首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The elastic moduli of ultra thin tungsten (W) films on polymers were assessed with wrinkling analysis. Thin W films with a range of thickness between 17 and 100 nm were deposited on compliant polymers and Si strips using DC magnetron sputtering method, causing the tensile stress in a few GPa scale with respect to the thickness of W films. By applying lateral compression on polymer, wrinkle patterns were developed in the W thin film with well-defined amplitude and wavelength. Using a simple equation on wrinkle analysis, the range of elastic moduli was estimated with increasing the thickness. It was found that the elastic modulus and the tensile stress decreased with increasing the film thickness.  相似文献   

2.
A higher fracture probability appearing in indium antimonide (InSb) infrared focal plane arrays (IRFPAs) subjected to the thermal shock test, restricts its final yield. In light of the proposed equivalent method, where a 32 × 32 array is employed to replace the real 128 × 128 array, a three-dimensional modeling of InSb IRFPAs is developed to explore its deformation rules. To research the damage degree to the mechanical properties of InSb chip from the back surface thinning process, the elastic modulus of InSb chip along the normal direction is lessened. Simulation results show when the out-of-plane elastic modulus of InSb chip is set with 30% of its Young’s modulus, the simulated Z-components of strain distribution agrees well with the top surface deformation features in 128 × 128 InSb IRFPAs fracture photographs, especially with the crack origination sites, the crack distribution and the global square checkerboard buckling pattern. Thus the Z-components of strain are selected to explore the deformation rules in the layered structure of InSb IRFPAs. Analyzing results show the top surface deformation of InSb IRFPAs originates from the thermal mismatch between the silicon readout integrated circuits (ROIC) and the intermediate layer above, made up of the alternating indium bump array and the reticular underfill. After passing through both the intermediate layer and the InSb chip, the deformation amplitude is reduced firstly from 2.23 μm to 0.24 μm, finally to 0.09 μm. Finally, von Mises stress criterion is employed to explain the causes that cracks always appear in the InSb chip.  相似文献   

3.
The laser properties of 1.3 μm spectral region in Nd:YAG crystal and their simultaneous dual wavelength threshold condition are investigated. Three types of high power 1.3-μm Nd:YAG quasi continuous wave (QCW) lasers, which operate at 1.319 μm or 1.338 μm single wavelength, 1.319 μm and 1.338 μm simultaneous dual wavelength, are achieved with a maximum average output power of 138 W, 132 W and 120 W, respectively.  相似文献   

4.
The main objective of this paper is to report the room temperature hardness and elastic modulus of the RuSr2GdCu2O8 superconductor phase by instrumented indentation. Polycrystalline samples were produced by a solid state reaction technique. The samples were also characterized by scanning electron microscopy, X-ray diffraction and electrical resistivity measurements. The influence of porosity on the mechanical properties was avoided by considering only those indentations inside the grains. The hardness and elastic modulus were 8.6 GPa and 145 GPa, respectively. These values are comparable with those of Y-123. The indentation fracture toughness evaluated after conventional Vickers indentation was 1.9 MPa m1/2.  相似文献   

5.
The magnetic properties and microstructure of electrodeposited Ni–W thin films (0–11.7 at% W in composition) were studied. The film structures were divided into three regions: an FCC nanocrystalline phase (0–2 at% W), a transition region from FCC nanocrystalline to amorphous phase (2–7 at% W), and an amorphous phase (>7 at% W). In the transition region, (4–5 at% W) films with perpendicular magnetic anisotropy (PMA) were found. The saturation magnetization, magnetic anisotropy field, perpendicular magnetic anisotropy and perpendicular coercivity for a typical Ni–W film (4.5 at% W) were 420 kA/m, 451 kA/m, 230 kJ/m and 113 kA/m, respectively. The microstructure of Ni–W films with PMA is composed of isolated columnar crystalline grains (27–36 nm) with the FCC phase surrounded by the Ni–W amorphous phase. The appearance of the interface between the magnetic core of Ni crystalline grains and the Ni–W non-magnetic boundary layer seems to be the driving mechanism for the appearance of PMA. The origin of PMA in Ni–W films is mainly attributed to the magnetoelastic anisotropy associated with in-plane internal stress and positive magnetostriction. The secondary source of PMA is believed to be the magnetocrystalline anisotropy of 〈1 1 1〉 columnar grains and its shape magnetic anisotropy. It is concluded that Ni–W electrodeposited films (4–5 at% W) may be applicable for perpendicular magnetic recording media.  相似文献   

6.
《Current Applied Physics》2010,10(3):842-847
By adjusting the power of WC target, novel TiN–WC films with different proportions of WC phase were prepared on TiN interlayer using the hybrid technique of arc ion plating (AIP) and magnetron sputtering (MS). The TiN–WC films were characterized by XRD, XPS, AFM, FESEM, Nano-indenter, and UMT-2MT tribometer. The TiN–WC film that is composed with TiN and WC phases was grown by 15–25 nm nanodotes along the primarily growth direction TiN (1 1 1) in AIP interlayer. Among the three TiN–WC films deposited at various powers of WC target, the TiN–WC2 (500 W) has the highest deposition rate of 1.4 nm/min. The content of WC phase increases as WC target power increases in the TiN–WC films. However, the deposition rate of TiN–WC film gains at first and then declines when WC target power exceeds 500 W because of the addictive poisoning of Ti target. In the present case, the incorporation of WC into TiN is found to result in a slight decrease in friction coefficient. Furthermore, the wear mechanism of multilayer AIP TiN films and MS TiN–WC/AIP TiN films was transformed from “severe wear” to “mild wear”. As a result, the 48TiN52WC film of 35 GPa hardness exhibits better tribological performance.  相似文献   

7.
Indium tin oxide (ITO) films as the low emissivity coatings of Ni-based alloy at high temperature were studies. ITO films were deposited on the polished surface of alloy K424 by direct current magnetron sputtering. These ITO-coated samples were heat-treated in air at 600–900 °C for 150 h to explore the effect of high temperature environment on the emissivity. The samples were analyzed by X-ray diffraction (XRD), SEM and EDS. The results show that the surface of sample is integrity after heat processing at 700 °C and below it. A small amount of fine crack is observed on the surface of sample heated at 800 °C and Ti oxide appears. There are lots of fine cracks on the sample annealed at 900 °C and a large number of various oxides are detected. The average infrared emissivities at 3–5 μm and 8–14 μm wavebands were tested by an infrared emissivity measurement instrument. The results show the emissivity of the sample after annealed at 600 and 700 °C is still kept at a low value as the sample before annealed. The ITO film can be used as a low emissivity coating of super alloy K424 up to 700 °C.  相似文献   

8.
The elastic properties, electronic structure and thermodynamic behavior of the TaB have been investigated for the first time in this work. Using first-principles plane-wave ultrasoft-pseudopotential density functional theory (DFT), the ground state properties and equation of state of TaB have been obtained. The average zero-pressure bulk modulus of TaB is 302 GPa. By analyzing the elastically anisotropic behavior and the relative structure parameters of TaB, we found that the crystal cell along the b-axis was more compressible than along the a and c axes. The calculated ratio of bulk modulus and shear modulus (B/G) for TaB is 1.58, demonstrating that TaB is rather brittle. From the elastic stiffness constants, we found that TaB in the Cmcm phase is mechanically stable. The calculated hardness of TaB is 28.6 GPa which is close to the previous data. Moreover, using the Gibbs 2 model, the thermodynamic properties such as the thermal expansion and Debye temperature of TaB have been obtained firstly. At the ambient temperature, the Debye temperatures of TaB are 792 K and 845 K from GGA calculation and LDA calculation, respectively.  相似文献   

9.
In this paper, a mid-/long-wave dual-band detector which combined PπMN structure and unipolar barrier was developed based on type-II InAs/GaSb superlattice. A relevant 320 × 256 focal plane array (FPA) was fabricated. Unipolar barrier and PπMN structure in our dual band detector structure were used to suppress cross-talk and dark current, respectively. The two channels, with respective 50% cut-off wavelength at 4.5 μm and 10 μm were obtained. The peak quantum efficiency (QE) of mid wavelength infrared (MWIR) band and long wavelength infrared (LWIR) band are 53% at 3.2 μm under no bias voltage and 40% at 6.4 μm under bias voltage of −170 mV, respectively. And the dark current density under 0 and −170 mV of applied bias are 1.076 × 10−5 A/cm2 and 2.16 × 10−4 A/cm2. The specific detectivity of MWIR band and LWIR band are 2.15 × 1012 cm·Hz1/2/W at 3.2 μm and 2.31 × 1010 cm·Hz1/2/W at 6.4 μm, respectively, at 77 K. The specific detectivity of LWIR band maintains above 1010 cm·Hz1/2/W at the wavelength range from 4.3 μm to 10.2 μm under −170 mV. The cross-talk, selectivity parameter at 3.0 μm, about 0.14 was achieved under bias of −170 mV. Finally, the thermal images were taken by the fabricated FPA at 77 K.  相似文献   

10.
Short-/Mid-Wavelength dual-color infrared focal plane arrays based on Type-II InAs/GaSb superlattice are demonstrated on GaSb substrate. The material is grown with 50% cut-off wavelength of 2.9 μm and 5.1 μm for the blue channel and red channel, separately at 77 K. 320 × 256 focal plane arrays fabricated in this wafer is characterized. The peak quantum efficiency without antireflective coating is 37% at 1.7 μm under no bias voltage and 28% at 3.2 μm under bias voltage of 130 mV. The peak specific detectivity are 1.51 × 1012 cm·Hz1/2/W at 2.5 μm and 6.11x1011 cm·Hz1/2/W at 3.2 μm. At 77 K, the noise equivalent difference temperature presents average values of 107 mK and 487 mK for the blue channel and red channel separately.  相似文献   

11.
This study used ultraviolet laser to perform the microcrystalline silicon thin film solar cell isolation scribing process, and applied the Taguchi method and an L18 orthogonal array to plan the experiment. The isolation scribing materials included ZnO:Al, AZO transparent conductive film with a thickness of 200 nm, microcrystalline silicon thin film at 38% crystallinity and of thickness of 500 nm, and the aluminum back contact layer with a thickness of 300 nm. The main objective was to ensure the success of isolation scribing. After laser scribing isolation, using the minimum scribing line width, the flattest trough bottom, and the minimum processing edge surface bumps as the quality characteristics, this study performed main effect analysis and applied the ANOVA (analysis of variance) theory of the Taguchi method to identify the single quality optimal parameter. It then employed the hierarchical structure of the AHP (analytic hierarchy process) theory to establish the positive contrast matrix. After consistency verification, global weight calculation, and priority sequencing, the optimal multi-attribute parameters were obtained. Finally, the experimental results were verified by a Taguchi confirmation experiment and confidence interval calculation. The minimum scribing line width of AZO (200 nm) was 45.6 μm, the minimum scribing line width of the microcrystalline silicon (at 38% crystallinity) was 50.63 μm and the minimum line width of the aluminum thin film (300 nm) was 30.96 μm. The confirmation experiment results were within the 95% confidence interval, verifying that using ultraviolet laser in the isolation scribing process for microcrystalline silicon thin film solar cell has high reproducibility.  相似文献   

12.
Present paper reports the synthesis of SnO2–TiO2 nanocomposite, its characterization and performance as opto-electronic humidity sensor. Nanocrystalline SnO2–TiO2 film was deposited on the base of an equilateral prism using a photo resist spinner and the as prepared film was annealed at 200 °C for 2 h. The crystal structure of the prepared film was investigated using X-ray diffraction (XRD). Minimum crystallite size of the material was found 7 nm. Surface morphology of the film was investigated by Scanning electron microscope (SEM LEO-0430, Cambridge). SEM image shows that the film is porous. Differential scanning calorimetry (DSC) of as synthesized material shows two exothermic peaks at about 40 and 110 °C, respectively which are due to the evaporation of chemical impurities and water. Further the prepared film was investigated through the exposure of humidity and relative humidity (%RH) was measured directly in terms of modulation in the intensity of light recorded on a digital power meter. The maximum sensitivity of sensor was found 4.14 μW/%RH, which is quite significant for sensor fabrication purposes.  相似文献   

13.
Zr1?xWx nanocrystalline films of Zr-W solid solutions and ZrW2 Laves phase were synthesized by magnetron co-sputtering. Large values of the H/E ratio up to 0.09 are observed for grain sizes in the nanometer range along with a hardness above 10 GPa and Young's modulus below 230 GPa. H/E values are correlated with the developed surface of grain boundaries suggesting an elastic deformation mostly handled by the grain boundaries. This is associated to friction coefficients comparable to those of metallic glass surfaces. In contrast to fragile bulk Laves phases, no cracks were detected at the film surface after indentation and scratch test of nanocrystalline ZrW2. The friction coefficient of such films against diamond tip was in the range 0.08–0.15, similarly to metallic glass surfaces.  相似文献   

14.
Bacterial cellulose (BC) film formation could be a critical issue in nanotechnology applications such as biomedical or smart materials products. In this research, purified pretreated BC was subjected to high intensity ultrasound (HIUS) and was investigated for the development of BC films. The morphological, structural and thermal properties of the obtained films were studied by using FE-SEM, AFM, FT-IR, XRD, TGA and DSC characterizations. Results showed that the most favorable purification treatment was the 0.01 M NaOH at 70 °C for 2 h under continuous stirring. The most suitable ultrasound operating conditions were found to be, 1 cm distance of ultrasonic probe from the bottom of the beaker, submerged in cold water bath cooling around 12 ± 2 °C. The power (25 W/cm2), time (30 min), BC concentration (0.1% w/w), amplitude (20 μm) and frequency (20 kHz) were maintained constant.  相似文献   

15.
《Radiation measurements》2009,44(2):173-175
This work presents a novel method for determining bulk etch rate of CR-39 during prolonged etching by masking the surface with a ferrofluidic film held in position by magnetostatic forces. The CR-39 etching conditions were 6.25 M NaOH solution for 24 h at temperatures ranging from 50 to 80 °C. After etching, the heights of the resulting un-etched plateaus were measured using a Talyscan 150 profilometer. The removed layer thicknesses ranged from 12 to 85 μm, giving corresponding bulk etch rates in the range 0.5–3.54 μm/h.  相似文献   

16.
The lattice parameters, cell volume, elastic constants, bulk modulus, shear modulus, Young's modulus and Poisson's ratio are calculated at zero pressure, and their values are in excellent agreement with the available data, for TiN, Ti2N and Ti3N2. By using the elastic stability criteria, it is shown that the three structures are all stable. The brittle/ductile behaviors are assessed in the pressures from 0 GPa to 50 GPa. Our calculations present that the performances for TiN, Ti2N and Ti3N2 become from brittle to ductile with pressure rise. The Debye temperature rises as pressure increase. With increasing N content, the enhancement of covalent interactions and decline of metallicity lead to the increase of the micro-hardness. Their constant volume heat capacities increase rapidly in the lower temperature, at a given pressure. At higher temperature, the heat capacities are close to the Dulong–Petit limit, and the heat capacities of TiN and Ti2N are larger than that of c-BN. The thermal expansion coefficients of titanium nitrides are slightly larger than that of c-BN. The band structure and the total Density of States (DOS) are calculated at 0 GPa and 50 GPa. The results show that TiN and Ti2N present metallic character. Ti3N2 present semiconducting character. The band structures have some discrepancies between 0 GPa and 50 GPa. The extent of energy dispersion increases slightly at 50 GPa, which means that the itinerant character of electrons becomes stronger at 50 GPa. The main bonding peaks of TiN, Ti2N and Ti3N2 locate in the range from −10 to 10 eV, which originate from the contribution of valance electron numbers of Ti s, Ti p, Ti d, N s and N p orbits. We can also find that the pressure makes that the total DOS decrease at the Fermi level for Ti2N. The bonding behavior of N–Ti compounds is a combination of covalent and ionic nature. As N content increases, valence band broadens, valence electron concentration increases, and covalent interactions become stronger. This is reflected in shortening of Ti–N bonds.  相似文献   

17.
Plasma-based low-energy ion implantation, including plasma source ion nitriding/carburizing and plasma source low-energy ion enhanced deposition of thin films, for surface engineering of metallic materials was emerged as low-temperature, low-pressure surface modification technique. Plasma source ion nitriding onto AISI 316L austenitic stainless steel produced a high nitrogen face-centered-cubic phase (γN) layer about 10 μm thick at the temperature of 380 °C during 4 h with the high microhardness of HK0.1 N 22.0 GPa. The microhardness of the nitrided surface from the titanium nitride phase [(Ti, Al, V)N] layer on Ti6Al4V alloy at 750 °C during 4 h achieved up to about HK0.1 N 15.5 GPa. No pitting corrosion in the Ringer’s solution at 37 °C was detected by electrochemical polarization measurement for the nitrided AISI 316L stainless steel and Ti6Al4V alloy, respectively. Plasma source ion nitriding of the metallic materials provided the engineering surfaces with combined improvement in hardness and corrosion resistance.  相似文献   

18.
Vanadium dioxide has excellent phase transition characteristic. Before or after phase transition, its optical, electrical, magnetic characteristic hangs hugely. It has a wide application prospect in many areas. Now, the light which can make vanadium dioxide come to pass photoinduced phase transition range from soft X-ray to medium infrared light (6.9 μm, 180 meV). However, whether 10.6 μm (117 meV) long wave infrared light can make vanadium dioxide generate photoinduced phase transition has been not studied. In this paper, we researched the response characteristic of vanadium dioxide excited by 10.6 μm infrared light. We prepared the vanadium dioxide and test the changes of vanadium dioxide thin film’s transmittance to 632.8 nm infrared light when the thin film is irradiate by CO2 laser. We also test the resistivity of vanadium dioxide. Excluding the effect of thermal induced phase transition, we find that the transmittance of vanadium dioxide thin film to 632.8 nm light and resistivity both changes when irradiating by 10.6 μm laser. This indicates that 10.6 μm infrared light can make the vanadium dioxide come to pass photoinduced phase transition. The finding makes vanadium has a potential application in recording the long-wave infrared hologram and making infrared detector with high resolution.  相似文献   

19.
Image quality of MeV transmission electrons is an important factor for both observation and electron tomography of microns-thick specimens with the high voltage electron microscope (HVEM) and the ultra-HVEM. In this work, we have investigated image quality of a tilted thick specimen by experiment and analysis. In a 3 MV ultra-HVEM, we obtained transmission electron images in amplitude contrast of 100 nm gold particles on the top surface of a tilted 5 μm thick amorphous epoxy-resin film. From line profiles of the images, we then measured and evaluated image blurring, contrast, and the signal-to-noise ratio (SNR) under different effective thicknesses of the tilted specimen and accelerating voltages of electrons. The variation of imaging blurring was consistent with the analysis based on multiple elastic scattering. When the effective thickness almost tripled, image blurring increased from ~3 to ~20 nm at the accelerating voltage of 3 MV. For the increase of accelerating voltage from 1 to 3 MV in the condition of the 14.6 μm effective thickness, due to the reduction of multiple scattering effects, image blurring decreased from ~54 to ~20 nm, and image contrast and SNR were both obviously enhanced by a factor of ~3 to preferable values. The specimen thickness was shown to influence image quality more than the accelerating voltage. Moreover, improvement on image quality of thick specimens due to increasing the accelerating voltage would become less when it was further increased from 2 to 3 MV in this work.  相似文献   

20.
《Solid State Ionics》2006,177(19-25):1949-1953
Partial electronic and oxide ionic conduction in LaGaO3 doped with Sr and Mg, Co for Ga site was studied with the ion blocking method. It was found that doping small amount of Co into Ga site is effective for elevating the oxide ion conductivity. However, it is seen that the partial electronic conduction monotonically increases with increasing Co amount and PO2 at p–n transition was shifted to lower value. Even at X = 0.1, the oxide ion conductivity in LSGMC is still dominant. Calculation on the theoretical leakage of electrolyte of solid oxide fuel cells suggests that the highest efficiency of the electrolyte was achieved around 100 μm in thickness for La0.8Sr0.2Ga0.8Mg0.15Co0.05O3 (LSGMC). Preparation of LSGMC film on Ni–Sm0.2Ce0.8O2 porous anode was studied with the colloidal spray method. In order to prevent the reaction between substrate and film, La doped CeO2 was used for the interlayer film. In accordance with the theoretical calculation, open circuit potential of the cell using LSGMC film electrolyte with 40 μm thickness becomes much smaller than the theoretical value. However, fairly large maximum power density (0.21 W/cm2) can be achieved at 873 K and even at 773 K, the maximum power density of the cell as high as 0.12 W/cm2 was exhibited on the SOFC using 40 μm thickness LSGMC electrolyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号