首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluorescein sodium, which does not exhibit electrical bistability in thin films, can be switched to a high conducting state by the introduction of carbon nanotubes as channels for carrier transport. Thin films based on fluorescein sodium/carbon nanotubes display memory switching phenomenon among a low conducting state and several high conducting states. Read-only and random-access memory applications between the states resulted in multilevel memory in these systems. Results in thin films and in a monolayer (deposited via layer-by-layer assembly) show that instead of different molecular conformers, multilevel conducting states arise from the different density of high conducting fluorescein molecules.  相似文献   

2.
导电聚合物   总被引:23,自引:0,他引:23  
李永舫 《化学进展》2002,14(3):207-211
导电聚合物是20世纪70年代发展起来的一个研究领域,因其诱人的应用前景受到广泛重视,本文介绍了导电聚合物的发展和发展历史,综述了导电聚合物的结构和掺杂特征,制造方法,电导和电化学特性及其本征态共轭聚合物的光电特性,对导电聚合物当前的研究热点和应用前景进行了讨论。  相似文献   

3.
结合作者在聚合物发光器相关的若干问题的研究结果,评述新型可溶性导电高聚物、透明导电离聚物薄膜,多孔硅与导电离聚物异质结的研究进展。  相似文献   

4.
Several attempts to produce conducting polymer based all-solid-state reference electrodes are presented. Open circuit potential of conducting polymers is redox sensitive and Donan equilibrium dependent. Therefore, more sophisticated constructions are necessary. Most promising were bilayers composed of conducting polymers with different ion-exchanger properties.  相似文献   

5.
6.
To use conducting polymers as substitutes for metals and conventional semiconductors in device fabrication, a cost-effective process for the reproducible deposition of the conducting polymers is needed. In this letter, we report a simple solution casting method for the fabrication of micro- to nanopatterns using the conducting block copolymer, poly(thiophene-block-ethyleneoxide), which shows rectifying characteristics dependent on the pattern width.  相似文献   

7.
Recently, emerging functions utilizing phenolic molecules, such as surface functionalizing agents or bioadhesives, have attracted significant interest. However, the most important role of phenolic compounds is to produce carbonized plant matter called “coal”, which is widely used as an energy source in nearly all countries. Coalification is a long‐term, high‐temperature process in which phenols are converted into conducting carbonized matter. This study focuses on mimicking coalification processes to create conducting sealants from non‐conducting phenolic compounds by heat treatment. We demonstrate that a phenolic adhesive, tri‐hydroxybenzene (known as pyrogallol), and polyethylenimine mixture initially acts as an adhesive sealant that can be converted to a conducting carbon sealing material. The conductivity of the phenolic sealant is about 850 Ω?1 cm?1, which is an approximately two‐fold enhancement of the performance of carbon matter. Applications of the biomimetic adhesives described herein include conducting defect sealants in carbon nanomaterials and conducting binders for metal/carbon or ceramic/carbon composites.  相似文献   

8.
In this study, we use a conducting polymer precursor to build layer-by-layer (LbL) films. Thermal conversion of the polymer precursor to conducting polymer makes the LbL films intractable, so the LbL films can be used as protective layers in salt solution. The conducting polymer LbL film shows stabilizing effect on top of another LbL thin film that contains nanoparticles. The LbL film prepared in this study shows a 35-fold increase of conductivity than the literature values obtained from non-conducting polymer films. The stabilization of the films is the result of the polymerization of the conducting polymer, so other anionic polymers or nanoparticles may be used to afford additional functionalities.  相似文献   

9.
Polymer-based electrochemical devices such as supercapacitor, battery, and fuel cell have been developed and advanced for energy related application. In this regard, conducting polymers own several tunable characteristics for energy conversion and energy storage relevance. Consequently, efficient, reliable, low cost, conducting, stable, and environment friendly energy systems have been developed using conducting polymers. To enhance the efficiency and commercialization of energy systems, design, structure, composition, and fabrication technique used for conducting polymers and related composite have been focused. Challenges and future trend associated with current state of the art conducting polymer materials in supercapacitor, battery, and fuel cell are highlighted.  相似文献   

10.
Several attempts to produce conducting polymer based all-solid-state reference electrodes are presented. Open circuit potential of conducting polymers is redox sensitive and Donan equilibrium dependent. Therefore, more sophisticated constructions are necessary. Most promising were bilayers composed of conducting polymers with different ion-exchanger properties. Received: 27 January 2000 / Revised: 2 March 2000 / Accepted: 8 March 2000  相似文献   

11.
具有纳米结构的导电聚合物因其诱人的应用前景越来越引起人们的重视。本文综述了聚苯胺、聚吡咯以及聚噻吩等导电聚合物的零维、一维、二维以及三维纳米结构的合成方法,并介绍了聚合物纳米结构的表征以及研究现状和应用前景。参考文献60篇。  相似文献   

12.
本文提出一种新的电化学界面电位传感器构建方法.  相似文献   

13.
导电聚合物微米/纳米管的研究进展   总被引:3,自引:0,他引:3  
介绍了模板及非模板法制备导电聚合物微米 /纳米管的基本合成方法 :详细地分析了影响导电聚合物微米 /纳米管形成的因素 ;对导电聚合物微米 /纳米管的特性及影响因素进行了讨论。  相似文献   

14.
用溶胶-凝胶方法制备了钠快离子导体Na_5YSi_4O_(12)(简称NYS)的纯相,应用交流阻抗谱技术测定了样品的离子电导和离子导电活化能,用扫描电子显微镜对用不同方法制备的样品烧结体表面进行了观察。与传统固相反应法制备的NYS离子导体相比,用溶胶-凝胶方法制备的NYS烧结体具有较好的界面效应。  相似文献   

15.
由于表面效应、小尺寸效应和量子效应,使纳米结构的导电聚合物材料与传统聚合物材料相比,显示出更优越的性能。基于神经组织对电场和电刺激敏感性,使得导电聚合物纳米材料在生物医学应用方面很有前景。本文综述了纳米结构的导电聚合物的合成方法,及其在生物医学领域的应用。合成方法主要关注于硬模板法、软模板法和无模板自组装法,以及这些方法中导电聚合物纳米结构的形成机理。总结了具有纳米结构的导电聚合物,如纳米颗粒、纳米纤维和纳米管等作为神经电极涂层材料和生物传感器等方面的应用。  相似文献   

16.
Recently, emerging functions utilizing phenolic molecules, such as surface functionalizing agents or bioadhesives, have attracted significant interest. However, the most important role of phenolic compounds is to produce carbonized plant matter called “coal”, which is widely used as an energy source in nearly all countries. Coalification is a long-term, high-temperature process in which phenols are converted into conducting carbonized matter. This study focuses on mimicking coalification processes to create conducting sealants from non-conducting phenolic compounds by heat treatment. We demonstrate that a phenolic adhesive, tri-hydroxybenzene (known as pyrogallol), and polyethylenimine mixture initially acts as an adhesive sealant that can be converted to a conducting carbon sealing material. The conductivity of the phenolic sealant is about 850 Ω−1 cm−1, which is an approximately two-fold enhancement of the performance of carbon matter. Applications of the biomimetic adhesives described herein include conducting defect sealants in carbon nanomaterials and conducting binders for metal/carbon or ceramic/carbon composites.  相似文献   

17.
Conjugated polymers gain growing importance as conductive materials in industrial applications in various fields of electronic devices. Cellulose with its extraordinary supramolecular structure and material properties can help to awake the possibilities for conducting polymers in interplay of the two materials. The ability of additional derivatization, the stiff and oriented molecular structure and the inherent strength, stability and film-forming properties give cellulose a complementary role to the brittle conjugated polymers, cellulose imparting the features of a stable and robust carrier component. To go forward this way, making a composite out of cellulose and conducting polymers is a prerequisite. Different strategies to form composite materials of non-derivatized cellulose and conductive organic polymers were tested. Significant differences between various mixing strategies as well as between the conducting polymers polyaniline (PAni), polypyrrole (PPy), and polythiophen (PTh) were observed. In situ synthesis of the conducting polymers in cellulose solutions and microcellulose dispersions as well as blending of pre-synthesized conducting polymers in these cellulose systems were tested. Unexpectedly, not homogenous mixtures showed best results in respect to film formation and conductivity, but composites formed by heterogeneous mixtures of the conducting polymers within a cellulose gel. Best results were obtained with finely dispersed PAni. The results support development studies towards circuitry and photo-current systems based on cellulose carriers.  相似文献   

18.
We introduce a new approach to pattern conducting polymers by combining oppositely charged conducting polymers on charged self-assembled monolayers (SAMs). The polymer resist pattern behaves as a physical barrier, preventing the formation of SAMs. The patterning processes were carried out using commercially available conducting polymers: a negatively charged PEDOT/PSS (poly(3,4-ethylene-dioxythiophene)/poly(4-stylenesulphonic acid)) and a positively charged polypyrrole (PPy). A bifunctional NH 2 (positively charged) or COOH (negatively charged) terminated alkane thiol or silane was directly self-assembled on a substrate (Au or SiO 2). A suspension of the conducting polymers (PEDOT/PSS and PPy) was then spin-coated on the top surface of the SAMs and allowed to adsorb on the oppositely charged SAMs via an electrostatic driving force. After lift-off of the polymer resist, i.e., poly(methyl methacrylate, PMMA), using acetone, the conducting polymers remained on the charged SAMs surface. Optical microscopy, Auger electron spectroscopy, and atomic force microscopy reveal that the prepared nanolines have low line edge roughness and high line width resolution. Thus, conducting polymer patterns with high resolution could be produced by simply employing charged bifunctional SAMs. It is anticipated that this versatile new method can be applied to device fabrication processes of various nano- and microelectronics.  相似文献   

19.
《Analytical letters》2012,45(6):1126-1171
The development of nanostructured conducting polymers has opened up novel fundamental and applied frontiers. The present article reviews recent works dealing with synthesis, characterization of nanostructured conducting polymers, and their applications related to biosensors. Various synthesis strategies, mechanism and process parameters, along with their characterization techniques are discussed. Some potential areas for biosensor related applications of nanostructured conducting polymers are highlighted, including catalytic biosensors and bioaffinity biosensors.  相似文献   

20.
聚乙烯炭黑复合材料导电逾渗的蒙脱卡罗法研究   总被引:1,自引:0,他引:1  
周啸  潘高峰 《高分子学报》2000,13(4):510-513
众所周知,在聚合物中加入导电粒子后可以制成导电复合材料,但是加入的导电组分的体积分数必须超过某个临界值.在这方面研究最多的体系就是聚乙烯-炭黑复合材料[1,2].当炭黑的体积分数低于该临界值时,复合材料的电导率极低.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号