首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 52 毫秒
1.
《分析化学》2011,(11):1779
北京大学邵元华教授课题组最近报道了一种探测液/液界面(两互不相溶溶液界面)微观结构的新方法(Chem.Sci.,2011,2:1523~1529)。该方法利用扫描离子电导显微镜(SICM)与内半径小于5 nm的超微玻璃管探针相结合,获得了水/硝基苯(W/NB)界面的离子分布以及界面厚度等信息。该研究基本原理如图1所示,SICM的两根电极分别置于纳米管探针以及顶部有机相  相似文献   

2.
扫描电化学显微镜及其最新进展   总被引:3,自引:0,他引:3  
邵元华 《分析化学》1999,27(11):1348-1355
对扫描电化学显微镜技术的基本原理,仪器设备,最新的研究进展和发展展望进行了评述。  相似文献   

3.
扫描隧道显微术(STM)的出现使人类在观察微观世界的进程上经历了一次革命。在STM实验中,当探针在样品表面扫描时,探针上隧道电流(快扫描模式)或控制针尖高度的电  相似文献   

4.
对扫描电化学显微镜(Scanning Electrochemical Microscope,SECM)的发展及其在界面电化学中的研究应用进行了评述。介绍了SECM的工作原理以及常用的操作模式,并对SECM在液/液界面、固/液界面等方面的应用进行了总结。  相似文献   

5.
作为一种扫描探针技术,扫描电化学显微镜(SECM)在金属防腐、材料表征、生物医学和新能源技术等领域的研究中扮演着重要角色。本文简要介绍了SECM的基本工作原理和常用的两种工作模式:反馈模式和收集/产生模式;综述了SECM在太阳能电池和太阳光解水制氢两个光电能源研究领域的应用进展,同时结合课题组的工作基础,特别是近期利用SECM筛选合适金属离子掺杂改性WO3光阳极的工作,对SECM在筛选半导体电极材料方面的应用特点进行了实例展示介绍,最后简要总结了SECM在光电能源研究领域的发展及方向。  相似文献   

6.
杨涛  牛利  李壮  董绍俊 《应用化学》2006,23(2):117-0
扫描探针显微镜在导电聚合物研究中的应用;扫描探针显微镜;导电聚合物;综述  相似文献   

7.
李保华  马燕  黄蕾 《化学通报》2013,(2):124-131
扫描电化学显微镜(SECM)以其极高的空间分辨率、操作简单、测试样品更接近实际应用情况等特点,近年来逐渐成为生物样品分析中的重要工具,在研究细胞形貌、氧化还原活性、细胞膜上活性位以及跨细胞膜的物质传递方面具有优异的性能。本文介绍了扫描电化学显微镜的工作原理及其在细胞分析、酶分析、DNA分析、抗体抗原分析及微修饰等方面的应用,并展望了该技术未来的发展方向。  相似文献   

8.
扫描电子显微镜与扫描隧道显微镜联用装置   总被引:2,自引:0,他引:2  
在KYKY-1000B型扫描电子显微镜上所开发的与其联用的袖珍型扫描隧道显微镜主要有四个部分:(1)减震阻尼装置,(2)隧道探针,(3)探针扫描与逼近装置,(4)电子控制与图象采集系统。它的分辨率约为1nm,并用它观察了半导体光栅与硅上金膜的细微结构。  相似文献   

9.
研究了离子色谱-直接电导检测法分离测定离子液体中的卤素离子(F~-、Cl~-、Br~-)杂质.采用Shim-pack IC-A3阴离子交换色谱柱,考察了淋洗液种类及浓度、流速和色谱柱温度对分离测定的影响.最佳色谱条件为:以1.25 mmol/L邻苯二甲酸氢钾为淋洗液,流速1.5 mL/min,色谱柱温45 ℃.在此条件下可以基线分离卤素离子,且NO~-_3、BF~-_4、SO~(2-)_4不干扰测定.该法测定卤素离子的检出限(S/N=3)为0.02 ~0.11 mg/L,峰面积的相对标准偏差(n=5)不大于0.7%,F~-、Cl~- 和Br~- 的标准曲线的线性范围分别为0.1 ~50、0.1 ~50、0.5 ~100 mg/L.将方法用于烷基咪唑四氟硼酸盐离子液体中卤素离子杂质的测定,加标回收率为98% ~102%.  相似文献   

10.
能源和环境问题成为制约未来可持续发展的关键问题之一,因此,针对不同电催化反应设计电催化剂变得越来越重要.电催化剂因其能量效率高、制备简单和易操作等优点,而应用于可再生能源的相关反应(如水分解和人工光合作用)中.明确不同反应电催化剂的设计原理,深入理解其在相关反应中的催化机理,可进一步优化催化剂性能.本文综述了扫描电化学显微镜(SECM)应用于电催化反应的历程、关键方法以及一些代表性的工作,阐明了电催化剂的工作机理以推进电催化剂的设计.本文还介绍了为提高SECM的空间分辨率而尝试的纳米尺寸电极方面的新进展,分享了纳米电极在以前研究无法涉及的单一催化实体方面的应用.  相似文献   

11.
Secondary ion mass spectrometry (SIMS) as a powerful surface analysis technique has been widely applied in semiconductor industry and geology research. Recently, with the development of instrumental technology, SIMS is attracting more and more attention in life sciences. SIMS can provide surface MS spectra, 2D/3D chemical images and depth profiling of substances simultaneously. The minimal lateral resolution of 2D SIMS imaging is 80–100 nm, and the longitudinal resolution of 3D SIMS imaging is about 1–5 nm. However, owing to lack of specific ions to render the structures of organelles, SIMS imaging for single cells still have great challenges. Optical microscopy, in particular laser scanning confocal microscopy (LSCM), has been emerged to be an indispensable technique for single cell imaging and can obtain high spatial 2D/3D imaging to visualize the structures of organelles. Thus, the combinational use of SIMS and LSCM, which takes advantages of SIMS for molecular imaging and LSCM for morphological imaging, has greatly extended the application of SIMS imaging and ensured its accuracy at single cells level, providing novel insights into better understanding of the biological events inside cells. In this review, we focus on the development and application of SIMS imaging and the correlated SIMS and LSCM imaging in the research of cell biology and drug discovery. We anticipate that the combinational use of SIMS and LSCM imaging has promising future in biomedicine and life sciences.  相似文献   

12.
When Kekulé awoke from dreams of snakes biting their own tails, he didn't have the benefit of a scanning tunneling microscope (STM) image to confirm that his vision of benzene as a cyclic molecule was accurate. References to STM in the chemical literature increase steadily, although the technique was perhaps oversold in its early days of the 1980s, with such promises as DNA sequencing and tailored bi-molecular chemical reactions (literally, two molecules). Publications alternate between attempting to explain the process by which images of traditional insulators are obtained and simply presenting the end images themselves as stunning views of atoms and molecules. While imaging mechanisms are still being debated, these instruments' ability to “see” single molecules has been established, albeit at the fringes of our expectations. For example, whereas STM studies at present might not be able to answer the question of why adsorption of CO doubles the density of platinum atoms on the surface of a single crystal of the metal, the images go far in illustrating that this is a process which platinum undergoes. As with any emerging analytical tool, these scanning, very localized microscopic methods are undergoing the growing pains of irreproducible results and mis-marketed artifacts. Nonetheless, we assemble here, primarily for the uninitiated, a collection of careful and credible studies to mark the progress of scanning tunneling microscopy and atomic force microscopy into chemistry, and to encourage a healthy blend of idealism and skepticism toward future work.  相似文献   

13.
扫描探针显微术在巯醇自组装单分子膜纳米刻蚀中的应用   总被引:1,自引:0,他引:1  
介绍了近十年来扫描探针显微术(SPM)在巯醇自组装单分子膜纳米刻蚀中的应用. 依据扫描探针的工作原理, 依次讨论了扫描隧道显微镜、原子力显微镜和导电原子力显微镜的工作特点和适用范围. 同时也讨论了自组装单分子膜纳米刻蚀术在生物分子传感器、超高密度信息存储等领域的应用前景.  相似文献   

14.
15.
本文较详细地介绍了扫描电化学显微镜技术的近期进展,引用参考文献77篇。  相似文献   

16.
孙旭平  张柏林  汪尔康 《分析化学》2003,31(9):1127-1130
扫描探针显微镜不仅能对材料表面形貌进行原子级观测,还能够对单个的分子、原子及纳米粒子进行操纵。本文综述了扫描探针显微镜在纳米加工中对自组装单层膜的扫描探针刻蚀以及“蘸写笔”两方面的应用情况。  相似文献   

17.
Scanning tunneling microscopy (STM) can provide us the special means to characterize the locally physical and chemical properties of individual molecules, and even help us to manipulate the individual molecules for constructing new molecule-scale devices. Here we have adopted two new types of STM techniques to characterize the encapsulated metal atom inside a fullerene cage, and to construct a molecule-device with strong Kondo effect, respectively. The spatially dI/dV mapping spectra were used to unveil the energy-resolved metal-cage hybrid states of individual Dy@C82 molecule, and the important information about the spatial position of Dy atom inside the cage and the Dy-cage interaction was revealed. The high-voltage pulse by STM tip is controlled to induce the dehydrogenation of Co phthalocyanine molecule and change its adsorption configuration on Au(111) surface, so as to recover Kondo effect that disappears in the case of intact adsorbed molecule.  相似文献   

18.
本文以一台常规的Aglient 5500型的扫描探针显微镜为基础,通过配置光源及聚焦系统、研制光强度自动控制部件、研制样品台等方法将太阳光模拟器发射的光引入样品的探针扫描区域,开发了利用扫描探针显微镜原位测试太阳能电池材料微区光电性质的功能。光电性质的测试过程可在手套箱内进行,解决了有机半导体容易吸收空气中的水和氧而失效的问题。  相似文献   

19.
In this study, the effects of forced convection on scanning electrochemical microscopy (SECM) experiments in feedback mode using ferrocenemethanol as redox mediator are presented. Forced convection, which enhances the mass transfer inside the system, was generated via an electrical high precision stirrer integrated into the SECM setup. A thin‐film interdigitated array electrode serving as model substrate was investigated with probe scan curves in z‐direction and SECM imaging in constant height mode utilizing ultramicroelectrodes (UME) with diameters (dprobe) of 25 μm and 12.5 μm. It was found that forced convection increased the overall current during SECM imaging without distorting distinctive features of the imaged structure when working with a 25 μm UME at substrate‐to‐tip distances of 14 μm and 11 μm. Furthermore, the electrochemical contrast was improved under hydrodynamic conditions for a substrate‐to‐tip distance of 11 μm and scan rates of 5 μm s?1, 10 μm s?1, 20 μm s?1 and 40 μm s?1. When further decreasing the gap between the UME and the substrate to 9 μm almost no effects of the forced convection were observed. Consequently, for a 25 μm UME, forced convection led to higher currents and improved performance during SECM experiments in feedback mode at substrate‐to‐tip distances of 14 μm and 11 μm, whereas no effects were observed for a 12.5 μm UME at a distance of 8 μm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号