首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several authors observed in the past a larger than twofold increase in viscosity of organic liquids under the influence of an electric field of the order of 10(6) V/m. This was called electro viscous effect (EVE). Significantly higher electric fields, of up to 10(8)-10(9) V/m, arise in the electric double layer in solutions close to an electrode. Therefore, the viscosity can be expected to increase at strongly charged liquid-solid interfaces. In more recent years, it was also observed that even in the absence of an externally controlled electric field the viscosity of water can be up to 10(7) times higher close to a hydrophilic surface than in the bulk ("hydrophilic forces"). Here, we present electrochemical atomic force microscopy (EC-AFM) measurements by which we can overcome the critical threshold of the electric field H=10(6) V/m by the control of the potentials applied to both a conducting sample and a conducting tip immersed in solution. Using the EC-AFM, we have investigated for the first time the EVE in an aqueous electrolyte. We can show that by controlling the applied potential, we can control the viscosity and the thickness of the super viscous liquid layer close to the solid interface. Using this technique, we are further able to separate effects on viscosity induced by the hydrophilicity of the surfaces, by the strong nanoconfinement of the liquid between tip and surface, and by the applied electric field.  相似文献   

2.
Adsorbed layers of "comb-type" copolymers consisting of PEG chains grafted onto a poly(l-lysine) (PLL) backbone on niobium oxide substrates were studied by colloid-probe AFM in order to characterize the interfacial forces associated with coatings of varying architectures (PEG/PLL ratios and PEG chain lengths) and their relevance to protein resistance. The steric and electrostatic forces measured varied substantially with the architecture of the PLL-g-PEG copolymers. Varying the ionic strength of the buffer solutions enabled discrimination between electrostatic and steric-entropic contributions to the net interfacial force. For high PEG grafting densities the steric component was most prominent, but at low ionic strengths and high grafting densities, a repulsive electrostatic surface force was also observed; its origin was assigned to the niobia charges beneath the copolymer, as insufficient protonated amine groups in the PLL backbone were available for compensation of the oxide surface charges. For lower grafting densities and lower ionic strengths there was a substantial attractive electrostatic contribution arising from interaction of the electrical double layer arising from the protonated amine groups, with that of the silica probe surface (as under low ionic strength conditions, the electrical double layer was thicker than the PEG layer). For these PLL-g-PEG coatings the net interfacial force can thus be a markedly varying superposition of electrostatic and steric-entropic contributions, depending on various factors. The force curves correlate with protein adsorption data, demonstrating the utility of AFM colloid-probe force measurements for quantitative analysis of surface forces and how they determine interfacial interactions with proteins. Such characterization of the net interfacial forces is essential to elucidate the multiple types of interfacial forces relevant to the interactions between PLL-g-PEG coatings and proteins and to advance interpretation of protein adsorption or repellence beyond the oversimplified steric barrier model; in particular, our data demonstrate the importance of an ionic-strength-dependent minimum PEG layer thickness to screen the electrostatic interactions of charged interfaces.  相似文献   

3.
Drainage of water from the region between an advancing probe tip and a flat sample is reconsidered under the assumption that the tip and sample surfaces are both coated by a thin water "interphase" (of width approximately a few nanometers) whose viscosity is much higher than that of the bulk liquid. A formula derived by solving the Navier-Stokes equations allows one to extract an interphase viscosity of approximately 59 kPa x s (or approximately 6.6 x 10(7) times the viscosity of bulk water at 25 degrees C) from interfacial force microscope measurements with both tip and sample functionalized hydrophilic by OH-terminated tri(ethylene glycol) undecylthiol, self-assambled monolayers.  相似文献   

4.
In protein self-assembly, types of surfaces determine the force between them. Yet the extent to which the surrounding water contributes to this force remains as a fundamental question. Here we study three self-assembling filament systems that respectively have hydrated (collagen), dry nonpolar, and dry polar (amyloid) interfaces. Using molecular dynamics simulations, we calculate and compare local hydration maps and hydration forces. We find that the primary hydration shells are formed all over the surface, regardless of the types of the underlying amino acids. The weakly oscillating hydration force arises from coalescence and depletion of hydration shells as two filaments approach, whereas local water diffusion, orientation, or hydrogen-bonding events have no direct effect. Hydration forces between hydrated, polar, and nonpolar interfaces differ in the amplitude and phase of the oscillation relative to the equilibrium surface separation. Therefore, water-mediated interactions between these protein surfaces, ranging in character from "hydrophobic" to "hydrophilic", have a common molecular origin based on the robustly formed hydration shells, which is likely applicable to a broad range of biomolecular assemblies whose interfacial geometry is similar in length scale to those of the present study.  相似文献   

5.
How water layer adsorbed on solid surface under ambient conditions affects the interfacial friction is a fundamental question for understanding the friction and lubrication phenomena in practical system. We investigate the formation of ice-like(IL) water layers on the hydrophobic surface of graphite with partially covered MoO3 nanoflakes(NFs) using atomic force microscopy(AFM) based techniques. The IL water layers are found surrounding the MoO3 NFs and also intercalated at the MoO3/graphite interface, as proved by thickness measurements as well as local adhesion force and surface potential mappings. AFM manipulations carried out on MoO3 NFs on graphite show that the presence of the IL water layers increases the frictional resistance of the interface. Comparing the results on continuous and discontinuous IL water layers, we can identify the different sliding interfaces in the two scenarios. The increased friction for MoO3 NFs sliding on graphite with an intercalated water layer is attributed to the energy dissipation originated from the metastable nature of the IL layers.  相似文献   

6.
Protein and surfactant modified air–water interfaces are an important model system for colloid science as many applications for example aqueous foams in food products rely on our knowledge and ability to tune molecular structures at these interfaces. That is because interfaces are a fundamental building block in the hierarchical structure of foam, where in fact the molecular level can determine properties on larger length scales. For that reason it is of great importance to increase our ability to study air–water interfaces with molecular level probes and to obtain not only information on coverage but also direct information on interfacial composition, molecular order, orientations as well as information on the charged state of an interface. Vibrational sum-frequency generation (SFG) is a powerful tool that can help to address these issues and is inherently surface sensitive. In this contribution we will review recent developments in the use of SFG for studies of biomolecules at aqueous interfaces and discuss current issues with the interpretation of SFG spectra from electrified interfaces. In order to guide interpretations from interface spectroscopy we invoke the use of complementary methods such as ellipsometry and zetapotential measurements of bulk molecules.  相似文献   

7.
The propensity of hydroxide and hydronium ions to accumulate at interfaces is the subject of ongoing scientific debate. Electrokinetic and surface force measurements suggest elevated interfacial concentrations of hydroxide ions across a wide range of pHs. Contrary to this, however, surface-sensitive spectroscopic techniques and molecular dynamic (MD) simulations indicate that hydronium ions have strong surface affinity under similar conditions. Here we review results obtained for gas/water, oil/water and solid/water interfaces. Emphasis is placed on ion adsorption phenomena occurring on polymer films of different hydrophobicity and structure. The results clearly show that asymmetric water ion adsorption is independent of the hydrophobicity of the solid surface. Recently obtained data reveal significant effects of the hydroxide and hydronium ions even on the charging of hydrophobic polymers in the presence of multivalent electrolytes and on the charging of zwitterionic lipid membranes.  相似文献   

8.
The behavior of two polydisperse nonionic surfactants, poly (oxyethylene) glycol alkylphenyl ether TX-35 and TX-100, at the prewetted silica gel/n-heptane and dried silica gel/n-heptane interfaces has been compared by the determination of the average adsorption isotherms of the polydisperse surfactants and of displacement enthalpies. From HPLC experiments, we could also separately quantify the adsorption of each ethyleneoxide (EO) fractions for silica gel from the polydisperse surfactant solution. The adsorption isotherms clearly indicate an incomplete preferential adsorption of the large (EO) chains over the small ones, as well on dried silica gel as on a prehydrated sample. This preferential adsorption and its driving force follow the solubility rules of the poly(oxyethylene) glycol alkylphenyl ether in an apolar solvent and support the idea of a solubility-limited adsorption: solubility in organic solvents of the smaller (EO) chains is much more significant than that of the longer ones and hence prevents adsorption of the smaller species. Consequently, it is observed that the presence of interfacial water decreases the affinity of TX-35 molecules for the hydrophilic silica surface due to the hydration of (EO) chains. In contrast, for TX-100 adsorption after the prewetting treatment the clearest trend is a drastic increase of the adsorption ascribed to the additional solubilization (and micellization) of the TX-100 molecules in the interfacial aqueous phase. The differential molar enthalpies of displacement show a change in the adsorption mechanism, depending on the presence of molecular water on the surface. In the initial part of the adsorption isotherm, a prevailing exothermic process is obtained with prehydrated silica and suggests that hydration of the polar heads of TX-35 and the solubilization of the TX-35 in interfacial water are occurring. For higher equilibrium concentrations, the enthalpies of displacement observed with the prehydrated adsorbent become slightly lower than those obtained with dry silica gel. It may be that this difference is due to the micellization phenomenon of the surfactant species with longer EO chains in interfacial water. These features emphasize the influence of interfacial water on the adsorption of EO fractions from organic solvent. Copyright 2000 Academic Press.  相似文献   

9.
The binding contants, adsorption free energies, absolute adsorbate number densities, and interfacial charge densities of Al(III), Sc(III), Y(III), La(III), and Gd(III) interacting with fused silica/water interfaces held at pH 4 were determined using second harmonic generation and the Eisenthal χ((3)) technique. By examining the relationship between the measured adsorption free energies and the electric double layer interfacial potential at multiple electrolyte concentrations, we elucidate the charge state and possible binding pathways for each ion at the fused silica surface. Al(III) and Sc(III) ions are found to bind to the fused silica surface as fully hydrated trivalent species in a bidentate geometry. In contrast, the Y(III), La(III), and Gd(III) ions are each shown to adsorb to the silica surface in a decreased charge state, but the extent and mode of binding varies with each ion. By quantifying the exponential sensitivity of the surface coverage of the adsorbed ions to their charge state directly at the fused silica/water interface, we provide benchmarks for theory calculations describing the interactions of metal ions with oxide interfaces in geochemistry and hope to improve the prediction of trivalent metal ion transport through groundwater environments.  相似文献   

10.
Asphaltene at oil/water interfaces plays a dominant role in the recovery of crude oil. In this study, asphaltene monolayer films were deposited on hydrophobic silicon wafers and silica spheres from oil-water interfaces using a Langmuir interfacial trough. The morphology of the deposited asphaltene films was characterized with an atomic force microscope (AFM). The colloidal forces between the prepared asphaltene films in aqueous solutions were measured with AFM to shed light on the stabilization of water or oil droplets coated with asphaltene films. Factors such as solution pH, KCl concentration, calcium addition, and temperature all showed a strong impact on colloidal forces between the prepared asphaltene films. The findings provided a better understanding of asphaltene interfacial films at an oil/water interface in stabilizing bitumen-in-water and water-in-bitumen emulsions.  相似文献   

11.
The effect of particle size on the reactivity of hexyltrimethoxysilane (C6S) with the particle surface was studied by using silica nanoparticles (SNPs) with different diameters (30 or 200 nm). In case of 30-nm SNPs, a large amount of isolated silanol was observed. On the other hand, in the case of 200-nm SNPs, the amount of hydrogen bonded silanol and hydrogen bonded water molecules at the surface of the SNPs increased. Since the hydrogen bonded silanol and the hydrogen bonded water enhanced the reaction of C6S with SNPs, the chemisorbed C6S on 200-nm SNPs was larger than that on 30-nm SNPs. Furthermore, the effects of surface modification on the dispersion stability in MEK were studied using viscosity measurements and surface force measurements by the AFM colloid probe method. The viscosity of the dilute SNPs/MEK suspension did not change by the chemisorptions of C6S; however, the viscosity of dense suspension reduced effectively by surface modification. It was estimated that the suspension viscosity reduced effectively when the mean particle surface distance in the suspension was near to the distance where the repulsive force appeared by the surface force measurements using the colloid probe AFM.  相似文献   

12.
In oil sand processing, accumulation of surface-active compounds at various interfaces imposes a significant impact on bitumen recovery and bitumen froth cleaning (i.e., froth treatment) by altering the interfacial properties and colloidal interactions among various oil sand components. In the present study, bitumen films were prepared at toluene/water interfaces using a Langmuir-Blodgett (LB) upstroke deposition technique. The surface of the prepared LB bitumen films was found to be hydrophobic, comprised of wormlike aggregates containing a relatively high content of oxygen, sulfur, and nitrogen, indicating an accumulation of surface-active compounds in the films. Using an atomic force microscope, colloidal interactions between the LB bitumen films and fine solids (model silica particles and clay particles chosen directly from an oil sand tailing stream) were measured in industrial plant process water and compared with those measured in simple electrolyte solutions of controlled pH and divalent cation concentrations. The results show a stronger long-range repulsive force and weaker adhesion force in solutions of higher pH and lower divalent cation concentration. In plant process water, a moderate long-range repulsive force and weak adhesion were measured despite its high electrolyte content. These findings provide more insight into the mechanisms of bitumen extraction and froth treatment.  相似文献   

13.
The surface properties of silica and titania are mainly determined by the presence, density, and type of terminal hydroxyl groups (Si-OH "silanol" and Ti-OH "titanol"). Thermal treatment at elevated temperatures causes dehydroxylation on both surfaces, confirmed by streaming potential and ToF-SIMS measurements. The magnitude of the zeta potential markedly decreases after heat treatment, but the IEP is not affected. The intensity ratio MOH(+)/M(+) (M = Si or Ti), which reflects the surface density of OH groups, also decreases noticeably after high-temperature treatment. The mechanism is condensation of adjacent silanol/titanol groups into siloxane/titanoxane bonds. Ultraviolet light (lambda = 254 nm) has little effect on silica but rapidly induces hydrophilicity on titania surfaces. There is a strong correlation between the amount of hydrocarbons adsorbed on the surface and the density of titanol groups (thence the water contact angle). The effect of UV radiation can be entirely attributed to photolytic decomposition of organic contaminants. Dehydroxylated titania and silica (at 1050 degrees C) show very different wetting behavior: silica is moderately hydrophobic (water contact angle of about 40 degrees), while titania is hydrophilic (0 degrees). This dissimilarity can be explained with a simple model estimating the van der Waals and acid-base interfacial interactions.  相似文献   

14.
A hydrophilic surface is very important for hydrophobic separation membranes such as polypropylene microporous membranes (PPMMs). In this work a facile and effective method, interfacial crosslinking combined with pretreatment by dielectric barrier discharge plasma at atmospheric pressure, was developed for endowing PPMMs with a hydrophilic and charged surface. Poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) and p-xylylene dichloride were selected for quaternization crosslinking to form a positively charged coating layer, which was characterized with FT-IR/ATR, XPS, and FESEM. Water contact angle and pure water flux measurements were conducted to evaluate the surface hydrophilicity. The influence of surface charges on protein filtration was also investigated. It is found that the mass gain of interfacial crosslinking increases almost linearly with increasing the PDMAEMA concentration from 0.5 to 10 g/L. The crosslinking degree is larger than 80% according to the XPS results, ensuring the stability of the crosslinking layer. The surface hydrophilicity is demonstrated by the sharp decrease of water contact angle from 145° to 20°. The pure water flux also increases 3 times under the optimized conditions. Furthermore, the results of protein filtration suggest that these highly hydrophilic and charged surfaces can effectively resist the fouling of proteins.  相似文献   

15.
The guanidine group-modified silica particles were used as emulsifier to obtain a CO2-responsive Pickering emulsion. To compare the wettability effect of the particles on the stability of the emulsion, both guanidine and alkyl chain were attached on the surface of silica particles. The influences of tension, particles concentration, oil-water fraction, NaCl concentration, and CO2 on Pickering emulsion properties were investigated. Although the particles did not decrease the surface and interfacial tensions of the air/oil-water interfaces, they attached on the oil–water interfaces and stabilized the emulsions at room temperature for at least 4 weeks. Addition of salt increased the emulsion stability and induced phase inversion at high salt concentration. The stabilization–destabilization cycles of the emulsion could be successively controlled by alternative CO2/heating triggers due to the protonation-deprotonation of guanidine groups on the particle surfaces.  相似文献   

16.
Evanescent wave cavity ring-down spectroscopy (EW-CRDS) is a surface sensitive technique, which allows optical absorption measurements at interfaces with good time resolution. In EW-CRDS, a pulsed or modulated laser beam is coupled into an optical cavity which consists of at least one optical element, such as a silica prism, at the surface of which the beam undergoes total internal reflection (TIR). At the position of TIR, an evanescent field is established whose amplitude decays exponentially with distance from the boundary. This evanescent field can be exploited to investigate interfacial properties and processes such as adsorption and surface reactions, with most applications hitherto focusing on solid/liquid and solid/air interfaces. As highlighted herein, EW-CRDS is particularly powerful for investigations of interfacial processes when combined with other techniques such as basic electrochemical measurements and microfluidic or hydrodynamic techniques. In this tutorial review, the basic elements of EW-CRDS will be introduced and the relative merits of different configurations for EW-CRDS discussed, along with various aspects of instrumentation and design. The type of information which may be obtained using EW-CRDS is illustrated with a focus on recent examples such as molecular adsorption/desorption, deposition/dissolution of nanostructures and interfacial redox reactions. The comparatively new, but complementary, cavity technique of EW-broadband cavity enhanced absorption spectroscopy (EW-BB-CEAS) is also introduced and its advantages compared with EW-CRDS are discussed. Finally, future developments and trends in EW-cavity based spectroscopy are predicted. Notably, the potential for extending the technique to probe other interfaces is exemplified with a discussion of initial interfacial absorbance measurements at a water-air interface.  相似文献   

17.
The mechanism underlying the bioinertness of the self-assembled monolayers of oligo(ethylene glycol)-terminated alkanethiol (OEG-SAM) was investigated with protein adsorption experiments, platelet adhesion tests, and surface force measurements with an atomic force microscope (AFM). In this work, we performed systematic analysis with SAMs having various terminal groups (-OEG, -OH, -COOH, -NH(2), and -CH(3)). The results of the protein adsorption experiment by the quartz crystal microbalance (QCM) method suggested that having one EG unit and the neutrality of total charges of the terminal groups are essential for protein-resistance. In particular, QCM with energy dissipation analyses indicated that proteins absorb onto the OEG-SAM via a very weak interaction compared with other SAMs. Contrary to the protein resistance, at least three EG units as well as the charge neutrality of the SAM are found to be required for anti-platelet adhesion. When the identical SAMs were formed on both AFM probe and substrate, our force measurements revealed that only the OEG-SAMs possessing more than two EG units showed strong repulsion in the range of 4 to 6 nm. In addition, we found that the SAMs with other terminal groups did not exhibit such repulsion. The repulsion between OEG-SAMs was always observed independent of solution conditions [NaCl concentration (between 0 and 1 M) and pH (between 3 and 11)] and was not observed in solution mixed with ethanol, which disrupts the three-dimensional network of the water molecules. We therefore concluded that the repulsion originated from structured interfacial water molecules. Considering the correlation between the above results, we propose that the layer of the structured interfacial water with a thickness of 2 to 3 nm (half of the range of the repulsion observed in the surface force measurements) plays an important role in deterring proteins and platelets from adsorption or adhesion.  相似文献   

18.
Employing a layer-by-layer assembly technique, we created three-dimensional architectures of silica and silica-like particles on solid interfaces. Atomic force and scanning electron microscopy confirmed a size-selection effect for assembling a mixture of two kinds of monodispersed silica particles prepared through the sol-gel process. Size-selective assembly was also applied for layer-by-layer organization of Cerasomes, which are organic-inorganic vesicular hybrids with a silica-like structure on the lipid bilayer surface. This study obtained an alternating layer-by-layer assembly of Cerasomes with a relatively uniform size on solid interfaces from polydispersed aqueous colloids of a surface-modified cationic Cerasome with an unmodified anionic Cerasome or an anionic poly(vinyl sulfate). Quartz crystal microbalance measurements and atomic force microscopy were used to evaluate this assembly process.  相似文献   

19.
The roughness and softness of interacting surfaces are both important parameters affecting the capillary condensation of water in apolar media, yet are poorly understood at present. We studied the water capillary adhesion between a cellulose surface and a silica colloidal probe in hexane by AFM force measurements. Nanomechanical measurements show that the Young's modulus of the cellulose layer in water is significantly less (~7 MPa) than in hexane (~7 GPa). In addition, the cellulose surface in both water and hexane is rather rough (6-10 nm) and the silica probe has a comparable roughness. The adhesion force between cellulose and silica in water-saturated hexane shows a time-dependent increase up to a waiting time of 200 s and is much (2 orders of magnitude) lower than that expected for a capillary bridge spanning the whole silica probe surface. This suggests the formation of one or more smaller bridges between asperities on both surfaces, which is confirmed by a theoretical analysis. The overall growth rate of the condensate cannot be explained from diffusion mediated capillary condensation alone; thin film flow due to the presence of a wetting layer of water at both the surfaces seems to be the dominant contribution. The logarithmic time dependence of the force can also be explained from the model of the formation of multiple capillary bridges with a distribution of activation times. Finally, the force-distance curves upon retraction show oscillations. Capillary condensation between an atomically smooth mica surface and the silica particle show less significant oscillations and the adhesion force is independent of waiting time. The oscillations in the force-distance curves between cellulose and silica may stem from multiple bridge formation between the asperities present on both surfaces. The softness of the cellulose surface can bring in additional complexities during retraction of the silica particle, also resulting in oscillations in the force-distance curves.  相似文献   

20.
We propose a method to calculate the ideal shear strength τ of two surfaces in contact by ab initio calculations. This quantity and the work of adhesion γ are the interfacial parameters usually derived from tip-based friction force measurements. We consider diamond interfaces and quantitatively evaluate the effects of surface orientation and passivation. We find that in the case of fully passivated interfaces, γ is not affected by the orientation and the alignment of the surfaces in contact. On the contrary, τ does show a dependence on the atomic-scale roughness of the interface. The surface termination has a major impact on the tribological properties of diamond. The presence of dangling bonds, even at concentrations low enough to prevent the formation of interfacial C-C bonds, causes an increase in the resistance to sliding by 2 orders of magnitude with respect to the fully hydrogenated case. We discuss our findings in relation to experimental observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号