首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A smectic A-cholesteric phase transition for a rigid-rod helical polymer, poly[n-decyl-(S)-2-methylbutylsilane] (PD2MBS), with a narrow molecular weight distribution, has been observed for the first time. Polarizing optical microscopy showed that the fan-shaped texture of the smectic A phase turned into the characteristic planar texture of the cholesteric phase upon heating. The positive CD band, which corresponds to the reflection band of the cholesteric phase, gradually decreased in intensity within a range 30°C below the transition temperature on cooling, while the peak maximum shifted towards shorter wavelengths. It was concluded that the system has a very wide temperature region over which the cholesteric-smectic A phase transition occurs and in which the cholesteric pitch varies with temperature.  相似文献   

2.
《Liquid crystals》1999,26(6):925-930
The phase behaviours of mixed liquid crystal systems having either Sm/N or Sm/Ch properties have been studied. The (smectic/nematic) binary system formed smectic phases over a wide and much enhanced range of temperature (42 C) and a broad concentration range (0-90 wt %). The ternary smectic/cholesteric system, in appropriate concentration ranges, exhibited the smectic A phase, a TGBA-like twist grain boundary A phase, the cholesteric phase and blue phases. The TGBA-like phase appeared in the cholesteric-smectic phase transition range. Three textures (chiral pitch, fan-shaped and scale-like) for the cholesteric phase of the ternary smectic/cholesteric mixtures were observed in the ranges 0-7, 7-43 and 43 wt % respectively, of cholesteric CB15, in a binary Sm/N mixture.  相似文献   

3.
We simulate the alignment dynamics of cholesteric (chiral) rod-like liquid crystals by using a Landau-de Gennes (LdG) expression for microstructure evolution in response to flow. This study is motivated by recent advances in novel cholesteric nanorod dispersions. Prior work on the modelling of cholesterics has suffered from the restriction of helicity to only a single direction, often with a pre-imposed pitch, due to numerical difficulties. This has severely limited cholesteric modelling in regard to both accuracy and experimental relevance. Our simulations avoid this limitation. Relevant forces on rods include solvent-rod drag, nematic alignment, microstructure elasticity and chiral twist. Phase diagrams are developed to demonstrate the response of these systems to variations in chiral and flow forces. Our results indicate that for low shear rates, chiral and elastic forces prevent the rods from moving in response to flow. At high shear rates, the rods tumble and form unique transient structures (combinations of tumbling and cholesteric phases) as flow forces and chiral forces compete. Even if slight alignment is induced at the boundaries, the phase diagram substantially changes, chiefly by constraining the possible chiral phases. This work has immediate relevance to applications which exploit the optical properties of films solidified from cholesteric dispersions.  相似文献   

4.
A series of cyclosiloxane-based cholesteric liquid crystalline (LC) polymers were synthesized from a cholesteric LC monomer cholest-5-en-3-yl(3β) 4-(2-propenyloxy)benzoate and a nematic LC monomer butyl 4-[4-(2-propenyloxy)benzoxy]benzoate. All the polymers exhibit thermotropic LC properties and show cholesteric phases. Most of the polymers display four types of phase transition behaviour corresponding to glass transition, melting point, cholesteric phase-blue phase transition and clearing point. The mesophase temperature range of the blue phases are as broad as 20°C. The blue phase was confirmed by the apperance of planar textures and cubic packings. With an increase of non-chiral component in the polymers, the clearing point decreases slightly, while the glass transition and melting temperatures change little. In the reflection spectra of the polymer series the reflected wavelength broadens and shifts to longer wavelength with increase of the non-chiral component in the polymer systems, suggesting that the helical pitch P lengthens.  相似文献   

5.
Mesomorphic copolymers were synthesized by incorporating varying ratios of azelaic acid and (+)-3-methyl adipic acid into copolyesters based upon 4,4′-dihydroxybiphenyl. Introduction of the phenylene (+)-3-methyl adipate unit broadens the temperature range of the nematic phase of the azelate homopolymer and, at the same time, produces a chiral nematic (cholesteric) mesophase which exhibits various iridescent colors. Circular dichroism measurements were used to determine the pitch of the cholesteric liquid crystals. The pitch decreased gradually with increasing temperature, and the inverse pitch increased in direct proportion to the molar content of the units containing (+)-3-methyl adipate. The twisted cholesteric structure could be conserved by quenching to produce films with various colors at room temperature. Annealing these films at a temperature immediately below that of the crystal–mesophase transition improved the regularity of the cholesteric structure.  相似文献   

6.
While the handedness of the cholesteric phases formed by assembled guanosine derivatives (G-wires) follow the correlation right-handed helices-->right-handed cholesterics (left-handed -->left-handed), the cholesteric phase formed by B-DNA (right-handed helix) is left-handed. This apparent discrepancy is overcome by considering pitch (p) variations with temperature. Plots of p(-1) versus T(-1) have, in fact, the same trend (positive intercept and negative slope) in the case of right-handed G-wires and B-DNA, while for the left-handed G-wire of deoxyguanosine monophosphate (dGMP), the opposite behavior is observed (negative intercept and positive slope). Therefore, the relation between molecular handedness and cholesteric helicity cannot, in general, be assessed by using measurements based on a single temperature; hence the temperature variation of the cholesteric parameters should be investigated. In all cases there is no remarkable salt effect on the cholesteric parameters.  相似文献   

7.
Optically active poly(phenylacetylene) copolymers consisting of optically active and achiral phenylacetylenes bearing L-alanine decyl esters (1L) and 2-aminoisobutylic acid decyl esters (Aib) as the pendant groups (poly(1L(m)-co-Aib(n))) with various compositions were synthesized by the copolymerization of the optically active 1L with achiral Aib using a rhodium catalyst, and their chiral amplification of the macromolecular helicity in a dilute solution, a lyotropic liquid crystalline (LC) state, and a two-dimensional (2D) crystal on the substrate was investigated by measuring the circular dichroism of the copolymers, mesoscopic cholesteric twist in the LC state (cholesteric helical pitch), and high-resolution atomic force microscopy (AFM) images of the self-assembled 2D helix-bundles of the copolymer chains. We found that the macromolecular helicity of poly(1L(m)-co-Aib(n))s could be hierarchically amplified in the order of the dilute solution, LC state, and 2D crystal. In sharp contrast, almost no chiral amplification of the macromolecular helicity was observed for the homopolymer mixtures of 1L and Aib in the LC state and 2D crystal on graphite.  相似文献   

8.
A series of acrylate monomers with alkoxy tails of varying lengths are synthesised and polymerised. The butoxy analogue had a stable enantiotropic cholesteric liquid crystalline phase which formed a grandjean texture when prepared as a thin film between glass slides. The polymer was mixed with a low molar mass nematic liquid crystal in various proportions and the pitch of the chiral nematic phases were determined using a cano‐wedge cell technique. The polymer prepared from (S)‐2‐(4‐butoxyphenyl‐4′‐benzoyloxy)‐1‐methyl ethyl acrylate had a pitch length of 113 nm which indicates that the polymer film could be employed in optical devices requiring selective reflection of light with short wavelengths in the region of 170 nm. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
The temperature dependence of the induced helical pitch is reported for cholesteric and reentrant cholesteric phases of liquid crystal systems comprising 4-n-hexyloxy and 4-n-octyloxy-4'-cyanobiphenyl with a non-mesogenic optically active dopant. It was found that on adding small quantities of the dopant that the temperature range of the SA phase is narrowed and subsequently disappears, while short range smectic fluctuations persist, influencing the helical twisting features. Critical index values were determined from the temperature dependence of the pitch.  相似文献   

10.
This article describes the progress in experimental studies of liquid-crystalline blue phases during the past 5 years. Additionally, these results are compared critically with the predictions of theories of the blue phases. Areas considered in this review include (i) the thermodynamic stability of the three polymorphic blue phases and the influence of the cholesteric pitch on this; (ii) the phase diagrams of blue phases; (iii) electric field effects on the blue phase structure and stability; (iv) the morphology and growth of liquid single crystals of blue phases; (v) the symmetry and structural properties of the blue phases.  相似文献   

11.
Solidified cholesteric films of α-helical poly(γ-methyl L -glutamate) and poly(γ-benzyl L -glutamate) were prepared by casting from solutions of the lyotropic cholesteric mesophase. Colored films can be prepared in this manner, so the cholesteric structure is retained with a pitch corresponding to a visible wavelength. Their iridescent colors can cover the full range of the visible spectrum, and the colors remain unchanged for years. Although the films are similar in optical properties to those of fluid cholesteric phases, the temperature dependence of the color is quite different. On stretching, the film undergoes a permanent deformation, and the iridescent color is shifted toward the blue. If t0 is the initial film thickness and Δt is the change in thickness after stretching the film, the relative change in pitch, ?ΔP/P0, of the cholesteric structure increases linearly with ?Δt/t0 in the range ?Δt/t0 > 0.10. This reduction of the pitch is attributed to a decrease in the number of pseudonematic layers in the span of one pitch, which may be interpreted in terms of delamination using an angle-ply model of the cholesteric structure.  相似文献   

12.
The synthesis and characterization of three homologous series of compounds exhibiting the undulated twist grain boundary smectic C* (UTGBC*) phase are reported. The chiral mesophases have been obtained using cholesterol as the chiral moiety. Cholestanol and [S]-[+]-octan-2-ol have also been used as the chiral moiety for comparitive purposes. In addition to this novel phase, cholesteric, smectic A, smectic C* and TGBA phases have also been observed. The mesophases were characterized using a combination of polarizing optical microscopy, differential scanning calorimetry, X-ray diffraction and measurement of helical pitch.  相似文献   

13.
Abstract

This article describes the progress in experimental studies of liquid-crystalline blue phases during the past 5 years. Additionally, these results are compared critically with the predictions of theories of the blue phases. Areas considered in this review include (i) the thermodynamic stability of the three polymorphic blue phases and the influence of the cholesteric pitch on this; (ii) the phase diagrams of blue phases; (iii) electric field effects on the blue phase structure and stability; (iv) the morphology and growth of liquid single crystals of blue phases; (v) the symmetry and structural properties of the blue phases.  相似文献   

14.
In this work, the modified Flory-Huggins coupled with the free-volume concept and the artificial neural network models were used to obtain the osmotic pressure of aqueous poly(ethylene glycol) solutions. In the artificial neural network, the osmotic pressure of aqueous poly(ethylene glycol) solutions depends on temperature, molecular weight and the mole fractions of poly(ethylene glycol) in aqueous solution. The network topology is optimized and the (3-1-1) architecture is found using optimization of an objective function with batch back propagation (BBP) method for 134 experimental data points. The results obtained from the neural network in obtaining of the osmotic pressure of aqueous poly(ethylene glycol) were compared with those obtained from the free volume Flory-Huggins model (FV-FH). The results showed that the modified Flory-Huggins model and also the artificial neural network can accurately predict the osmotic pressure of aqueous poly(ethylene glycol) solutions but the accuracy of ANN is much better than the modified Flory-Huggins model.  相似文献   

15.
B-DNA solutions of suitable concentration form left-handed chiral nematic phases (cholesterics). Such phases have also been observed in solutions of other stiff or semiflexible chiral polymers; magnitude and handedness of the cholesteric pitch are uniquely related to the molecular features. In this work we present a theoretical method and a numerical procedure which, starting from the structure of polyelectrolytes, lead to the prediction of the cholesteric pitch. Molecular expressions for the free energy of the system are obtained on the basis of steric and electrostatic interactions between polymers; the former are described in terms of excluded volume, while a mean field approximation is used for the latter. Calculations have been performed for 130 base pair fragments of B-DNA. The theoretical predictions provide an explanation for the experimental behavior, by showing the counteracting role played by shape and charge chirality of the molecule.  相似文献   

16.
DNA molecules form dense liquid-crystalline twisted phases both in vivo and in vitro. How the microscopic DNA chirality is transferred into intermolecular twist in these mesophases and what is the role of chiral DNA-DNA electrostatic interactions is still not completely clear. In this paper, we first give an extended overview of experimental observations on DNA cholesteric phases and discuss the factors affecting their stability. Then, we consider the effects of steric and electrostatic interactions of grooved helical molecules on the sign of cholesteric twist. We present some theoretical results on the strength of DNA-DNA chiral electrostatic interactions, on DNA-DNA azimuthal correlations in cholesteric phases, on the value of DNA cholesteric pitch, and on the regions of existence of DNA chiral phases stabilized by electrostatic interactions. We suggest for instance that 146 bp long DNA fragments with stronger affinities for the nucleosome formation can form less chiral cholesteric phases, with a larger left-handed cholesteric pitch. Also, the value of left-handed pitch formed in assemblies of homologous DNA fragments is predicted to be smaller than that of randomly sequenced DNAs. We expect also the cholesteric assemblies of several-kbp-long DNAs to require higher external osmotic pressures for their stability than twisted phases of short nucleosomal DNA fragments at the same DNA lattice density.  相似文献   

17.
《Liquid crystals》1997,22(2):193-201
Liquid crystalline side group copolymers containing cholesteryl and S-(-)-chloropropionyloxybiphenyl groups were synthesized and investigated by size exclusion chromatography, 1H NMR spectroscopy, polarization microscopy, X-ray diffraction and differential scanning calorimetry. The spacer of the cholesteryl-containing side groups was changed by the substitution of two methylene groups by ether groups. The existence of a cholesteric phase on copolymerization of two monomers containing chiral tail groups, from which the homopolymers exhibit only smectic phases, could be observed. This cholesteric phase only exists over a narrow range of copolymer composition. The temperature dependence of the reflection wavelength for the cholesteric phase was determined. For the cholesteryl-containing homopolymer, an SA bilayer phase was observed, whereas the S-(-)-chloropropionyloxybi2 phenyl homopolymer showed a higher ordered SB phase below an SA monolayer phase. The layer periodicities of the SA phases of the copolymers depend on the composition. The substitution of two methylene groups of the spacer by ether groups led to disappearance of the cholesteric phase. Simultaneously, over a small range of copolymer composition a biphasic region was obtained.  相似文献   

18.
Six three-arm star-shaped liquid crystals (LCs) based on chenodeoxycholic acid (CDCA), termed as G-BH, G-YD, G-FD, G-DJ, G-DZ and G-BX, respectively, have been synthesised. CDCA was used as the chiral core and the nematic side arm, 6-(4-(ethylbenzoyloxy) phenoxy)-6-oxohexanoic acid, was chosen to be introduced into the two hydroxyl of CDCA to synthesise cholesteric LC (CDCA2EA) and different structures were introduced into the carboxyl group of CDCA to prepare the three-arm star-shaped LCs. Chemical structures and LC properties of the six three-arm LCs were characterised by FTIR, 1H-NMR, differential scanning calorimetry, thermogravimetric analysis, X-ray diffraction and polarised optical microscopy. G-BH and G-DJ displayed cholesteric phase with a long helical pitch; G-BX displayed nematic phase; and G-YD, G-FD and G-DZ displayed cholesteric phase on heating and on cooling. These results indicated that not only the chiral core CDCA but also the structures of the side arms played an important role in inducing the cholesteric phase of the CDCA-derived LCs. G-DZ displayed selective reflection, a wider ?λ and red shift on cooling.  相似文献   

19.
The phase of a liquid crystal (LC) changing from a nematic phase to a cholesteric (Ch) mesophase is achieved by adding different ratios of chiral dopants S811. By studying the transmission spectrum, we are able to measure the helical pitch in cholesteric phase. The pitch in the mixtures of nematic E7 and chiral dopants S811 as a function of the concentration of the dopant and temperature is investigated. The sensitivity of the selective reflection notch of the cholesteric phase to the thermal tuning depends strongly on the ratios of the chiral dopants. It reveals that the influence of temperature is more profound for those cholesteric liquid crystals (CLCs) which exhibit smectic A (SmA) at lower temperatures. When fitted using Keating's formula, the helical pitch calculated from our experimental results lies on the predicted curve. Optimised ratios of the mixture CLCs for the optimised reflection band with the specified wavelength ranging from 467 nm to 2123 nm are suggested.  相似文献   

20.
Five photochromic chiral azobenzene compounds and one nonphotochromic chiral compound were synthesized and characterized by IR, 1H NMR spectroscopy, and elemental analysis. Cholesteric liquid crystalline phases were induced by mixing of the nonphotochromic chiral compound and one of the photochromic chiral azobenzene compounds in a host nematic liquid crystal (E44). The helical pitch of the induced cholesteric phase was determined by Cano's wedge method and the helical twisting power (HTP) of each sample was thus determined. The helical twisting powers of azobenzene compounds were decreased upon UV irradiation, due to trans-->cis photoisomerization of azobenzene molecules. Among the azobenzene compounds synthesized in our study, Azo-5, with isomannide (radical) as chiral photochromic dopant, showed the highest HTP and contrast ratio (Tmax/Tmin). Photoswitching between compensated nematic phase and cholesteric phase was achieved through reversible trans<-->cis photoisomerization of the chiral azobenzene molecules through irradiation with UV and visible light, respectively. Transmission rates (contrast ratios) increased with decreasing helical pitch length in the induced cholesteric phase. The influence of helical twisting power on the photoswitching behavior of chiral azobenzene compounds is discussed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号