mol%) nanoparticles. Different concentrations of Tb(3+), Eu(3+) and Dy(3+) were doped to achieve a white light emitting phosphor for UV-based LEDs (light emitting diodes). Finally CeF(3), triply doped with 2.0 mol%Tb(3+), 4.5 mol% Eu(3+) and 3.5 mol% Dy(3+), was found to have impressive chromaticity co-ordinates, close to broad day light. The colloidal solutions of doped CeF(3) nanoparticles emitted bright green (Tb(3+)), blue (Dy(3+)) and white (triply doped) luminescence upon host excitation. Composites of poly methyl methacrylate (PMMA) and poly vinyl alcohol (PVA) were made with CeF(3): 5.0 mol%Tb(3+), CeF(3): 5.0 mol% Dy(3+) and triply doped white light emitting composition. The CeF(3)/PMMA (PVA) nanocomposite films, so obtained, are highly transparent (in the visible spectral range) and exhibit strong photoluminescence upon UV excitation.  相似文献   

13.
Three novel ligands containing pyridine-2,6-dicarboxylic acid unit, trans-4 -(4'-methoxystyryl) pyridine-2,6-dicarboxylic acid, trans-4-(4'-(dimethylamino)styryl)pyridine-2,6-dicarboxylic acid, and trans-4-(4'-(diphenylamino)styryl)pyridine-2,6-dicarboxylic acid were synthesized and their complexes with Eu(III), Tb(III) ions were successfully prepared. The ligands and the corresponding metal complexes were characterized by means of MS, elemental analysis, IR, (1)H NMR and TG-DTA. The luminescence spectra of Eu(III) and Tb(III) complexes in solid state were studied. The strong luminescence emitting peaks at 615 nm for Eu(III) and 545 nm for Tb(III) can be observed. The applications in cell imaging of the europium and terbium complexes were investigated.  相似文献   

14.
(Z)-4-(4-Methoxyphenoxy)-4-oxobut-2-enoic acid and its solid rare earth complexes LnL3.2H2O (Ln=La, Eu, Tb) were synthesized and characterized by means of MS, elemental analysis, FTIR, 13C NMR and TG-DTA. The IR and 13C NMR results show that the carboxylic groups in the complexes coordinated to the rare earth ions in the form of a bidentate ligand, but the ester carboxylic groups have not taken part in the coordination. The luminescence spectra of Eu(III) and Tb(III) complexes in solid state were also studied. The strong luminescence emitting peaks at 616nm for Eu(III) and 547nm for Tb(III) can be observed, which could be attributed to the ligand has an enhanced effect to the luminescence intensity of the Eu and Tb.  相似文献   

15.
The chemodynamics of metal complexes with nanoparticulate complexants can differ significantly from that for simple ligands. The spatial confinement of charged sites and binding sites to the nanoparticulate body impacts on the time scales of various steps in the overall complex formation process. The greater the charge carried by the nanoparticle, the longer it takes to set up the counterion distribution equilibrium with the medium. A z+ metal ion (z > 1) in a 1:1 background electrolyte will accumulate in the counterionic atmosphere around negatively charged simple ions, as well as within/around the body of a soft nanoparticle with negative structural charge. The rate of accumulation is often governed by diffusion and proceeds until Boltzmann partition equilibrium between the charged entity and the ions in the medium is attained. The electrostatic accumulation proceeds simultaneously with outer-sphere and inner-sphere complex formation. The rate of the eventual inner-sphere complex formation is generally controlled by the rate constant of dehydration of the metal ion, k(w). For common transition metal ions with moderate to fast dehydration rates, e.g., Cu(2+), Pb(2+), and Cd(2+), it is shown that the ionic equilibration with the medium may be the slower step and thus rate-limiting in their overall complexation with nanoparticles.  相似文献   

16.
Two new tetraazamacrocyclic ligands are designed with the aim of sensitizing the luminescence of Tb(III) and Eu(III) ions in water: L5 [1,4,7,10-tetrakis[N-(phenacyl)carbamoylmethyl]-1,4,7,10-tetraazacyclododecane] and L6 [1,4,7,10-tetrakis[N-(4-phenylphenacyl)carbamoylmethyl]-1,4,7,10-tetraazacyclododecane]. These ligands react with lanthanide trifluoromethanesulfonates to yield stable 1:1 complexes in water (log K = 12.89 +/- 0.15 for EuL5). X-ray diffraction on [Tb(L5)(H(2)O)](CF(3)SO(3))(3) (P1 macro, a = 13.308(3) A, b = 14.338(3) A, c = 16.130(3) A, alpha = 101.37(3) degrees, beta = 96.16(3) degrees, gamma = 98.60(3) degrees ) shows the Tb(III) ion lying on a C(4) axis and being 9-coordinate, with one water molecule bound in its inner coordination sphere. The absolute quantum yields are determined in aerated water for the complexes formed with ions used in fluoroimmunoassays (Ln = Sm, Eu, Tb, and Dy). Large values are found for [Tb(H(2)O)(L5)](3+) and [Eu(H(2)O)(L6)](3+), in line with the molecular design of the receptors: 23.1% and 24.7%, respectively. The intense luminescence of these ions results from efficient intersystem crossing and L --> Ln energy transfer processes, as well as from a suitable shielding of the emitting ions from radiationless deactivation.  相似文献   

17.
A novel ligand, N2,N6-bis[2-(3-methylpyridyl)]pyridine-2,6-dicarboxamide (L2) and the corresponding Eu(III) and Tb(III) hydrochlorate complexes have been synthesized and characterized in detail based on elemental analysis, IR and NMR. The crystal and molecular structure of the complexes was determined by X-ray crystallography. The Eu(III) and Tb(III) ions were found to coordinate to the amido nitrogen atoms and pyridine nitrogen atoms. The luminescence properties of lanthanide complexes in solid state, in different solutions and in different pH value were investigated. The result shows that Tb(III) complexes exhibit more efficient luminescence than Eu(III) complexes, and the ligand (L2) is an excellent sensitizer to Tb(III) ion.  相似文献   

18.
We chose dipicolinic acid as a tridentate chelating unit featuring ONO donors to react with lanthanide(III) ions to yield tight and protective N(3)O(6) environments around the lanthanide(III) ions. We immobilized the lanthanide(III)-dipicolinic acid complexes on colloidal mesoporous silica with diameter smaller than 100 nm by a covalent bond grafting technique and obtained nearly monodisperse luminescent Eu-dpa-Si and Tb-dpa-Si functionalized hybrid mesoporous silica nanomaterials. These hybrid nanomaterials were characterized by powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, nitrogen adsorption-desorption, and photoluminescence spectroscopic techniques. The hybrid mesoporous silica nanoparticles exhibit intense emission lines upon UV-light irradiation, owing to the effective intramolecular energy transfer from the chromophore to the central lanthanide Eu(3+) and Tb(3+) ions. Furthermore, the functionalized nanomaterials can be turned to white light materials after annealing at high temperature.  相似文献   

19.
We have investigated the complexation of the luminescent Nd(3+), Eu(3+), Gd(3+), Tb(3+), Er(3+), and Yb(3+) ions by a polylysin dendrimer containing 21 amide groups in the interior and, in the periphery, 24 chromophoric dansyl units which show an intense fluorescence band in the visible region. Most of the experiments were performed in 5:1 acetonitrile/dichloromethane solution at 298 K. On addition of the lanthanide ions to dendrimer solutions, the fluorescence of the dansyl units is quenched; in Nd(3+), Er(3+), and Yb(3+), a sensitized near-infrared emission of the lanthanide ion is observed. At low metal ion concentrations, each dendrimer hosts only one metal ion and when the hosted metal ion is Nd(3+) or Eu(3+), the fluorescence of all the 24 dansyl units of the dendrimer is quenched with unitary efficiency. Quantitative measurements were performed in a variety of experimental conditions, including protonation of the dansyl units and measurements in rigid matrix at 77 K where a sensitized Eu(3+) emission could also be observed. The results obtained have been interpreted on the basis of the energy levels and redox potentials of dendrimer and metal ions.  相似文献   

20.
The binding properties of trivalent metal ions to polyelectrolytes were investigated through the use of Tb(III) luminescence studies. The condensation of Tb(III) with the homopolymers poly(acrylic acid) and poly(methacrylic acid) was studied in detail. In addition, the 1 : 1 copolymers of maleic acid with ethylene, isobutene, and 2,4,4-trimethyl-1-pentene were also examined. The emission intensity of the 305 nm Tb(III) hypersensitive excitation band was found to correlate with the size of the alkyl group on the polymer chains. Tb(III) luminescence lifetime studies indicated that the metal ion binding site was equivalent over a wide range of Tb(III)/polymer ratios. The number of solvent molecules coordinated by Tb(III) in the various polymer complexes was determined and found to range between 3.5 and 4 molecules of water of hydration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号