首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diatomic halogens are studied with UV photoelectron spectroscopy using new techniques to preserve high resolution even for reactive species. For the first time vibrational structure is observed on the 2Πu,i (i = 1/2,3/2) states (F2+, Cl2+), the 2Σg+ states (F2+, Cl2+) and the Br2+ (2Πu,32) state. On the 2Πu,i states (F2+, Cl2+, Br2+) spin-orbit splitting is resolved. Indications for a small potential barrier on the F2+ (2Πu,i) state for large internuclear distances are found. A new value for the spin-orbit splitting of the Cl2+(2Πg) state is presented (= ?725 cm?1). The complementary nature of optical emission and photoelectron spectroscopy for small ions is demonstrated leading to a more complete picture of the F2+ (2Πu,i) and Cl2+ (2Πu,i) ionic states.  相似文献   

2.
In this study, we investigated the effects of four inorganic anions (Cl, SO42−, H2PO4/HPO42−, and HCO3/CO32−) on titanium dioxide (TiO2)-based photocatalytic oxidation of aqueous ammonia (NH4+/NH3) at pH  9 and ∼10 and nitrite (NO2) over the pH range of 4–11. The initial rates of NH4+/NH3 and NO2 photocatalytic oxidation are dependent on both the pH and the anion species. Our results indicate that, except for CO32−, which decreased the homogeneous oxidation rate of NH4+/NH3 by UV-illuminated hydrogen peroxide, OH scavenging by anions and/or direct oxidation of NH4+/NH3 and NO2 by anion radicals did not affect rates of TiO2 photocatalytic oxidation. While HPO42− enhanced NH4+/NH3 photocatalytic oxidation at pH  9 and ∼10, H2PO4/HPO42− inhibited NO2 oxidation at low to neutral pH values. The presence of Cl, SO42−, and HCO3 had no effect on NH4+/NH3 and NO2 photocatalytic oxidation at pH  9 and ∼10, whereas CO32− slowed NH4+/NH3 but not NO2 photocatalytic oxidation at pH  11. Photocatalytic oxidation of NH4+/NH3 to NO2 is the rate-limiting step in the complete oxidation of NH4+/NH3 to NO3 in the presence of common wastewater anions. Therefore, in photocatalytic oxidation treatment, we should choose conditions such as alkaline pH that will maximize the NH4+/NH3 oxidation rate.  相似文献   

3.
UV photolysis of [CpFeII(CO)3]+ PF66? (I) or [CpFeII6-toluene)]+ PF6?? (II) in CH3CN in the presence of 1 mole of a ligand L gives the new air sensitive, red complexes [CpFeII(NCCH3)2L]+PF6? (III, L = PPh3; IV; L = CO; VIII, L = cyclohexene; IX, L = dimethylthiophene) and the known air stable complex [CpFeII(PMe3)2(NCMe)]+ PF6? (V). The last product is also obtained by photolysis in the presence of 2 or 3 moles of PMe3. In the presence of dppe, the known complex [CpFeII (dppe)(NCCH3)]+ (XI) is obtained. Complex III reacts with CO under mild conditions to give the known complex [CpFe(NCCH3)(PPh3)CO]+ PF6? (X). UV photolysis of I in CH3CN in the presence of 1-phenyl-3,4-dimethylphosphole (P) gives [CpFeIIP3]+ PF6? (XII); UV photolysis of II in CH2Cl2 in the presence of 3 moles of PMe3 or I mole of tripod (CH3C(CH2Ph2)3) provides an easy synthesis of the known complexes [CpFeII(PMe3)3]+ PF6? (VII) or [CpFeIIη3-tripod]+ PF6t- (XIII). Since I and II are easily accessible from ferrocene, these photolytic syntheses provide access to a wide range of piano-stool cyclopentadienyliron(II) cations in a 2-step process from ferrocene.  相似文献   

4.
Upconversion luminescence tuning of β‐NaYF4 nanorods under 980 nm excitation has successfully been achieved by tridoping with Ln3+ ions with different electronic structures. The effects of Ce3+ ions on NaYF4:Yb3+/Ho3+ as well as Gd3+ ions on NaYF4:Yb3+/Tm3+(Er3+) have been studied in detail. By tridoping with Ce3+ ions, not only were unusual 5G55I7 and 5F2/3K85I8 transitions from Ho3+ ions and 5d→4f transitions from Ce3+ ions observed in NaYF4:Yb3+/Ho3+ nanorods, but also an increase in the intensity of 5F55I8 relative to 5S2/5F45I8 with increasing Ce3+ concentration, which can be attributed to efficient energy transfers of 5I6 (Ho)+2F5/2 (Ce)→5I7 (Ho)+2F7/2 (Ce) and 5S2/5F4 (Ho)+2F5/2 (Ce)→5F5 (Ho)+2F7/2 (Ce). Interestingly, with increasing pump power density, the luminescence of NaYF4:Yb3+/Ho3+ nanorods is always dominated by the 5S2/5F45I8 transition, whereas the luminescence of Ce3+‐tridoped NaYF4:Yb3+/Ho3+ nanorods is dominated by the 5S2/5F45I8 and 5G55I7 transitions in turn. These observations are discussed on the basis of a rate equation model. Furthermore, Gd3+‐tridoped NaYF4:Yb3+/Tm3+(Er3+) nanorods can emit multicolor upconversion emissions spanning from the UV to the near‐infrared under 980 nm excitation. 6P5/28S7/2 (≈306 nm) and 6P7/28S7/2 (≈311 nm) transitions from Gd3+ ions were observed. In addition to the aforementioned luminescence properties, these Gd3+‐tridoped nanorods also exhibit paramagnetic behavior at room temperature and superparamagnetic behavior at 2 or 5 K.  相似文献   

5.
In aqueous H2SO4, Ce(IV) ion oxidizes rapidly Arnold's base((p-Me2NC6H4)2CH2, Ar2CH2) to the protonated species of Michler's hydrol((p-Me2NC6H4)2CHOH, Ar2CHOH) and Michler's hydrol blue((p-Me2NC6H4)2CH+, Ar2CH+). With Ar2CH2 in excess, the rate law of the Ce(IV)-Ar2CH2 reaction in 0.100 M H2SO4 is expressed -d[Ce(IV)]/dt = kapp[Ar2CH2]0[Ce(IV)] with kapp = 199 ± 8M?1s?1 at25°C. When the consumption of Ce(IV) ion is nearly complete, the characteristic blue color of Ar2CH+ ion starts to appear; later it fades relatively slowly. The electron transfer of this reaction takes place on the nitrogen atom rather than on the methylene carbon atom. The dissociation of the binuclear complex [Ce(III)ArCHAr-Ce(III)] is responsible for the appearance of the Ar2CH+ dye whereas the protonation reaction causes the dye to fade. In highly acidic solution, the rate law of the protonation reaction of Michler's hydrol blue is -d[Ar2CH+]/dt = kobs[Ar2CH+] where Kobs = ((ac + 1)[H*] + bc[H+]2)/(a + b[H+]) (in HClO4) and kobs= ((ac + 1 + e[HSO4?])[H+] + bc[H+]2 + d[HSO4?] + q[HSO4?]2/[H+])/(a + b[H+] + f[HSO4?] + g[HSO4?]/[H+]) (in H2SO4), and at 25°C and μ = 0.1 M, a = 0.0870 M s, b = 0.655 s, c = 0.202 M?1s?1, d = 0.110, e = 0.0070 M?1, f = 0.156 s, g = 0.156 s, and q = 0.124. In highly basic solution, the rate law of the hydroxylation reaction of Michler's hydrol blue is -d[Ar2CH+]/dt = kOH[OH?]0[Ar2CH+] with kOH = 174 ± 1 M?1s?1 at 25°C and μ = 0.1 M. The protonation reaction of Michler's hydrol blue takes place predominantly via hydrolysis whereas its hydroxylation occurs predominantly via the path of direct OH attack.  相似文献   

6.
Tandem mass spectrometric studies show that SiH+5 is formed in bimolecular reactions of SiH4 and NH+2, C2H+3, C2H+6 and C3H+8 ions. The dependence of the reaction cross sections on ion energy indicates the formation of SiH+5 from NH+2, C2H+3, and C2H+6 to be exothermic reactions, while formation from C3H+8 is endothermic. Using known thermochemical data, these facts permit the assignment of 150 and 156 kcal/mole to the lower and upper limits of the proton affinity of monosilane.  相似文献   

7.
The effect of the acidity of the medium on the hydroxylation and nitration of alkanes (RH) in 90–98% H2SO4 at 25°C is described quantitatively by a model taking account of the thermodynamic activity of the RH, H2O, and HSO4- particles. It was concluded that in the transition states the reagents H3O2+HSO4- and NO2+ HSO4- are present as HO+ and NO2+ ions without the bases H–O and HSO4-, the alkanes are present without hydrophobic shells, and the initial reaction products are ROH2+ and RNO2H+.  相似文献   

8.
Deconvolutions of measured absorption line profiles in the 1n0 (n = 0 to 5) and the 320 bands of the Ã2A2X?2B1 electronic transition of ClO2 reveal subnanosecond lifetimes for all rotational levels of the 2A2 state. Observed ratios of radiationless rates from spin-doublet components identify direct spin-orbit coupling of the 2A2 state with 2A1 and/or 2B1 vibronic states as a predominant predissociation mechanism. Variations of rates with ν′1 locate an intersection of a second potential surface with that of the 2A2 state.  相似文献   

9.
The vibrational spectra of a number of transition-metal complexes containing terminal or bridging nitrido (N3?) and oxo (O2?) ligands are reported. Full assignments of fundamental modes are given for (OsO314N)?, (OsO315N)?, (Os14NX4)?, (Os15NX4)?, (Ru14NX4)?, (Os14NX5)2?, (Os15NX5)2? and (Ru14NX5)2? (X = Cl, Br), and also for the oxo complexes (Mo16OCl4, (Mo18OCl4)?, (Mo16OCl5)2? and (Mo18OCl5)2?. Force constants have been evaluated for the four- and five-coordinate complexes. The significance of the results is discussed in terms of the metalligand bonding involved in these species.  相似文献   

10.
Quadrupole mass spectrometry has been employed to characterize the ionic species in the discharges of pure CH4, CH4/H2, and CH4/Ar systems. For pure methane, the major positive ions in the discharge at low pressure (e.g., 0.15 torr) are CH 3 + , C2H 3 + , CH 2 + , C2H 2 + , CH 4 + , C2H 4 + , and C2H 5 + at high pressure (e.g., 0.5 torr) the major ions are CH 3 + , C2H 3 + , C2H 5 + , C3H 3 + , C H3H 7 + , C4H 7 + , C5H 7 + , C6H 5 + , and C7H 7 + . The relative abundances of C1 ions decrease with increasing pressure, whereas those of higher-order ions increase with pressure. For 5% CH4 + 95% H2 mixture, in addition to those sampling from the pure methane plasma at the lower pressure, H n + ions have also been detected. For 5% CH4 +95% Ar mixture, the principal ions are CH 3 + , CH 2 + , CH+, CH 5 + , Ar+, and ArH+; the ions containing more than two carbon atoms are negligible. In these discharges, the CH 3 + and C2H 3 + are the most important positive ions in C1 and C2 ions, respectively. The ions detected are believed to come from the sheath between the electrode and the luminous plasma, and have high kinetic energy. An ion-molecule reaction mechanism is proposed which can well explain the observed main features of ionic products.Died June 1, 1991.  相似文献   

11.
In the flash photolysis of SiBr4 both the absorption and the emission spectra corresponding to the B̃2Σ−X̃2Π transition of SiBr have been observed. A broad, structureless absorption band has also been detected in the 340–400 nm region which could be assigned to the hitherto unreported à 1B1−x̃ 1A1 transition of SiBr2. The decay of both absorption spectra followed first-order kinetics yielding the pseudo-first-order rate constants: k(SiBr)=2.6 × 104s−1 and k(SiBr2) = 8.9 × 103−1. Assuming that the principal reactions consuming these intermediates are SiBr+SiBr4→Si2Br5 and SiBr2+SiBr4→ Si2Br6, the second-order rate constants have the values k(SiBr)= 9.7×109 M−1s−1 and k(SiBr2)= 3.3×108M−1s−1.  相似文献   

12.
Ionization-fragmentation of uranium(IV) tetraborohydride, U(BH4)4, by He+ and by N+/N2+ yields, predominantly, U(BH5)+ and U(B2H8)+, respectively. Attachment of thermal electrons yields U(BH4)4? and ions of 1, 2, and 3 mass units less. Fluoride transfer with SF6?, BF4?, and UFn? (n = 5–7) and reactions with other small ions (O?, O2?, NO2?, F?, Cl?, O2+) are described.  相似文献   

13.
Summary A rapid method has been developed for the determination of phosphate by means of filter paper impregnated with lead iodide. A sample is added to the impregnated filter paper by means of a capillary, and after irrigation to cause migration of the ions a white spot is obtained as the lead iodide is converted into the phosphate. The weight of the spot is dependent on the pH and the quantity of phosphate present.The determination is possible in the presence of SCN, Cl, Br, NO3 , CO3 , I, IO3 , CH3COO, B4O7 2–, F, Sb2O7 4–, K+, Na+, NH4 +, OH, H+, succinic, citric and tartaric acids. The determination is impossible in the presence of C2O4 2–, SO4 2–, MoO4 2–, NO2 , SO3 2–, S2–, CrO4 2–, or CO3 2–.The method permits the determination of 7–100g of phosphate with an accuracy of 2%.
Zusammenfassung Ein schnelles Verfahren zur Phosphatbestimmung wird besehrieben, bei dem man sich eines mit Bleijodid imprägnierten Filterpapiers bedient. Die Probe wird mit einer Kapillare auf das Papier aufgebracht. Man erleichtert die Ionenbewegung durch geeignete Befeuchtung und erhält einen weißen Fleck infolge Umsetzung des Bleijodids in -phosphat. Das Gewicht des Fleckens hängt vom pH und von der Phosphatmenge ab.Die Bestimmung ist möglich in Gegenwart von SCN, Cl, Br, NO3 , CO3 , J, JO3 , CH3COO, B4O7 2–, F, Sb2O7 4–, K+, Na+, NH4 +, OH, H+, Bernsteinsäure, Zitronensäure und Weinsäure; sie ist nicht möglich bei Gegenwart von C2O4 2–, SO4 2–, MoO4 2–, NO2 , SO3 2–, S2–, CrO4 2– oder CO3 2–. 7 bis 100g Phosphat können mit einer Genauigkeit von 2% bestimmt werden.

Résumé On a développé une méthode rapide pour le dosage des phosphates sur papier-filtre imprégné d'iodure de plomb. On dépose l'échantillon sur le papier-filtre imprégné, à l'aide d'un capillaire, et, après humidification pour provoquer la migration des ions, on obtient une tache blanche quand l'iodure de plomb est converti en phosphate. Le poids de la tache dépend du pH et de la quantité de phosphate présent.Le dosage est possible en présence de SCN, Cl, Br, NO3 , CO3 , I, IO3 , CH3COO, B4O7 2–, F, Sb2O7 4–, K+, Na+, NH4 +, OH, H+, et des acides succinique, citrique et tartrique. Il est impossible en présence de C2O4 2–, SO4 2–, MoO4 2–, NO2 , SO3 2–, S2–, CrO4 2– ou CO3 2–.La méthode permet le dosage de 7 à 100g de phosphate avec une précision de 2%.
  相似文献   

14.
The reaction of OH? with O3 eventually leads to the formation of .OH radicals. In the original mechanistic concept (J. Staehelin, J. Hoigné, Environ. Sci. Technol. 1982 , 16, 676–681), it was suggested that the first step occurred by O transfer: OH?+O3→HO2?+O2 and that .OH was generated in the subsequent reaction(s) of HO2? with O3 (the peroxone process). This mechanistic concept has now been revised on the basis of thermokinetic and quantum chemical calculations. A one‐step O transfer such as that mentioned above would require the release of O2 in its excited singlet state (1O2, O2(1Δg)); this state lies 95.5 kJ mol?1 above the triplet ground state (3O2, O2(3Σg?)). The low experimental rate constant of 70 M ?1 s?1 is not incompatible with such a reaction. However, according to our calculations, the reaction of OH? with O3 to form an adduct (OH?+O3→HO4?; ΔG=3.5 kJ mol?1) is a much better candidate for the rate‐determining step as compared with the significantly more endergonic O transfer (ΔG=26.7 kJ mol?1). Hence, we favor this reaction; all the more so as numerous precedents of similar ozone adduct formation are known in the literature. Three potential decay routes of the adduct HO4? have been probed: HO4?→HO2?+1O2 is spin allowed, but markedly endergonic (ΔG=23.2 kJ mol?1). HO4?→HO2?+3O2 is spin forbidden (ΔG=?73.3 kJ mol?1). The decay into radicals, HO4?→HO2.+O2.?, is spin allowed and less endergonic (ΔG=14.8 kJ mol?1) than HO4?→HO2?+1O2. It is thus HO4?→HO2.+O2.? by which HO4? decays. It is noted that a large contribution of the reverse of this reaction, HO2.+O2.?→HO4?, followed by HO4?→HO2?+3O2, now explains why the measured rate of the bimolecular decay of HO2. and O2.? into HO2?+O2 (k=1×108 M ?1 s?1) is below diffusion controlled. Because k for the process HO4?→HO2.+O2.? is much larger than k for the reverse of OH?+O3→HO4?, the forward reaction OH?+O3→HO4? is practically irreversible.  相似文献   

15.
The reaction of bromomethyl-dibromo-indium(III), Br2InCH2Br with dialkylselenides, R1SeR2 (R1 = CH3, R2 = CH2C6H5; R1 = C2H5, R2 = CH2C6H5; R1 = R2 = CH2C6H5) afforded the corresponding dialkylselenonium methylide complexes of indium tribromide, Br3InCH2SeR1R2, which were fully characterized by NMR spectroscopy and single crystal X-ray diffraction studies.  相似文献   

16.
Iron(II), (Fe(H2O)62+, (FeII) participates in many reactions of natural and biological importance. It is critically important to understand the rates and the mechanism of FeII oxidation by dissolved molecular oxygen, O2, under environmental conditions containing bicarbonate (HCO3), which exists up to millimolar concentrations. In the absence and presence of HCO3, the formation of reactive oxygen species (O2, H2O2, and HO⋅) in FeII oxidation by O2 has been suggested. In contrast, our study demonstrates for the first time the rapid generation of carbonate radical anions (CO3) in the oxidation of FeII by O2 in the presence of bicarbonate, HCO3. The rate of the formation of CO3 may be expressed as d[CO3]/dt=[FeII[[O2][HCO3]2. The formation of reactive species was investigated using 1H nuclear magnetic resonance (1H NMR) and gas chromatographic techniques. The study presented herein provides new insights into the reaction mechanism of FeII oxidation by O2 in the presence of bicarbonate and highlights the importance of considering the formation of CO3 in the geochemical cycling of iron and carbon.  相似文献   

17.
The synthesis and crystal structures of a series of six crystalline potassium salts of hypodiphosphoric acid, H4P2O6, are reported, namely potassium hydrogen phosphonophosphonate, K+·H3P2O6, (I), dipotassium dihydrogen hypodiphosphate monohydrate, 2K+·H2P2O62−·H2O, (II), dipotassium dihydrogen hypodiphosphate dihydrate, 2K+·H2P2O62−·2H2O, (III), pentapotassium hydrogen hypodiphosphate dihydrogen hypodiphosphate dihydrate, 5K+·HP2O63−·H2P2O62−·2H2O, (IV), tripotassium hydrogen hypodiphosphate tetrahydrate, 3K+·HP2O63−·4H2O, (V), and tetrapotassium hypodiphosphate tetrahydrate, 4K+·P2O64−·4H2O, (VI). All the hypodiphosphate anions, viz. H3P2O6, H2P2O62−, HP2O63− and P2O64−, adopt a staggered conformation. The P—P bond lengths [2.1722 (7)–2.1892 (10) Å] do not depend on the basicity of the anion. The compounds are organized into different types of one‐, two‐ or three‐dimensional polymeric hydrogen‐bonded networks, or simply exist in the form of isolated or dimeric units. The coordination numbers of the K+ cations range from 6 to 9, and the cationic sublattices are polymeric one‐, two‐ or three‐dimensional networks, or isolated [KO6] or dimeric [K2O12] polyhedra.  相似文献   

18.
Spectrophotometric determination of the formation constants of iron(III)-8-hydroxyquinoline complexes in 0.1 M sodium perchlorate solution at 25° gave the values K1=[FeOx2+]/([Fe3+][Ox-])=4.9·1013, K2=[FeOx2+]/([FeOx2+][Ox-])=4.2·1012 and K3=[FeOx3]/([FeOx2+][Ox-])=3.9·1010. FeOx2OH and FeOx(OH)2 are obtainable as solid phases. FeOx3 (Ksp=3·10-44, intrinsic solubility 1.6·10-7 M) dissolves in basic solutions to form FeOx2(OH)2 -In a solution saturated with FeOx3, ([FeOx2(OH)2-][Ox-])/[OH-]2=7.7·10-5.  相似文献   

19.
The ultraviolet absorption spectrum of CF3CFClO2 and the kinetics of the self reactions of CF3CFCl and CF3CFClO2 radicals and the reactions of CF3CFClO2 with NO and NO2 have been studied in the gas phase at 295 K by pulse radiolysis/transient UV absorption spectroscopy. The UV absorption cross section of CF3CFCl radicals was measured to be (1.78 ± 0.22) × 10?18 cm2 molecule?1 at 220 nm. The UV spectrum of CF3CFClO2 radicals was quantified from 220 nm to 290 nm. The absorption cross section at 250 nm was determined to be (1.67 ± 0.21) × 10?18 cm2 molecule?1. The rate constants for the self reactions of CF3CFCl and CF3CFClO2 radicals were (2.6 ± 0.4) × 10?12 cm3 molecule?1 s?1 and (2.6 ± 0.5) × 10?12 cm3 molecule?1 s?1, respectively. The reactivity of CF3CFClO2 radicals towards NO and NO2 was determined to (1.5 ± 0.6) × 10?11 cm3 molecule?1 s?1 and (5.9 ± 0.5) × 10?12 cm3 molecule?1 s?1, respectively. Finally, the rate constant for the reaction of F atoms with CF3CFClH was determined to (8 ± 2) × 10?13 cm3 molecule?1 s?1. Results are discussed in the context of the atmospheric chemistry of HCFC-124, CF3CFClH. © 1994 John Wiley & Sons, Inc.  相似文献   

20.
The mass spectra of 30 sulfinamide derivatives (RSONHR', R' alkyl or p-XC6H4) are reported. Most of the spectra had peaks attributable to thermal decomposition products. For some compounds these were identified by pyrolysis under similar conditions to be: RSO2NHR', RSO2SR, RSSR and NH2R' (in all kinds of sulfinyl amides); RSNHR' (in the case of arylsulfinyl arylamides); RSO2C6H4NH2, RSOC6H4NH2 and RSC6H4NH2 (in the case of arylsulfinyl arylamides of the type of X = H) The mass spectra of the three thermally stable compounds showed that there are several kinds of common fragment ions. The mass spectra of the thermally labile compounds had two groups of ions; (i) characteristic fragment ions of the intact molecules and (ii) the molecular ions of the thermal decomposition products. It was concluded that the sulfinamides give the following ions after electron impact: [M]+, [M ? R]+, [M ? R + H]+, [M ? SO]+, [RS]+, [NHR']+, [NHR' + H]+, [RSO]+, [RSO + H]+, [R]+, [R + H]+, [R']+ and [M ? OH]+, and that the thermal decomposition products give the following ions: [RSO2SR]+, [RSSR]+, [M ? O]+, [M + O]+ and [RSOC6H4NH2]+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号