首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
ABSTRACT

The synthesis of the glycosyl donors 2,3-di-O-acetyl- and 2,3-di-O-chloroacetyl- 4,6-O-ethylidene-ß-D-glucopyranose (10β) and (11β) and their use for the glycosidation of 4'-O-benzyloxycarbonyl- and 4'-O-chloroacetyl-4'-O-demethyl-4-epi-podophyllotoxins (12) and (13) is described. Starting from benzyl β-D-glucopyranoside (6), benzyl 2,3-di-O-acetyl- and 2,3-di-O-chloroacetyl-4,6-O-ethylidene-ß-D-glucopyranoside (8) and (9) were prepared. Hydrogenolysis of the benzyl group in 8 or 9 afforded the β-hydroxy glucopyranose donors 10β and 11β. Condensation of 10β or 11β with 4'-O-Z-epi-podophyllotoxin 12 in the presence of BF3-etherate gave selectively the 4-O-(2,3-di-O-acetyl- or -2,3-di-O-chloroacetyl-4,6-O-ethylidene-β-D-glucopyranosyl)-epi-podophyllotoxins 14β and 15β, respectively. The β-glycoside 16 was prepared in the same manner starting from 11β and 4'-O-chloroacetyl-epi-podophyllotoxin 13. By deblocking (Dowex 1X8, 3:2 methanol-chloroform) of the chloroacetyl groups in 15β and the following hydrogenolysis of the benzyloxycarbonyl group in 17 etoposide 1 was obtained. The deacylation of 16 afforded 1 in a one step procedure.  相似文献   

2.
The structure of some rearrangement ions in the electron impact induced fragmentation of methyl 4,6-O-benzylidene-2,3-di-O-methyl-α-D -glucopyranoside and phenyl 4,6-O-benzylidene-2,3-di-O-methyl-β-D -glucopyranoside have been investigated using high resolution, deuterium labelling and linked scan (B,E) techniques. Shifts of methoxyl groups from C-2 and C-3 to C-1 have been confirmed.  相似文献   

3.
ABSTRACT

The terminal glycosyl acceptor methyl 2,3-di-O-benzyl-α-L-fucopyranoside (6) was extended three times with the non-terminal glycosyl donor ethyl 4-O-acetyl-2,3-di-O-benzyl-1-thio-ß-L-fucopyranoside (13) via iodonium-ion assisted glycosylations and intermittent removal of the C-4 acetyl group in intermediate dimer 16 and trimer 18. The 4-O-acetyl group in trimer 18 and tetramer 20 was highly resistant towards basic hydrolysis. The latter could be nullified by using dichloroacetyl instead of acetyl to protect the C-4-OH in the donor. The exclusive formation of 1,2-cis-linked oligomers could be explained by through-bond interactions exerted by the electron-withdrawing C-4 acyl group in the glycosyl donor.  相似文献   

4.
We have discovered an unusual α-galactosylation using phenylthioglycoside of 4,6-O-di-tert-butylsilylene (DTBS)-protected galactose derivatives as a glycosyl donor, which was not hampered by the neighboring participation of C-2 acyl functionality such as NTroc and OBz. The power of the DTBS effect has been exemplified by the coupling reaction with various glycosyl acceptors.  相似文献   

5.
Selective glycosylation of the 3-OH of 5,4′-di-O-acetyl-kaempferol was achieved with glycosyl ortho-alkynylbenzoates as donors under the catalysis of Ph3PAuNTf2, and subsequent glycosylation of the remaining 7-OH with glycosyl trifluoroacetimidates under the catalysis of BF3·OEt2, after global deprotection, afforded the kaempferol 3,7-O-bisglycosides conveniently.  相似文献   

6.
The disaccharide methyl (4-O-benzoyl-3-O-benzyl-2-O-acetyl-α-L-rhamno pyranosyl)-(1→4)-(allyl 2,3-di-O-benzyl-β-D-galactopyranosid)uronate (13) was obtained in an excellent yield of 88% using methyl (allyl 2,3-di-O-benzyl-β-D-galactopyranosid)uronate ((12) as the glycosyl acceptor and a slight excess of the 1,2-di-O-acetyl-rhamnoglycosyl donor 5a. Disaccharide 13 is a key intermediate that can be used either as a glycosyl acceptor or glycosyl donor for the preparation of rhamnogalacturonan fragments. Here, introduction of the trichloroacetimidate function at the anomeric center gave the disaccharide glycosyl donor 28, which could be applied in a blockwise glycosylation reaction to form the L-Rha-α(1→4)-D-GalA-α(1→4)-D-GalA trisaccharide 29. Generally, on condition that no neighboring group effect influenced the reaction at the anomeric center of the α-trichloroacetimidate galacturonate glycosyl donors (20–22, 28), α-glycosidic linkages were nearly exclusively formed, except in the case of the 4-O-methylgalactopyranosyluronate 22.  相似文献   

7.
Abstract

Two derivatives of β-maltosyl-(1→4)-trehalose monodeoxygenated at C-2′′ or C-2′′′ have been synthesized in [2+2] block syntheses. O-(2,3,4,6-Tetra-O-benzyl-α-D-glucopyranosyl)-(1→4)-3,6-di-O-benzyl-1,2-di-O-acetyl-β-D-glucopyranose (6), prepared from the respective orthoester, was coupled to the glycosyl acceptor 2,3-di-O-benzyl-4,6-O-benzylidene-α-D-glucopyranosyl 2,3,6-tri-O-benzyl-α-D-glucopyranoside. In the resulting tetrasaccharide 8, the only ester group was removed and replaced by a xanthate which was reduced in a Barton-McCombie reaction to afford the 2′′-deoxygenated tetrasaccharide 12. For the synthesis of a 2′′′-deoxygenated derivative, a maltose building block was assembled from two monosaccharides. The key building block was ethyl 2,3,6-tri-O-benzyl-1-thio-β-D-glucopyranoside (14) which was used i) as a glycosyl acceptor in a phenylselenyl chloride mediated coupling reaction with tri-O-benzyl-glucal and ii) after the first coupling as a glycosyl donor to react with glycosyl acceptor 7 to give tetrasaccharide 18. The phenylselenyl group was reduced with tributyltin hydride on the disaccharide level. Deprotection of 18 furnished the 2′′′-deoxy-maltosyl-(1→4)-trehalose 20.  相似文献   

8.
A facile methodology is proposed for regioselective conjugation between glycosyl donors and acceptors towards the development of regioselective 1,2-cis-glycosylation method. ortho-Formylphenyl 1-thio-β-d-galactopyranoside was regioselectively tethered to methyl α-d-glucopyranoside under acidic condition to furnish an 4,6-O-arylidene acetal-linked conjugate. This conjugate can be readily converted to an ether-linked 4-O- or 6-O-derivative by regioselective cleavage of the acetal ring. In the glycosylation reaction, the ether-linked 4-OH conjugate was found to show excellent 1,2-cis selectivity via an intramolecular 1,9-transfer.  相似文献   

9.
Yiqun Geng 《Tetrahedron》2008,64(22):4949-4958
Diverse 2,3-oxazolidinone protected 2-amino-2-deoxy-d-glucose thioglycosides were prepared and studied as glycosyl donors at low temperature by BSM/Tf2O pre-activation protocol before the addition of glycosyl acceptors. The stereochemistry outcomes of a series of glycosylations were investigated. Different stereoselectivities of the coupling reactions were obtained, arising from the different protecting groups in the oxazolidinone donors. 4,6-Di-O-benzyl-N-benzyl-oxazolidinone protected thioglycoside donor 1c underwent glycosylation with general β-anomeric selectivity and the stereoselectivity could be also affected by glycosylation conditions.  相似文献   

10.
Abstract

Stereoselective α-D-galactosylation at the position 3 of 4,6-O-substituted derivatives of methyl 2-acetamido-2-deoxy-α-D-glucopyranoside is described. Glycosyl chlorides derived from 3,4,6-tri-O-acetyl-2-O-benzyl- and 2-O-(4-methoxybenzyl)-D-galactopyranose have been used as glycosyl donors. Methyl 2-acetamido-4,6-di-O-acetyl-2-deoxy-3-O-(3,4,6-tri-O-acetyl-α-D-galactopyranosyl)-α-D-glucopyranoside (27) and methyl 2-acetamido-4,6-di-O-benzyl-2-deoxy-3-O-(3,4,6-tri-O-acetyl-α-D-galactopyranosyl)-α-D-glucopyranoside (31) have been prepared.  相似文献   

11.
Abstract

Four reactions were conducted in order to study the ability of a C-3 acyloxy group to control the stereoselectivity of glycosidation reactions in which the glycosyl donors were unsubstituted at c-2. These donors differed in the structure of the acyloxy group attached to C-3 (benzoyloxy or p-methoxybenzoyloxy) and in the identity of the leaving group (chloro or thiomethoxy) attached to the anomeric carbon. The stereoselectivity in all reactions was low; for example, treatment of 3,4-di-O-benzoyl-2,6-dideoxy-D-ribo-hexopyranosyl chloride (6) with methyl 4-O-benzoyl-2,6-dideoxy-α-D-lyxo-hexopyranoside (7) yielded a 2.2/1 (α/β) ratio of methyl 4-O-benzoyl-3-O-(3,4-di-O-benzoyl-2,6-dideoxy- α-D-ribo-hexopyranosyl-2,6-dideoxy-α-D-ribo-hexopyranoside (8) and methyl 4-O-benzoyl-3-O-(3,4-di-O-benzoyl-2,6-dideoxy-α-D-lyxo-hexopyranoside-2,6-dideoxy-α-D-lyxo-hexopyranoside (9). Formation of 1,5-anhydro-3,4-di-O-benzoyl-2,6-dideoxy-D-ribo-her-1-enitol (10) was a significant additional reaction. In reactions involving the thioglycosides only trace amounts of glycals were formed and approximately equal amounts of α and β anomers were produced. The significance of these reactions to participation by C-3 acyloxy groups is discussed.  相似文献   

12.
Abstract

DAST-assisted rearrangement of 3-O-allyl-4-O-benzyl-α-l-rhamnopyranosyl azide followed by treatment of the generated fluorides with ethanethiol and BF3·OEt2 gave glycosyl donor ethyl 3-O-allyl-2-azido-4-O-benzyl-2,6-dideoxy-1-thio-α/β-l-glucopyranoside. Stereoselective glycosylation of methyl 4,6-O-benzylidene-2-deoxy-2-phthalimido-β-D-glucopyranoside with ethyl 3-O-allyl-2-azido-4-O-benzyl-2,6-dideoxy-1-thio-α/β-l-glucopyranoside, under the agency of NIS/TfOH afforded methyl 3-O-(3-O-allyl-2-azido-4-O-benzyl-2,6-dideoxy-α-l-glucopyranosyl)-4,6-O-benzyli-dene-2-deoxy-2-phthalimido-β-D-glucopyranoside. Removal of the allyl function of the latter dimer, followed by condensation with properly protected 2-azido-2-deoxy-glucosyl donors, in the presence of suitable promoters, yielded selectively methyl 3-O-(3-O-[6-O-acetyl-2-azido-3,4-di-O-benzyl-2-deoxy-α-D-glucopyranosyl]-2-azido-4-O-benzyl-2,6-dideoxy-α-l-glucopyranosyl)-4,6-O-benzylidene-2-deoxy-2-phthalimido-β-D-glucopyranoside. Deacetylation and subsequent glycosylation of the free HO-6 with phenyl 2,3,4,6-tetra-O-benzoyl-1-seleno-β-D-glucopyranoside in the presence of NIS/TfOH furnished a fully protected tetrasaccharide. Deprotection then gave methyl 3-O-(3-O-[6-O-{β-D-glucopyranosyl}-2-acetamido-2-deoxy-β-D-glucopyranosyl)-2-acetamido-2,6-dideoxy-α-L-glucopyranosyl)-2-acetamido-2-deoxy-β-D-glucopyranoside.  相似文献   

13.
Abstract

Conformational investigations using 1D TOCSY and ROESY 1H NMR experiments on 1,3,4,6-tetra-O-acetyl-2-C-(4,6-di-O-acetyl-2,3-dideoxy-α-D-erythro-hexopyranosyl)-2-deoxy-β-D-glucopyranose (8) and related disaccharides showed that for steric reasons the C-linked hexopyranosyl ring occurs in the usually unfavoured 1C4 conformation and reconfirmed the structure of 1,3,4,6-tetra-O-acetyl-2-C-(4,6-di-O-acetyl-2,3-dideoxy-α-D-erythro-hex-2-enopyranosyl)-2-deoxy-β-D-glucopyranose (5). Glycosylation of 2,3,6-tri-O-benzyl-α-D-glucopyranosyl 2,3-di-O-benzyl-4,6-(R)-O-benzylidene-α-D-glucopyranoside (13) with acetate 8 using trimethylsilyl triflate as a catalyst afforded the α-D-linked tetrasaccharide 14. A remarkable side product in this reaction was the unsaturated tetrasaccharide 2,3,6-tri-O-benzyl-4-O-[4,6-di-O-acetyl-2,3-dideoxy-2-C-(4,6-di-O-acetyl-2,3-dideoxy-β-D-erythro-hexopyranosyl)-α-D-erythro-hex-2-enopyranosyl]-α-D-glucopyranosyl 2,3-di-O-benzyl-4,6-(R)-O-benzylidene-α-D-glucopyranoside (16) where in the C-linked hexopyranosyl ring an isomerization to the β-anomer had taken place to allow for the favoured 4C1 conformation. The tetrasaccharide 14 was deacetylated and hydrogenolyzed to form the fully deprotected tetrasaccharide 18. The 1 C 4 conformation of the C-glycosidic pyranose of this tetrasaccharide was maintained as shown by an in depth NMR analysis of its peracetate 19.  相似文献   

14.
Acetolysis of benzyl ethers of sugars has been carried out with anhydrous ferric chloride in acetic anhydride. By employing this reagent, benzyl ether groups variously placed in sugars or in their glycosides could be removed with ease and replaced by acetyl groups. By controlled acetolysis, preferential removal of certain benzyl groups was possible. The results show that in D-glucose the relative ease of removal of benzyl ether groups by acetolysis follows the order C-6 > C-4 > C-3 > C-2 and that the rate of acetolysis is 6-O-Bn : 3-O-Bn : 2-O-Bn = 125 : 24 : 1. The corresponding methyl ethers were very sluggish towards acetolysis.  相似文献   

15.
ABSTRACT

The behavior of 3,4- and 4,6-cyclic sulfates derived from benzyl 2,6- and 2,3-di-O-benzyl-β-D-galactopyranosides toward hydrolysis has been studied using aqueous sodium hydroxide under various conditions. Starting from benzyl 2,6-di-O-benzyl-3,4-O-sulfuryl-β-D-galactopyranoside (5), the reaction with aq NaOH in THF gave both 3- and 4-monosulfates 7 and 8 (83%, in 68:32 ratio), while the reaction in DMF led unexpectedly to the 4-deoxy-3-keto derivative 10 in 77% yield after acidic hydrolysis of the intermediate enolester 9. On the other hand, when benzyl 2,3-di-O-benzyl-4,6-O-sulfuryl-β-D-galactopyranoside (6) was treated with aq NaOH in THF, a mixture of benzyl 2,3-di-O-benzyl-6-deoxy-4-O-(sodium sulfonato)-α-L-arabino-hex-5-enopyranoside (11) and benzyl 2,3-di-O-benzyl-4-deoxy-6-O-(sodium sulfonato)-α-L-threo-hex-4-enopyranoside (12) (in 65:35 ratio) was obtained in 93% yield, giving a new and rapid access to 11, a potential precursor of L-sugars derivatives. Alternatively, BzONBu4 gave a regiospecific opening reaction of 6 and led to the 6-O-benzoate 4-O-sulfate derivative (13) in excellent yield.  相似文献   

16.
l-Rhamnose was led, in a 14-step-sequence, to N2-(N,N-dimethylaminomethylene)-1′-O-(4-methoxybenzyl)-3-[2-(4-nitrophenyl)ethyl]biopterin (23), an appropriately protected precursor for 2′-O-glycosylation, while 4,6-di-O-acetyl-2,3-di-O-(4-methoxybenzyl)-α-d-glucopyranosyl bromide (32), a novel glycosyl donor, was efficiently prepared from d-glucose in 8 steps. The first synthesis of 2′-O-(α-d-glucopyranosyl)biopterin (2a) was achieved by treatment of the key intermediate 23 with 32 in the presence of silver triflate and tetramethylurea, followed by successive removal of the protecting groups.  相似文献   

17.
An unexpected epimerization resulting from the reaction of α-D-glucopyranosyl derivatives with DAST is described. The reaction of 3,4-di-O-acetyl-1,6-di-O-trityl-β-D-fructofuranosyl 2,3,6-tri-O-acetyl-α-D-glucopyranoside (1), methyl 2,3-di-O-acetyl-6-O-trityl-α-D-glucopyranoside (6), 2,3-di-O-acetyl-6-O-trityl-α-D-glucopyranosyl 2,3-di-O-acetyl-6-O-trityl-α-D-glucopyranoside (13), and 2,3-di-O-acetyl-6-O-tert-butyldiphenylsilyl-α-D-glucopyranosyl 2,3,4,6-tetra-O-acetyl-α-D-glucopyranoside (14) with DAST at 0°C did not give the expected C-4 fluorodeoxy galacto derivatives, but instead, the corresponding 4-O-acetyl-3-hydroxy-α-D-galactopyranosides in yields of 52–78%. When the treatment of 6 was carried out at ?25°C for ~5 min the corresponding diastereomeric 4-O-diethylaminosulfinates (9a,b) were isolated as the major products (40%). Evidence suggests that the epimerization reaction most probably resulted from an intramolecular displacement of the intermediate diethylaminosulfur difluoride ester or diethylaminosulfinyl ester by the neighbouring acetoxy groups.  相似文献   

18.
2-Aminoethyl 3,6-di-O-sulfo-β-D-glucopyranosyl-(1→3)-β-D-galactopyranosyl-(1→4)-2-acetamido-2-deoxy-β-D-glucopyranoside, which is the sulfo-mimetic of the antigenic trisaccharide HNK-1, and the corresponding monosulfates, viz., 2-aminoethyl 3-O-sulfo-and 2-aminoethyl 6-O-sulfo-β-D-glucopyranosyl-(1→3)-β-D-galactopyranosyl-(1→ 4)-2-acetamido-2-deoxy-β-D-glucopyranosides, were synthesized. 2-Azidoethyl 2,4-di-O-benzoyl-β-D-glucopyranosyl-(1→3)-2,4,6-tri-O-benzoyl-β-D-galactopyranosyl-(1→ 4)-2-acetamido-3,6-di-O-benzyl-2-deoxy-β-D-glucopyranoside served as the common precursor for the sulfated trisaccharides. This compound was synthesized according to the [2+1] pattern from monosaccharidic precursors: 3,6-di-O-acetyl-2,4-di-O-benzoyl-D-glucopyranosyl trichloroacetimidate, allyl 2-O-benzoyl-4,6-O-benzylidene-β-D-galactopyranoside, and 2-azidoethyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-β-D-glucopyranoside. The structures of the glycosyl donors and glycosylation conditions were optimized for the efficient synthesis of the glucosyl-β-(1→3)-galactose disaccharide block and its subsequent transformation into the target trisaccharide sequence. Dedicated to Academician V. A. Tartakovsky on the occasion of his 75th birthday. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1593–1607, August, 2007.  相似文献   

19.
NIS/TfOH mediated glycosidation of methyl 3,4,6-tri-O-benzyl-α-d-mannopyranoside with phenyl 2-O-acetyl-3,4,6-tri-O-benzyl-1-thio-α-d-mannopyranoside furnished the corresponding disaccharide derivative in excellent yield and α-selectivity. Zémplen deacetylation of the same followed by reaction with BSP/Tf2O-preactivated phenyl 4,6-O-benzylidene-2,3-di-O-benzyl-1-thio-α-d-mannopyranoside generated methyl 4,6-O-benzylidene-2,3-di-O-benzyl-β-d-mannopyranosyl-(1→2)-3,4,6-tri-O-benzyl-α-d-mannopyranosyl-(1→2)-3,4,6-tri-O-benzyl-α-d-mannopyranoside in very good yield and excellent β-selectivity. Pd/C catalyzed hydrogenation of the latter finally afforded the repeating trisaccharide of Escherichia coli 8 O-antigen as its methyl glycoside.  相似文献   

20.
The effect of a benzoyl group at O-3 on stereoselectivity of glycosylation by 3-O- and 3,4-di-O-benzoylated 2-O-benzyl-L-fucopyranosyl bromides was studied by direct chemical experiments and computational chemistry. The influence of a benzoyl group at O-3 of the fucosyl donors was shown to have a larger effect on the efficiency of α-fucosylation than a benzoyl group at O-4. It is hypothesized that this is a result of the ability of a benzoyl group at O-3 to participate in glycosyl cation stabilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号