首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A peroxidase-mimic DNAzyme is a G-quadruplex (G4) DNA–hemin complex, in which the G4-DNA resembles an apoenzyme, and hemin is the cofactor for hydrogen peroxide (H2O2) catalysis. Twenty-one-mer CatG4 is a well-proven G4-DNA as well as a hemin-binding aptamer for constituting a DNAzyme. This work studied if a multivalent DNAzyme with accelerated catalysis could be constructed using a multimeric CatG4 with hemin. We compared CatG4 monomer, dimer, trimer, and tetramer, which were prepared by custom oligo synthesis, for G4 structure formation. According to circular dichroism (CD) analysis, we found that a CatG4 multimer exhibited more active G4 conformation than the sum effect of equal-number CatG4 monomers. However, the DNAzyme kinetics was not improved monotonically along with the subunit number of a multimeric CatG4. It was the trivalent DNAzyme, trimeric CatG4:hemin, resulting in the rapidest H2O2 catalysis instead of a tetravalent one. We discovered that the trivalent DNAzyme’s highest catalytic rate was correlated to its most stable hemin-binding G4 structure, evidenced by CD melting temperature analysis. Finally, a trivalent DNAzyme-based colorimetric glucose assay with a detection limit as low as 10 μM was demonstrated, and this assay did not need adenosine 5′-tri-phosphate disodium salt hydrate (ATP) as a DNAzyme boosting agent.  相似文献   

2.
In this work, we utilized polyethyleneimine-capped silver nanoclusters (PEI-Ag nanoclusters) to develop a new fluorometric method for the determination of hydrogen peroxide and glucose with high sensitivity. The PEI-Ag nanoclusters have an average size of 2 nm and show a blue emission at 455 nm. The photostable properties of the PEI-Ag nanoclusters were examined. The fluorescence of the PEI-Ag nanoclusters could be particularly quenched by H2O2. The oxidization of glucose by glucose oxidase coupled with the fluorescence quenching of PEI-Ag nanoclusters by H2O2 can be used to detect glucose. Under optimum conditions, the fluorescence intensity quenched linearly in the range of 500 nM–100 μM with high sensitivity. The detection limit for H2O2 was 400 nM. And a linear correlation was established between fluorescence intensity (F0 − F) and concentration of glucose in the range of 1.0 × 10−6 to 1.0 × 10−5 M and 1.0 × 10−5 to 1.0 × 10−3 M with a detection limit of 8.0 × 10−7 M. The method was used for the detection of glucose in human serum samples with satisfactory results. Furthermore, the mechanism of sensitive fluorescence quenching response of Ag nanoclusters to glucose and H2O2 has been discussed.  相似文献   

3.
The relevance of hydrogen peroxide (H2O2) in biological processes has been underestimated for a long time. In recent years, various reports showed that H2O2 not only acts as a cytotoxic compound appearing in the course of oxidative stress, but also functions as an important signaling molecule. Fluorescent probes (or indicators) and nanoparticles that respond selectively to hydrogen peroxide can be applied for intracellular measurements or in vivo imaging, and are superior to electrochemical methods, e.g. in terms of spatial resolution. In contrast to previous reviews that concentrated on the adoption of different probes for certain applications, this survey highlights the basic principles of different probes in terms of their chemical design, structures and functionalities. Thus, the probes are classified according to the underlying reaction mechanism: oxidation, hydrolysis, photoinduced electron transfer, and lanthanide complexation. Other assays are based on fluorescent proteins and nanoparticles, and chemi- or bioluminescent reagents. We confine this review to probes that display a more or less distinct selectivity to hydrogen peroxide. Indicators responding to reactive oxygen species (ROS) in general, or to particular other ROS, are not covered. Finally, we briefly discuss future trends and perspectives of these luminescent reporters in biomedical research and imaging.
Figure
Luminescent probes and nanosensors are promising tools to study the role of H2O2 in cellular signal transduction processes, oxidative stress and wound healing. Advanced cell-penetrating probes paved the way to image intracellular concentrations of H2O2. This review highlights the development in the design of H2O2-sensitive probes over the past decade.  相似文献   

4.
A novel conjugated polymer, poly(1), containing thiourea moieties in main chain is synthesized via Suzuki coupling reaction. The addition of cuprous ion quenches the fluorescence of poly(1), whereas the fluorescence changes slightly upon addition of other metal ions, exhibiting the fluorescent almost turn-off sensing ability towards Cu+. When hydrogen peroxide was added to the solution containing poly(1) and Cu+, Cu+ was oxidized into Cu2+, resulting in the fluorescence recovery. The H2O2 released from glucose oxidation by glucose oxidase (GOD) also recovered the fluorescence of poly(1)/Cu+ solution. The results indicated that the poly(1)/Cu+ solution could serve as a sensing platform for hydrogen peroxide and glucose.  相似文献   

5.
Chen W  Chen J  Feng YB  Hong L  Chen QY  Wu LF  Lin XH  Xia XH 《The Analyst》2012,137(7):1706-1712
Water-soluble cupric oxide nanoparticles are fabricated via a quick-precipitation method and used as peroxidase mimetics for ultrasensitive detection of hydrogen peroxide and glucose. The water-soluble CuO nanoparticles show much higher catalytic activity than that of commercial CuO nanoparticles due to their higher affinity to hydrogen peroxide. In addition, the as-prepared CuO nanoparticles are stable over a wide range of pH and temperature. This excellent stability in the form of aqueous colloidal suspensions makes the application of the water-soluble CuO nanoparticles easier in aqueous systems. A colorimetric assay for hydrogen peroxide and glucose has been established based on the catalytic oxidation of phenol coupled with 4-amino-atipyrine by the action of hydrogen peroxide. This analytical platform not only confirms the intrinsic peroxidase-like activity of the water-soluble cupric oxide nanoparticles, but also shows its great potential applications in environmental chemistry, biotechnology and medicine.  相似文献   

6.
A water-dispersible multi-walled carbon nanotubes (MWCNTs) derivative, MWCNTs-1-one-dihydroxypyridine (MWCNTs-Py) was synthesis via Friedel–Crafts chemical acylation. Raman spectra demonstrated the conjugated level of MWCNTs-Py was retained after this chemical modification. MWCNTs-Py showed dual hydrogen peroxide (H2O2) and glucose detections without mutual interference by adjusting pH value. It was sensitive to H2O2 in acidic solution and displayed the high performances of sensitivity, linear range, response time and stability; meanwhile it did not respond to H2O2 in neutral solution. In addition, this positively charged MWCNTs-Py could adsorb glucose oxidase (GOD) by electrostatic attraction. MWCNTs-Py-GOD/GC electrode showed the direct electron transfer (DET) of GOD with a pair of well-defined redox peaks, attesting the bioactivity of GOD was retained due to the non-destroyed immobilization. The high surface coverage of active GOD (3.5 × 10−9 mol cm−2) resulted in exhibiting a good electrocatalytic activity toward glucose. This glucose sensor showed high sensitivity (68.1 μA mM−1 cm−2) in a linear range from 3 μM to 7 mM in neutral buffer solution. The proposed sensor could distinguish H2O2 and glucose, thus owning high selectivity and reliability.  相似文献   

7.
GO-PtNi nanocomposites with intrinsic peroxidase-like activity were obtained through one-pot synthesis. The hybrid nanomaterial was characterized by transmission electron microscopy (TEM) and X-ray powder diffraction (XRD). The peroxidase-like activity of GO-PtNi nanocomposites was found to be dependent on pH, temperature, the concentration of enzyme and substrates. The optimal conditions for the catalytic activity of GO-PtNi nanocomposites were determined. Based on these findings, a simple and sensitive colorimetric method for the detection of H2O2 by using GO-PtNi nanocomposites and 3,3′,5,5′-tetramethylbenzidine (TMB) was developed. The linear range was from 0.08 to 1.5 mM with a detection limit of 5 μM.  相似文献   

8.
The electrocatalytic activity of a CuO flower-like nanostructured electrode was investigated in terms of its application to enzyme-less amperometric H2O2 sensors. The CuO nanoflowers film was directly formed by chemical oxidation of copper foil under hydrothermal condition and then used as active electrode material of non-enzymatic electrochemical sensors for H2O2 detection under alkaline conditions. The sensitivity of the sensor with CuO nanoflowers electrode was 88.4 μA/mM cm2 with a linear response in the range from 4.25 × 10−5 to 4 × 10−2 M and a detection limit of 0.167 μM (S/N = 3). Excellent electrocatalytic activity, large surface-to-volume ratio and efficient electron transport property of CuO nanoflowers electrode have enabled stable and highly sensitive performance for the non-enzymatic H2O2 sensor.  相似文献   

9.
Hu JY  Lin YP  Liao YC 《Analytical sciences》2012,28(2):135-140
An inkjet printing method is described to fabricate hydrogen peroxide (H(2)O(2)) sensors. Insoluble Prussian blue (PB) nanoparticles were dispersed in aqueous solvent, and were printed on screen printed carbon electrodes with a piezoelectric inkjet printer for H(2)O(2) detection. The electrochemical behavior of the printed sensors was studied by using cyclic voltammetry and chronoamperometry. The printed sensors showed great electrocatalytic activity toward H(2)O(2) and can be used for amperometric detection of H(2)O(2). The calibration curves for H(2)O(2) determination showed a linear range from 0.02 to 0.7 mM with a sensitivity of 164.82 μA M(-1) cm(-2) for the printed PB film. The results showed the feasibility of applying inkjet printing technology on surface modification; the results also provide an alternative way for manufacturing electrochemical sensors.  相似文献   

10.
Using porous cuprous oxide (Cu2O) microcubes, a simple non-enzymatic amperometric sensor for the detection of H2O2 and glucose has been fabricated. Cyclic voltammetry (CV) revealed that porous Cu2O microcubes exhibited a direct electrocatalytic activity for the reduction of H2O2 in phosphate buffer solution and the oxidation of glucose in an alkaline medium. The non-enzymatic amperometric sensor used in the detection of H2O2 with detection limit of 1.5 × 10?6 M over wide linear detection ranges up to 1.5 mM and with a high sensitivity of 50.6 μA/mM. This non-enzymatic voltammetric sensor was further utilized in detection of glucose with a detection limit of 8.0 × 10?7 M, a linear detection range up to 500 μM and with a sensitivity of ?70.8 μA/mM.  相似文献   

11.
The rapid and reliable measurement of hydrogen peroxide (H2O2) is imperative for many areas of technology, including pharmaceutical, clinical, food industry and environmental applications. In this work, a novel multifunctional complex, [Ru(bpy)2(luminol-bpy)](PF6)2 (bpy: 2,20'-bipyridine), was designed and synthesized by incorporating a Ru(II) complex with a luminal group. In the presence of horseradish peroxidase (HRP), reaction of [Ru(bpy)2(luminol-bpy)]2+ with H2O2 can be monitored by three sensing channels including photoluminescence (PL), chemiluminiscence (CL) and eletrochemiluminiscence (ECL). The quantitative assays for H2O2 in aqueous solutions using [Ru(bpy)2(Luminalbpy)]( PF6)2 as a probe were established with PL, ECL and CL signal output modes, respectively.  相似文献   

12.
The catalase-conjugated liposome encapsulating glucose oxidase (CLG) was prepared for developing a novel liposomal system for glucose oxidation with controllable enzyme activities. The catalase molecules were conjugated to the surface of liposome with 100 nm in mean diameter through coupling with the membrane-incorporated 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(glutaryl) (NGPE) at its mole fraction fG of 0.05 or 0.15. The average number of enzyme molecules per CLG with fG of 0.15 was 8.7 for glucose oxidase and 6.5 for catalase. The CLG-catalyzed oxidation of glucose was performed at 40 °C for prolonged period up to 99 h. The CLG with fG of 0.15 gave larger oxidation rate than that with fG of 0.05. In the fed-batch oxidation of glucose catalyzed by the former CLG, the stable oxidation rate was observed for 75 h with negligible accumulation of H2O2 produced because of the durable catalytic actions of the liposomal enzymes. The oxidation rate of the CLG reaction increased to 1.1 mM-glucose/(h mM-lipid) at the acidic pH in the internal phase of liposome and the neutral pH in the external one corresponding to the optimal pH conditions for the activities of glucose oxidase and catalase, respectively. The oxidation rate catalyzed by the CLG could be controlled by adding sublytic concentrations of cholate to increase permeability of the liposome membrane to glucose. The catalase-conjugated liposomal system is potentially utilized for controlling the rate of reactions catalyzed by a variety of oxidases.  相似文献   

13.
Yellow zinc ferricyanide is reduced by heating to white zinc ferrocyanide by hydrogen peroxide in the presence of zinc sulphate and sodium, acetate. Copper ferricyanide, however, is reduced to brown copper ferrocyanide at room temperature, by means of hydrogen peroxide in the presence of copper sulphate and sodium acetate. The latter reaction can be applied for the detection of extremely small quantities of hydrogen peroxide both in a test tube (2.5 γ in 1 ml) and as a spot test (0.5 to 1 γ).  相似文献   

14.
Here, we present a fast and simple hydrogen peroxide assay that is based on time-resolved fluorescence. The emission intensity of a complex consisting of terbium ions (Tb3+) and phthalic acid (PA) in HEPES buffer is quenched in the presence of H2O2 and this quenching is concentration-dependent. The novel PATb assay detects hydrogen peroxide at a pH range from 7.5 to 8.5 and with a detection limit of 150 nmol L−1 at pH 8.5. The total assay time is less than 1 min. The linear range of the assay can be adapted by a pH adjustment of the aqueous buffer and covers a concentration range from 310 nmol L−1 to 2.56 mmol L−1 in total which encompasses four orders of magnitude. The assay is compatible with high concentrations of all 47 tested inorganic and organic compounds. The PATb assay was applied to quantify H2O2 in polluted river water samples. In conclusion, this fast and easy-to-use assay detects H2O2 with high sensitivity and precision.  相似文献   

15.
Chemiluminescence from the reaction of bis-(2,4,5-trichloro-6-carbopentoxyphenyl) oxalate with hydrogen peroxide in the presence of triethylamine in t-butanol—water has been investigated as a means of determining hydrogen peroxide. Increasing the percentage of t-butanol increases the signal-to-background ratio but reduces the absolute magnitude of the emission signal. The sensitivity is greatest in aqueous solutions at pH 8; the response is linear from the detection limit (2 × 10-8 M) to 10-3 M. The system is also shown to respond linearly to uric acid concentrations in the range 1–4 × 10-6 M, when uricase is used to catalyze uric acid oxidation to yield hydrogen peroxide.  相似文献   

16.
An enzymatic assay for glucose based on the use of the fluorescent probe for hydrogen peroxide, europium(III) tetracycline (EuTc), is described. The weakly fluorescent EuTc and enzymatically generated H2O2 form a strongly fluorescent complex (EuTc–H2O2) whose fluorescence decay profile is significantly different. Since the decay time of EuTc–H2O2 is in the microseconds time domain, fluorescence can be detected in the time-resolved mode, thus enabling substantial reduction of background fluorescence. The scheme represents the first H2O2-based time-resolved fluorescence assay for glucose not requiring the presence of a peroxidase. The time-resolved assay (with a delay time of 60 s and using endpoint detection) enables glucose to be determined at levels as low as 2.2 mol L–1, with a dynamic range of 2.2–100 mol L–1. The method also was adapted to a kinetic assay in order to cover higher glucose levels (mmol L–1 range). The latter was validated by analyzing spiked serum samples and gave a good linear relationship for glucose levels from 2.5 to 55.5 mmol L–1. Noteworthy features of the assay include easy accessibility of the probe, large Stokes shift, a line-like fluorescence peaking at 616 nm, stability towards oxygen, a working pH of approximately 7, and its suitability for both kinetic and endpoint determination.  相似文献   

17.
Li Z  Cui X  Zheng J  Wang Q  Lin Y 《Analytica chimica acta》2007,597(2):238-244
Carbon nanofibers (CNFs) with three microstructures, including platelet-carbon nanofibers (PCNFs), fish-bone-carbon nanofibers (FCNFs), and tube-carbon nanofibers (TCNFs), were synthesized, characterized, and evaluated for electrochemical sensing of hydrogen peroxide. The CNFs studied here show microstructures with various stacked morphologies. The sizes and graphite-layer ordering of the CNFs can be well controlled. Glassy carbon (GC) electrodes modified by CNFs were fabricated and compared for amperometric detection of hydrogen peroxide. Sensors based on PCNFs/GC, FCNFs/GC, and TCNFs/GC were used in the amperometric detection of H2O2 in solution by applying a potential of +0.65 V versus Ag/AgCl at the working electrode. The highest electrocatalytic performance was observed for PCNFs/GC among the three types of hydrogen peroxide sensors. The amperometric response of PCNFs/GC retained over 90% of the initial current of the first day up to 21 days. The linear range is from 1.80 × 10−4 to 2.62 × 10−3 M with a correlation coefficient larger than 0.999 and with a detection limit of 4.0 μM H2O2 (S/N = 3). The relative standard deviation for detecting 1.80 × 10−4 M H2O2 (N = 8) is 2.1% with an average response of 0.64 μA. The significant diversity of electrocatalytic activity of the CNFs toward the oxidation of hydrogen peroxide may result from the difference of morphologies, textural properties, and crystalline structures.  相似文献   

18.
Enzyme-free (also called non-enzymatic or direct) electrochemical sensors have been widely used for the determination of hydrogen peroxide, glucose, and uric acid. This review covers the recent progress made in this field. We also discuss the respective sensor materials which have strong effect on the electro-catalytic properties of the electrodes and govern the performance of these sensors. In addition, perspectives and current challenges of enzyme-free electrochemical sensors are outlined. Contains 142 references.
Figure
In the recent past, publications related to enzyme-free electrochemical sensors became plentiful. In this paper, we give an overview on the recent developments of enzyme-free sensors including hydrogen peroxide, glucose and uric acid sensors.  相似文献   

19.
Nanoporous (NP) PdFe alloy is easily fabricated through one step mild dealloying of PdFeAl ternary source alloy in NaOH solution. Electron microscopy characterization demonstrates that selectively dissolving Al from PdFeAl alloy generates three-dimensional bicontinuous nanospongy architecture with the typical ligament size around 5 nm. Electrochemical measurements show that the NP-PdFe alloy exhibits the superior electrocatalytic activity and durability towards hydrogen peroxide (H2O2) detection compared with NP-Pd and commercial Pd/C catalysts. In addition, NP-PdFe performs high sensing performance towards H2O2 in a wide linear range from 0.5 to 6 mM with a low detection limit of 2.1 μM. This nanoporous structure also can sensitively detect glucose over a wide concentration range (1–32 mM) with a low detection limit of 1.6 μM and high resistance against chloride ions. Along with these attractive features, the as-made NP-PdFe alloy also has a good anti-interference towards ascorbic acid, uric acid, and dopamine.  相似文献   

20.
A modified carbon electrode for the amperometric determination of hydrogen peroxide is described. By deposition of a 15-nm thick layer of a 40:60 mixture of palladium and gold on the surface of the electrode the overvoltages for both the oxidation and the reduction can be decreased by at least 800 mV. When applied as an electrochemical sensor in a flow-injection system, linear calibration graphs were obtained between 10?7 and 5 × 10?3 M hydrogen peroxide. The modified electrodes were stable for months.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号