首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Solubilization capacity and structural transformations in nonionic microemulsions characterized by a large continuous isotropic region forming dilutable self-assembled nanodroplets containing solubilized carbamazepine, were studied along dilution lines 73 and 82 (70 and 80 wt% surfactant and 30 and 20 wt% of oil phase, respectively). The preparations were based on pharma-grade ingredients, water, R-(+)-limonene, ethanol, propylene glycol, and Tween 60. Solubilization capacity (SC) of the drug was dependent on the microstructure of the microemulsion and on the surfactant-to-oil phase weight ratio. The SC in the concentrate (reversed micelles) was 15 times higher than its solubility in the oil. Transition of the W/O microemulsion to a bicontinuous phase and to O/W droplets were indentified by electrical conductivity, viscosity, SAXS, and SD-NMR measurements. Once the system is diluted to 90 wt% aqueous phase, the SC is 10 and 16-fold higher, along dilution lines 73 and 82, respectively, than in pure water. Being solubilized, carbamazepine serves as a cosurfactant therefore it affects the curvatures of the microstructures and consequently the boundaries of the structural regions and the transition points between the different phases. Dilutable microemulsions are promising new carbamazepine vehicles for oral intake.  相似文献   

2.
The aim of this study is to determine the effects of oil solutes and alcohol cosolvents on the structure of oil-in-water microemulsions stabilized by poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymers. The systems investigated involved the solubilization of 1,3,5-trimethylbenzene or 1,2-dichlorobenzene by P123 (EO(20)-PO(70)-EO(20)) pluronic surfactant micelles in water and water + ethanol solvents. The structures of these swollen micelles were determined by small-angle neutron scattering (SANS). A thermodynamic model was employed to interpret the characterization data. The results of the thermodynamic model for micellization agreed well with the SANS data from samples of micelles swollen by both oils. The model predicted the size of the micelles within 5% accuracy using only one fitting parameter, the micelle polydispersity. Ethanol had significantly different effects on the polymer micelles that contained solubilized oil compared to pure polymer micelles. For pure polymer micelles, the addition of ethanol increased the solubility of the polymer and, therefore, decreased the total volume fraction of micelles, while for polymer-oil aggregates, ethanol tended to have a positive effect on the volume fraction of micelles. SANS results showed that the greatest divergence from pure aqueous solvent results occurred at oil concentrations above the microemulsion stability limit.  相似文献   

3.
The adsorption of a rake-type polymeric siloxane surfactant (polydimethylsiloxane-graft-polyether copolymer) on carbon black (CB) particles dispersed in mixtures of water with polar organic solvents (ethanol, formamide, or glycerol) has been investigated. The adsorption obeys the Langmuir isotherm at low surfactant concentrations (below the critical micelle concentration, CMC). At these conditions, the average surface area occupied by one siloxane surfactant follows the sequence water+glycerol mixture >plain water >water+ethanol mixture. At higher surfactant concentrations in the solution in contact with the particles, a sharp increase in the adsorbed amount is observed. The adsorbed layer thickness has been determined by dynamic light scattering. Below the CMC the adsorbed layer thickness is less than 10 nm. Above the CMC, the adsorbed layer thickness increases to 20-30 nm, a length scale comparable to the diameter of the siloxane surfactant micelles in aqueous solution. This fact, together with SANS data that we have obtained in the absence of added polar organic solvent, indicates that the structure of the adsorbed layer is similar to that of micelles. The findings presented here are relevant to waterborne coatings and ink formulations, where polymeric surfactants are used in conjunction with polar organic solvents.  相似文献   

4.
Celecoxib (clxb) is an important drug for treatment of rheumatoid arthritis and osteoarthritis by specifically inhibiting the enzyme cyclooxygenase-2 (COX-2). Clxb is a type 2 drug characterized by low water solubility (<5 mug/ml) and fast transmembrane transport. The present formulations require high dosage since the transmembrane transport fluctuates and is very difficult to control. Dissolving the drug within an oil phase was not practical since its dissolution was very small and its dispersion in water was impossible. In our recent studies, we learned to construct U-type phase diagrams and to formulate reverse microemulsions (oil-based concentrates) that are progressively and fully dilutable with aqueous phase. In the present study, we solubilized clxb in nanostructures of reverse micelles of U-type nonionic microemulsions that consisted of R(+)-limonene, alcohol, propylene glycol (PG), and hydrophilic surfactant (Tween 60). The solubilization capacity of the drug in these systems is many times higher than in either the oil or the aqueous phase. The clxb solubilized microemulsions are fully diluted with aqueous phase without phase separation. The solubilization capacity decreases as the water content increases. Electrical conductivity, viscosity, and self-diffusion (SD) coefficients of the microemulsion components were measured along a suitable water dilution line. The three major microemulsion regions were detected and the transitions between the W/O to bicontinuous phase and from this phase to the O/W droplets were identified (at 30 and 70 wt% aqueous phase, respectively). From the SD coefficients, it was found that the drug is initially solubilized at the interface of the W/O droplets and there are no significant structural changes. The transition to a bicontinuous phase occurs at the same water content as in the empty (i.e., without drug) system. From the viscosity profiles, we concluded that the drug affects the structure of the bicontinuous phase as reflected in the water content at which the oil-continuous network is destroyed and full inversion occurs (50 vs 55 wt% in the drug-loaded system). Upon further dilution the drug remains solubilized at the interface and is oriented with its hydrophilic part facing the water, and is strongly affects the inversion to O/W droplets. From Small Angle X-ray Scattering (SAXS) measurements we learned that the drug effects the structure of microemulsion droplets and forms "ill-defined structures," probably less spherical. Yet, the overall droplet sizes at the high dilutions did not change very much.  相似文献   

5.
界面聚合法制备聚α-氰基丙烯酸正丁酯毫微囊   总被引:6,自引:0,他引:6  
采用界面聚合法制备了粒径约 2 0 0nm的聚α 氰基丙烯酸正丁酯毫微囊 ,运用动态激光光散射和透射电镜测定了毫微囊的粒径及其分布 ,系统研究了高分子稳定剂类型、表面活性剂的用量、辅助添加剂的用量、以及后处理条件等因素对毫微囊粒径及其分布的影响 .结果说明 ,在高分子稳定剂中 ,葡聚糖的稳定作用优于Poloxamer 188,而葡聚糖的用量越大 ,毫微囊的粒径越小 ,采用葡聚糖 70比葡聚糖 40更能得到窄分布的毫微囊 .增加表面活性剂吐温 2 0的用量 ,同样减小毫微囊的粒径 .与三油酸甘油酯相比 ,在有机相中加入苯甲醇能够增大毫微囊粒径 ,并改善毫微囊的规整性 .乙醇和丙酮均可作为溶剂添加在有机相中 ,但含乙醇的体系分散较好 ,界面聚合得到聚α 氰基丙烯酸正丁酯毫微囊粒径分布较窄 .此外 ,通过考察浓缩温度发现 ,在2 0℃下真空浓缩时毫微囊粒径基本保持不变 ,而在 30℃下则发生一定程度的毫微囊聚集  相似文献   

6.
The dilution of series of oil-in-water microemulsions, formulated with Aerosol-OT as surfactant, water, isopropyl myristate as oil and varying amounts of butanol as cosurfactant, was studied. An infinite dilution could be obtained only adding water containing surfactant; the minimum amount of Aerosol-OT required was determined. The behaviour of the microemulsions upon dilution was related to the presence of nixed micelles in the aqueous phase.  相似文献   

7.
The systems investigated by fluorescence spectroscopy and atomic force microscopy were water/ethoxylated mono, di-glyceride/oil + ethanol. The oils were R (+)-limonene and isopropylmyristate. The mixing ratio (w/w) of ethanol/oil equals unity. The fluorescent probes auramine-O and 8-anilino-1-naphthalenesulfonic acid were used to determine the minimum ω′ value for the transition of reverse micelles to microemulsions in the systems based on the two oils, as well as at different surfactant contents. The fluorescence quenching of Safranine-T (3,6-diamino-2,7-dimethyl-5 phenyl phenazinium chloride) by the inorganic ions Fe2+, Fe3+ and Cu2+ was studied in reverse micelles and microemulsions. The Stern–Volmer quenching constants at different water/surfactant molar ratios (ω values) were calculated from the data of the quenching process. Atomic force microscopy was used to image the systems based on the two oils for different water to surfactant molar ratios below and above the minimum ω′ value.  相似文献   

8.
The systems investigated by fluorescence spectroscopy and atomic force microscopy were water/sucrose laurate/oil + ethanol. The oils were R (+)-limonene and isopropylmyristate. The mixing ratio (w/w) of ethanol/oil equals unity. The fluorescent probes auramine-O and 8-anilino-1-naphthalenesulfonic acid were used to determine the minimum ω′ value for the transition of reverse micelles to microemulsions in the systems based on the two oils, as well as at different surfactant contents. The fluorescence quenching of Safranine-T (3, 6-diamino-2,7-dimethyl-5 phenyl phenazinium chloride) by the inorganic ions Fe2+, Fe3+, and Cu2+ was studied in reverse micelles and microemulsions. The Stern-Volmer quenching constants at different water/surfactant molar ratios (ω values) were calculated from the data of the quenching process. Atomic force microscopy was used to image the systems based on the two oils for different water to surfactant molar ratios below and above the minimum ω′ value.  相似文献   

9.
The phase behavior of a mixture of poly(isoprene)-poly(oxyethylene) diblock copolymer (PI-PEO or C250EO70) and poly(oxyethylene) surfactant (C12EO3, C12EO5, C12EO6, C12EO7, and C12EO9) in water was investigated by phase study, small-angle X-ray scattering, and dynamic light scattering (DLS). The copolymer is not soluble in surfactant micellar cubic (I1), hexagonal (H1), and lamellar (Lalpha) liquid crystals, whereas an isotropic copolymer fluid phase coexists with these liquid crystals. Although the PI-PEO is relatively lipophilic, it increases the cloud temperatures of C12EO3-9 aqueous solutions at a relatively high PI-PEO content in the mixture. Most probably, in the copolymer-rich region, PI-PEO and C12EOn form a spherical composite micelle in which surfactant molecules are located at the interface and the PI chains form an oil pool inside. In the C12EO5/ and C12EO6/PI-PEO systems, one kind of micelles is produced in the wide range of mixing fraction, although macroscopic phase separation was observed within a few days after the sample preparation. On the other hand, small surfactant micelles coexist with copolymer giant micelles in C12EO7/ and C12EO9/PI-PEO aqueous solutions in the surfactant-rich region. The micellar shape and size are calculated using simple geometrical relations and compared with DLS data. Consequently, a large PI-PEO molecule is not soluble in surfactant bilayers (Lalpha phase), infinitely long rod micelles (H1 phase), and spherical micelles (I1 phase or hydrophilic spherical micelles) as a result of the packing constraint of the large PI chain. However, the copolymer is soluble in surfactant rod micelles (C12EO5 and C12EO6) because a rod-sphere transition of the surfactant micelles takes place and the long PI chains are incorporated inside the large spherical micelles.  相似文献   

10.
We present the phase diagram and the microstructure of the binary surfactant mixture of AOT and C(12)E(4) in D(2)O as characterized by surface tension and small angle neutron scattering. The micellar region is considerably extended in composition and concentration compared to that observed for the pure surfactant systems, and two types of aggregates are formed. Spherical micelles are present for AOT-rich composition, whereas cylindrical micelles with a mean length between 80 and 300 ? are present in the nonionic-rich region. The size of the micelles depends on both concentration and molar ratio of the surfactant mixtures. At higher concentration, a swollen lamellar phase is formed, where electrostatic repulsions dominate over the Helfrich interaction in the mixed bilayers. At intermediate concentrations, a mixed micellar/lamellar phase exists.  相似文献   

11.
The purpose of this study was to evaluate the viability and permeability of carbamazepine (CBZ) solubilized in fully dilutable non-ionic microemulsions across Caco-2 cells used as a model for intestinal epithelium. Maximum solubilization capacity (SC) of CBZ was determined within water-in-oil (W/O), bicontinuous and oil-in-water (O/W) structures formed upon dilution. The effect of the nature of the oil phase, surfactant type, and the ratio between the oil phase and surfactant on the quantity of solubilized CBZ, droplets size, the viability of the cells and drug permeability was elucidated. We found that: (1) several fully dilutable microemulsions based on pharma-grade ingredients can be loaded with very significant amounts of CBZ, (2) W/O microemulsions (10wt% water) exhibit up to 3-fold higher solubilization capacity over the drug's solubility in oil (triacetin), (3) CBZ in the O/W microemulsions (80wt% water) exhibit up to 29-fold higher solubilization than in water, (4) the O/W droplets of the examined systems are 9-11nm in size, (5) the highest permeability was obtained in systems containing triacetin/alpha-tocopherol acetate/ethanol in 3/1/4wt% ratio as oil phase and Tween 60 as surfactant, (6) the replacement of alpha-tocopherol acetate by alpha-tocopherol inhibits CBZ release, (7) replacement of a saturated chain of Tween 60 by an unsaturated (Tween 80) or shorter chain (Tween 40) inhibited drug release, (8) the decrease in the oil phase to surfactant ratio leads to enhancement of drug release (dilution line 64>dilution line 73).  相似文献   

12.
It is often proposed that oil solubilization in anionic and nonionic micelles proceeds by different mechanisms, with diffusion of the oil molecule thought to control the former, and the latter interfacially controlled. In order to investigate this hypothesis, the effect of aqueous phase viscosity, salt, and surfactant concentration during the solubilization process was studied. The progressive decrease in average droplet size of nearly monodisperse emulsions during solubilization in SDS or Tween 20 micellar solutions was monitored by light scattering, and the change in turbidity was measured by UV-vis spectrophotometer. The solubilization rates were analyzed using a population balance approach to calculate the mass transfer coefficients. Increasing the aqueous viscosity by adding sucrose reduced the mass transfer coefficients of n-tetradecane and n-dodecane but had a smaller effect on n-hexadecane. The strong dependence of the solubilization rate for the shorter chain length alkanes on aqueous viscosity supported a mechanism in which the oil undergoes molecular diffusion before being taken up by micelles. The dependence of the solubilization kinetics on surfactant concentration appeared consistent with this mechanism but yielded a slower micellar uptake rate than previously predicted theoretically. As the solute chain length increased in nonionic surfactant solutions, an interfacial mechanism mediated by micelles appeared to contribute substantially to the overall rate. Addition of salt only slightly increased the solubilization rate of n-hexadecane in SDS solutions and, thus, indicated a weak role of electrostatic interactions for ionic surfactants on the overall mechanism.  相似文献   

13.
This article focuses on the electrical conductivity study of the brine solution/sucrose laurate/ethoxylated mono-di-glyceride/oil + ethanol system. The oils were R (+)-limonene, isopropylmyristate and caprylic-capric triglyceride. The mixing ratio (w/w) of ethanol/oil and that of sucrose laurate/ethoxylated mono-di-glyceride equal unity. The brine solution was 0.01 M aqueous sodium chloride solution. No observable effect was observed on the phase boundaries by replacing pure water with brine solution in the case of R (+)-limonene based microemulsions. In the systems based on isopropylmyristate and caprylic-capric triglyceride, the replacement of pure water by brine significantly affected the phase boundaries, the microemulsion region shrink and the total monophasic area of microemulsions decreased. Electrical conductivity increases with the increase in the water volume fraction and percolation thresholds were observed. The critical volume fractions where the percolation thresholds appear depend on the type of oil used in the microemulsion formulation. Electrical conductivity was measured at different temperatures and the activation energy of conduction flow was evaluated. At the percolation threshold the activation energy of conduction flow reaches a minimum value. Beyond the percolation threshold, a small increase is observed in the activation energy of conduction flow then it decreases with the increase in the water volume fraction indicating structural transitions.  相似文献   

14.
Diclofenac is a nonsteroidal anti-inflammatory drug that reduces inflammation and pain hormones in the body. Dispersing the drug in water is impossible and its solubility in oils is very limited. In this study, we solubilized sodium diclofenac in nanostructures of the constructed U-type water/sucrose laurate/ethoxylated mono-di-glyceride/oleic phase microemulsions. The mixing ratio (w/w) of sucrose laurate/ethoxylated mono-di-glyceride equals unity. The oleic phase was the pure R (+)-limonene or R (+)-limonene mixed with ethanol at a weight ratio equals unity. The solubilization capacity of the drug in these systems is many times higher than in either oil or water systems. The sodium diclofenac solubilized microemulsions are fully diluted with water without phase separation. The solubilization capacity decreases as the water content increases. The system free of alcohol solubilizes less amounts of drug over all the range of water contents compared to the system containing alcohol. Small angle x-ray scattering was used to evaluate the effect of solubilized sodium diclofenac on the microstructure and diffusion properties of the loaded microemulsions. From the periodicity and correlation length measured by small angle x-ray scattering, we learned that the drug affects the structure of loaded microemulsion droplets probably less spherical than the empty systems. The transition from water-in-oil to a bicontinuous phase occurs at the different water contents compared to the empty (i.e., without drug) microemulsions. The drug remains solubilized at the interface upon further dilution with water and is oriented with its hydrophilic part facing the water, and strongly affects the inversion to oil-in-water droplets.  相似文献   

15.
The systems investigated were water/sucrose laurate/ethoxylated mono-di-glyceride/oleic phase. The oleic phase used first was the pure oils R (+)-limonene, isopropylmyristate, and caprylic-capric triglyceride; these oils were then mixed with ethanol at different mixing ratios (w/w). The total area of the one phase microemulsion region is dependent on the mixing ratios (w/w) of the mixed surfactants and that of the ethanol/oil. The largest microemulsion phase area formed with a surfactants mixing ratio (w/w) equals unity. For the systems where the oleic phase was a mixture of oil and ethanol, the total area of the monophasic microemulsion increases with the increase in the ethanol/oil mixing ratio (w/w). The Gibbs free energy of solubilization was estimated. It increases as the mixing ratio (w/w) of ethoxylated mono-di-glyceride/sucrose laurate increases and with the increase in the ethanol/oil mixing ratio (w/w). The Gibbs free energy of solubilization decreases with the increase in the water content in the water-in-oil microemulsions. The values of the Gibbs free energy of solubilization are higher for oil-in-water microemulsions compared to those of the water-in-oil microemulsions.  相似文献   

16.
The development of lipid oxidation in oil-in-water (O/W) emulsions is widely influenced by the properties of the interfacial layer, which separates the oil and water phases. In this work, the effect of the structure of the interface on the oxidative stability of surfactant stabilized O/W emulsions was investigated. Emulsions were prepared with either single Tween 20 or Tween 20/co-surfactant mixtures in limiting amounts. The co-surfactants, Span 20 and monolauroyl glycerol have the same hydrophobic tail as Tween 20 but differ by the size and composition of their polar headgroup. Metal-initiated lipid oxidation, monitored through the measurement of oxygen uptake, formation of conjugated dienes and volatile compounds, developed more rapidly in the emulsions stabilized by the surfactant mixture than in the single Tween 20-stabilized emulsion. The reconstitution of Tween 20/co-surfactant films at the air-water interface and their surface-pressure isotherms highlighted that, contrary to single Tween 20 molecules, Tween 20/co-surfactant mixtures exhibited an heterogeneous distribution within the interfacial layer, offering probably easier access of water-soluble pro-oxidants to the oil phase. These observations provide direct information about the link between the homogeneity of the interface layer and the oxidative stability of emulsions.  相似文献   

17.
The phase behavior of soybean oil, polyoxyethylene (40) sorbitol hexaoleate and water—ethanol was investigated. Regions of water-in-oil (W/O) microemulsions were determined and were found to be strongly dependent on temperature and water:alcohol ratios. At a water:ethanol ratio of 80/20 (wt.%), an oil:surfactant ratio of 2/3 and a temperature of 25°C, the microemulsion region extended continuously from the oil—surfactant axis to the phase diagram center. However, at the hydrophilic—lipophilic balance (HLB) temperature (20–22°C) and a water:ethanol ratio of 80/20 or 75/25 (wt.%), a single-phase area separated from the original microemulsion region. Conductivity measurements and dynamic light scattering intensifies at 25°C indicated that association structures were formed with increasing aqueous phase concentrations above 15 wt.%. At 20°C, the single-phase scattering intensifies increased sharply with increasing aqueous phase concentrations (38–46 wt.%) and a plateau in the conductivity was detected.

Transmission electron microscopy results supported the finding that more particles are formed with increasing aqueous phase and form connected particles, resulting in constant conductance.  相似文献   


18.
The phase behavior of soybean oil, a nonionic surfactant (ethoxylated monodiglycerides) and an aqueous phase of water containing ethanol, and sucrose was investigated at 35 and 40°C. A minimum concentration of 20 wt% ethanol was required for the formation of isotropic solutions. Addition of sucrose to the aqueous phase decreased the amount of ethanol required to form these solutions. The solubilization mechanism of the oil was investigated by small angle x-ray diffraction and polarized light microscopy. A stable lamellar liquid crystalline phase was formed for a mixture of 75/25 surfactant/sucrose solution (2.5 wt% sucrose). This phase was destabilized with increased concentrations of sucrose and liquid crystalline phases having hexagonal structures were favored at 8.75 wt% sucrose. At a ratio of 55/45 wt% of surfactant/sucrose solution (9 wt% sucrose) hexagonal structures were formed and could be destabilized or destroyed by addition of ethanol. The concept of stabilization and destabilization of liquid crystalline mesophases was applied to the solubilization of triglycerides in aqueous solutions. Two microemulsion regions were identified; oil-in-water (L1) and water-in-oil (L2) in systems containing soybean oil, ethoxylated monodiglycerides, and 20 wt% ethanol solution. At 55/45 wt% surfactant/20 wt% ethanol solution,7.5 wt% of soybean oil was solubilized. Addition of 10, 20, and 30 wt% sucrose, at the same ratio of surfactant to ethanol solution, increased the solubility of the oil to 9, 13.5, and 18 wt% respectively. In addition, the size of the L1 phase increased and moved to the aqueous corner of the phase diagram and the size of the L2 phase decreased.  相似文献   

19.
The cloud temperature of 2 wt% C(12)EO(8) aqueous solutions decreases upon addition of sarcosinate-lauroyl isopropyl (SLIP), 1-dodecanol, and m-xylene, whereas it increases in glycerol tris(2-ethylhexanoic) ester (TEH), isopropyl myristate (IPM), and saturated hydrocarbon systems. A three-phase microemulsion is formed at equal weights of water and oil in the IPM system, but a lamellar liquid crystal (L(alpha)) is present in the SLIP system at the balanced temperature. The effect of added oil on the phase transition of the hexagonal (H(1)) phase was also investigated by means of SAXS study. The H(1)-L(alpha) transition occurs upon addition of SLIP or 1-dodecanol whereas the H(1)-I(1) (discontinuous micellar cubic) phase transition takes place in TEH or IPM systems. These differences in phase behavior are attributed to the placement of solubilized oil in micelles: In the former systems, oil tends to penetrate in the surfactant palisade layer and induces the surfactant layer curvature in micelles to be less positive, while the penetration tendency is small and the opposite effect on the curvature is induced upon addition of the latter oils. Copyright 2001 Academic Press.  相似文献   

20.
The structure of micelles formed by a four component water-in-oil nonionic microemulsion surfactant polyoxyethene (20) sorbitan monoleate (Tween 80), sorbitan monolaurate (Span 20) at ethyl oleate and deuterated water interface have been probed by small-angle neutron scattering (SANS). The total surfactant concentration in each of the samples studied (Tween 80: Span 20) is fixed at 3:2. The deuterated water content is variable at 5–60% w/w. The experimental SANS data from all the seven samples are fit well by spherical micelles interacting with hard sphere potential. Increased deuterated water leads to spherical to lamellar and rod-like micelle geometry featured in the SANS scattering data. The observed change in micelle geometry supports the characterization of phase transition between the self-assembled micelles of the nonionic microemulsion.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号