首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Solid State Ionics》2006,177(7-8):703-707
A polyphosphazene [NP(NHR)2]n with oligo[propylene oxide] side chains − R = –[CH(CH3)–CH2O]m–CH3 (m = 6  10) was synthesized by living cationic polymerisation and polymer-analogue substitution of chlorine from the intermediate precursor [NPCl2]n using the corresponding primary amine RNH2. The polymer had an average molecular weight of 3.3 × 105 D. Polymer electrolytes with different concentrations of dissolved lithium triflate (LiCF3SO3) were prepared. Mechanically stable polymer electrolyte membranes were formed using UV radiation induced crosslinking of the polymer salt mixture in the presence of benzophenone as photoinitiator. The glass transition temperature of the parent polymer was found to be − 75 °C before cross linking. It increases after crosslinking and with increasing amounts of salt to a maximum of − 55 °C for 20 wt.% LiCF3SO3. The ionic conductivity was determined by impedance spectroscopy in the temperature range 0–80 °C. The highest conductivity was found for a salt concentration of 20 wt.% LiCF3SO3: 6.5 × 10 6 S·cm 1 at 20 °C and 2.8 × 10 4 S cm 1 at 80 °C. The temperature dependence of the conductivities was well described by the MIGRATION concept.  相似文献   

2.
《Solid State Ionics》2006,177(26-32):2699-2704
Composite salt-in-polymer electrolyte membranes were prepared from poly[(bis(2-methoxyethyl)amino)1−x(n-propylamino)x-phosphazene] (BMEAP) with dissolved LiCF3SO3 and dispersed Al2O3 nanoparticles (40 nm). Membranes with good mechanical stability were obtained. Low ionic conductivities were found in particle free membranes with maximum conductivities at 10 wt.% LiCF3SO3 ranging from 3.1 × 10 7 S/cm at 30 °C to 1.8 × 10 5 S/cm at 90 °C. For the composite membranes, addition of 2 wt.% Al2O3 nanoparticles leads to a steep increase of the conductivity by almost two orders of magnitude as compared to the homogeneous membranes. The highest room temperature conductivity for the investigated BMEAP–LiCF3SO3–Al2O3 composite systems was 10 5 S/cm.  相似文献   

3.
《Solid State Ionics》2006,177(35-36):3129-3134
Substituted cyclotriphosphazenes were used to prepare lithium ion conducting polymer networks. Two types of compounds were synthesized starting with the precursor hexachlorocyclotriphosphazene (HCCP): Type I (CVEEP) in which all the chlorine atoms in HCCP were replaced by vinyloxyethoxyethoxy groups (VEE = –OCH2CH2OCH2CH2OCHCH2), and type II (CVMEEP) in which half of the chlorine was replaced by VEE and the other half by methoxyethoxyethoxy groups (MEE = –OCH2CH2OCH2CH2OCH3). The terminal vinyl groups were used to build up a network by a thermally initiated cross-linking of lithium salt containing membranes. Polymer electrolytes with dissolved LiSO3CF3 and LiN(SO2CF3)2 were investigated by impedance measurements. The ionic conductivity of CVMEEP with 10 wt.% LiSO3CF3 was 3.2 × 10 5 S/cm at 30 °C and 4.1 × 10 4 S/cm at 90 °C. Lower conductivity values in the range 10 8–10 9 S/cm were obtained at 30 °C for the highly crosslinked CVEEP. An interesting polymer electrolyte with good mechanical properties and a good conductivity of 1.3 × 10 5 S/cm (30 °C) was obtained from a solution of MEEP (= poly[bis(methoxy–ethoxy–ethoxy)phosphazene]) and LiSO3CF3 in CVEEP as an interpenetrating network.  相似文献   

4.
Michael A. Henderson 《Surface science》2010,604(19-20):1800-1807
The photochemical properties of the Cr-terminated α-Cr2O3(0001) surface were explored using methyl bromide (CH3Br) as a probe molecule. CH3Br adsorbed and desorbed molecularly from the Cr-terminated α-Cr2O3(0001) surface without detectable thermal decomposition. Temperature programmed desorption (TPD) revealed a CH3Br desorption state at 240 K for coverages up to 0.5 ML, followed by more weakly bound molecules desorbing at 175 K for coverages up to 1 ML. Multilayer exposures led to desorption at ~ 130 K. The CH3Br sticking coefficient was unity at 105 K for coverages up to monolayer saturation, but decreased as the multilayer formed. In contrast, pre-oxidation of the surface (using an oxygen plasma source) led to capping of surface Cr3+ sites and near complete removal of CH3Br TPD states above 150 K. The photochemistry of chemisorbed CH3Br was explored on the Cr-terminated surface using post-irradiation TPD and photon stimulated desorption (PSD). Irradiation of adsorbed CH3Br with broad band light from a Hg arc lamp resulted in both photodesorption and photodecomposition of the parent molecule at a combined cross section of ~ 10? 22 cm2. Photodissociation of the CH3–Br bond was evidenced by both CH3 detected in PSD and Br atoms left on the surface. Use of a 385 nm cut-off filter effectively shut down the photodissociation pathway but not the parent molecule photodesorption process. From these observations it is inferred that d-to-d transitions in α-Cr2O3, occurring at photon energies < 3 eV, do not significantly promote photodecomposition of adsorbed CH3Br. It is unclear to what extent band-to-band versus direct CH3Br photolysis play in CH3–Br bond dissociation initiated by more energetic photons.  相似文献   

5.
The effect of nano SiO2 and TiO2 fillers on the thermal, mechanical and electrochemical properties of PVA:PVdF:LiCF3SO3 have been investigated by three optimized systems of SPE (80PVA:20PVdF:15LiCF3SO3), CPE-I (SPE:8SiO2) and CPE-II (SPE:4TiO2). From the TGA curve least weight loss has been observed for CPE-II indicating high thermal stability compared to other systems. Stress–strain curve of the prepared samples confirm the enhancement of tensile strength in CPE-II compared to CPE-I and SPE. Conductivity studies show that addition of TiO2 filler slightly enhances ionic conductivity 3.7×10−3 S cm−1 compared to filler free system at 303 K. Dielectric plots have been analyzed and CPE-II possesses higher dielectric constant compared to CPE-I and filler free system. Temperature dependence of modulus plots has been studied for highest conductivity possessing sample. Wider electrochemical stability has been obtained for nano-composite polymer electrolytes. The results conclude that the prepared CPE-II shows the best performance and it will be well suited for lithium ion batteries.  相似文献   

6.
Local coordination structure around Yttrium ions in CeO2–Y2O3 binary and [(CeO2)x(ZrO2)1?x]0.8(YO1.5)0.2 (x = 0.0 ~ 1.0) ternary system has been investigated by 89Y MAS-NMR. NMR spectra are found to be consisted of multiple peaks that can be assigned to 6-, 7- and 8-oxygen coordinated Yttrium ions. Compositional dependence of the spectrum was observed and compared with the previous results for ZrO2–Y2O3 binary system. The present investigation suggested the degree of localization of the oxygen vacancy around the cation is in the order of Zr4+ > Y3+ > Ce4+. The degree of the oxygen vacancy preference for each cation was quantitatively determined for CeO2–ZrO2–Y2O3 ternary system the first time.  相似文献   

7.
The interaction between Li salts {LiTf (Tf = CF3SO3) and LiNTf2 (NTf2 = N(SO2CF3)2)} with surface modified alumina particles (basic, neutral or acidic) is investigated employing a range of advanced solid state NMR methodologies. Utilizing 7Li MAS NMR, a new signal – in addition to the signal of the pure salt – could be identified in the composite samples, increasing with increasing basicity of the alumina surface. Employing 7Li–{1H} CPMAS NMR and 7Li–{1H}–CPMAS–{27Al} REAPDOR NMR spectroscopy, this new signal could be unequivocally assigned to an alumina-surface bound Li species. For the anions, 19F MAS NMR spectra clearly prove the existence of new anion sites. Employing 19F–{7Li} REDOR spectroscopy and 19F–{27Al} TRAPDOR NMR spectroscopy, the identified signals could be safely assigned to anions within the pristine Li salt and anions attached to the alumina surface. These results present direct evidence for the anion???alumina surface and cation???alumina surface interaction, suggested by several authors to aid in the interpretation of the effect of the ceramic additive on the ionic conductivity.  相似文献   

8.
《Solid State Ionics》2006,177(26-32):2679-2682
The polymer electrolytes comprising blend of poly(vinyl acetate) (PVAc) and poly(methylmethacrylate) (PMMA) as a host polymer and LiClO4 as a dopant are prepared by solution casting technique. The amorphous nature of the polymer–salt complex has been confirmed by XRD analysis. The DSC thermograms show two Tg's for PVAc–PMMA blend. A decrease in Tg with the LiClO4 content reveals the increase of segmental motion. Conductance spectra results are found to obey the Jonscher's power law and the maximum dc conductivity value is found to be 1.76 × 10 3 S cm 1 at 303 K for the blend polymer complex with 20 wt.% LiClO4, which is suitable for the Li rechargeable batteries. The conductivity–temperature plots are found to follow an Arrhenius nature. The dc conductivity is found to increase with increase of salt concentration in the blend polymer complexes.  相似文献   

9.
R. Moreh  D. Nemirovsky  J. Zabicky 《Surface science》2012,606(13-14):1088-1092
The kinetic energies of the protons in the silanol groups (Si–OH units) of silica xerogels were deduced by ab initio calculations using the basis set mp2/6-311G**. The silanol groups were simulated using the Si(OH)4 unit. The calculated result of the H-kinetic energy was found to be 150 meV, which is ~ 50% smaller than a recently reported experimental value for porous silica xerogels. For comparison, the same calculations of the proton kinetic energies of other H-containing molecules such as H2O and CH4 (being also ~ 150 meV) were found to be in excellent agreement with measurements. Possible reasons for the huge deviations in the case of the silanols are discussed.  相似文献   

10.
Continuous-time photoelectron spectroscopy (PES) and continuous-time core-level photon-stimulated desorption (PSD) spectroscopy were used to study the monochromatic soft X-ray-induced reactions of CCl2F2 molecules adsorbed on Si(111)-7 × 7 at 30 K (CCl2F2 dose = 2.0 × 1014 molecules/cm2, ~ 0.75 monolayer) near the Si(2p) core level. Evolution of adsorbed CCl2F2 molecules was monitored by using continuous-time photoelectron spectroscopy at two photon energies of 98 and 120 eV to deduce the photolysis cross section as a function of energy. It was found that the photolysis cross sections for 98 and 120 eV photons are ~1.4 × 10? 18 and ~ 8.0 × 10? 18 cm2, respectively. Sequential F+ PSD spectra obtained by using continuous-time core-level photon-stimulated desorption spectroscopy in the photon energy range of 98–110 eV show the variation of their shapes with photon exposure and depict the formation of surface SiF species. The dissociation of CCl2F2 molecules adsorbed on Si(111)-7 × 7, irradiated by monochromatic soft X-ray in the photon energy range of 98–110 eV, is mainly due to dissociative electron attachment and indirect dipolar dissociation induced by photoelectrons emitted from the silicon surface.  相似文献   

11.
The search for anionic conductors based on solid polymer electrolytes is important for the development of photo-electrochemical (PEC) solar cells due to their many favourable chemical and physical properties. Although solid polymer electrolytes have been extensively studied as cation, mainly lithium ion, conductors for applications in secondary batteries, their use as anionic conductors have not been studied in greater detail. In a previous paper we reported the application of a PEO based iodide ion conducting electrolyte in a PEC solar cell. This electrolyte had the composition PEO: Pr4N+I? = 9:1 with 50 wt.% ethylene carbonate (EC). In this work we have studied the effect of incorporating alumina filler on the properties of this electrolyte. The investigation was extended to electrical and dielectric measurements including high frequency impedance spectroscopy and thermal analysis.In the DSC themograms two endothermic peaks have been observed on heating, one of these peaks is attributed with the melting of the PEO crystallites, while the other peak with a melting temperature ~ 30 °C is attributed to the melting of the EC rich phase. The melting temperature of both these peaks shows a marked variation with alumina content in the electrolyte. The temperature dependence of the conductivity shows that there is an abrupt conductivity increase in the first heating run evidently due to the melting of the EC rich phase. High conductivity values are retained at lower temperatures in the second heating. Conductivity isotherms show the existence of two maxima, one at ~ 5% Al2O3 content and the other at ~ 15%. The occurrence of these two maxima has been explained in terms of the interactions caused by alumina grains, the crystallinity and melting of the PEO rich phase. As seen from latent heat of melting, the crystallinity of the electrolyte has reduced considerably during the first heating run. In contrast to the conductivity enhancement caused by ceramic fillers in PEO-based cation containing electrolytes, no conductivity enhancement has been observed in the present PEO based anionic conducting materials by adding alumina except at low temperatures.  相似文献   

12.
A fabrication method that does not use lithography or etching processes for thick-film based micro-SOFCs (Solid Oxide Fuel Cells) was described and discussed. In this study, a new type of micro-SOFC was fabricated using a free-standing thick-film electrolyte with ~ 20 μm thickness. This structure has the advantages of both electrolyte-support and electrode-support type SOFCs. Generally, the electrolyte should be thicker than e.g., ~ 150 μm since a thinner electrolyte easily cracks in a self-supporting mode during the fabrication procedure. Thus, a new mounting method was developed in order to use a thin-electrolyte film. In this study, a ~ 20 μm-thick GDC (Gd-doped ceria) electrolyte film was successfully mounted on a ~ 400 μm-thick GDC ring by sintering these two pieces together. Ni-GDC and Sm0.5Sr0.5CoO3 were brush painted as an anode and a cathode, respectively. With this new configuration, it was possible to construct an electrolyte-supported SOFC using a thick-film ceria-based electrolyte and measure the power density. The open-circuit voltage (OCV) of the cell in 97%H2 + 3%H2O/air was ~ 0.87 V and the maximum power density was ~ 270 mW/cm2 at 600 °C. The result shows that the high performance is achievable for the micro-SOFCs using a thick-film ceria-electrolyte operating at 600 °C.  相似文献   

13.
Nitric oxide chemistry and photochemistry on the Cr-terminated surface of α-Cr2O3(0001) were examined using temperature programmed desorption (TPD), sticking coefficient measurements and photodesorption. NO exposed to α-Cr2O3(0001) at 100 K binds at surface Cr cation sites forming a strongly bound surface species that thermally desorbs at 320–340 K, depending on coverage. No thermal decomposition was detected in TPD in agreement with previous results in the literature. Sticking probability measurements at 100 K indicated near unity sticking for NO up to coverages of ~ 1.3 ML, with additional adsorption with higher exposures at decreased sticking probability. These results suggest that some Cr cation sites on the α-Cr2O3(0001) surface were capable of binding more than one NO molecule, although it is unclear whether this was as separate NO molecules or as dimers. Photodesorption of adsorbed NO was examined for surface coverages below the 1 ML point. Both visible and UV light were shown to photodesorb NO without detectable NO photodecomposition. Visible light photodesorption of NO occurred with a greater cross section than estimated using UV light. The visible light photodesorption event was not associated with bandgap excitation in α-Cr2O3(0001), but instead was linked to excitation of a surface Cr3 +–NO? charge transfer complex. These results illustrate that localized photoabsorption events at surface sites with unique optical properties (relative to the bulk) can result in unexpected surface photochemistry.  相似文献   

14.
A series of Cr,Er:Gd3Ga5O12 crystals with high concentrations of Er3 + were grown by Czochralski method. The absorption spectra, the up-conversion, near infrared (NIR) and mid-infrared (Mid-IR) luminescence spectra as well as the luminescence decay curves of Er: 4I13/2 and 4I11/2 levels were measured at room temperature. The spectroscopic properties of Cr,Er:Gd3Ga5O12 crystals and Cr–Er energy transfer processes were investigated. The spectroscopy of the Er3 +:4I11/2  4I13/2 transition was centralized to discuss, and the important optical parameters including luminescence lifetimes and the Cr–Er energy transfer efficiency are presented. Based on the comprehensive spectral analyses, 0.6 at.%Cr/50 at.%Er:GGG crystal is preferred as candidate of potential xenon lamp pumped ~ 2.7 μm laser in this work.  相似文献   

15.
The kinetics of the C6H5 reactions with CH3OH and C2H5OH has been measured by pulsed-laser photolysis/mass-spectrometry (PLP/MS) employing acetophenone as the radical source. Kinetic modeling of the benzene formed in the reactions over the temperature range 306–771 K allows us to reliably determine the total rate constants for H-abstraction reactions. In order to improve our low temperature measurements down to 304 K we have also applied the cavity ring-down spectrometric technique using nitrosobenzene as the radical source. Both sets of data agree closely. A weighted least-squares analysis of the two complementary sets of data for the two reactions gave the total rate constants k(CH3OH) = (7.82 ± 0.44) × 1011 exp [?(853 ± 30)/T] and k(C2H5OH) = (5.73 ± 0.58) × 1011 exp [?(1103 ± 44)/T] cm3 mol?1 s?1 for the temperature range studied. Theoretically, four possible product channels of the C6H5 + CH3OH reaction producing C6H6 + CH3O, C6H6 + CH2OH, C6H5OH + CH3 and C6H5OCH3 + H and five possible product channels of the C6H5 + C2H5OH reaction producing C6H6 + C2H5O, C6H6 + CH2CH2OH, C6H6 + CH3CHOH, C6H5OH + CH3CH2 and C6H5OCH2CH3 + H have been computed at the G2M//B3LYP/6?311+G(d, p) level of theory. The hydrogen abstraction channels were predicted to have lower energy barriers than those for the substitution reactions and their rate constants were calculated by the microcanonical variational transition state theory at 200–3000 K. The predicted rate constants are in good agreement with the experimental values. Significantly, the rate constant for the CH3OH reaction with C6H5 was found to be greater than that for the C2H5OH reaction and both reactions were found computationally to be dominated by H-abstraction from the hydroxyl group attributable to the affinity of the phenyl toward the OH group and the predicted lower energy barriers for the OH attack.  相似文献   

16.
Absorption cross sections of SO2 have been obtained in the 24 000–29 000 cm?1 spectral range (345–420 nm) with a Fourier transform spectrometer at a resolution of 2 cm?1. Pure SO2 samples were used and measurements were performed at room temperature (298 K) as well as at 318, 338 and 358 K. This is the first time that temperature effects in this spectral region are reported and investigated. This paper is the first of a series that will report on measurements of the absorption cross section of SO2 in the UV/visible region at a higher than previously reported resolution and that will investigate temperature effects in support of tropospheric, stratospheric and astrophysical or planetary applications.  相似文献   

17.
In this paper, optical glass nanocomposites (nanoparticles sizes up to 100 nm) with composition TeO2–WO3–PbO–xEr2O3–yPr6O11 (x = 0.30 mol%, y = 0.70 mol%) embedded into polymer matrices was reported. The two types of polymers chosen for present study were: photopolymer oligoetheracryalte (OEA) and polymethylmethacrylate (PMMA), respectively. The incorporation of the titled nanoparticles into the polymer matrices is analyzed optically. The fluorescence spectra of the nanocomposites were compared with the fluorescence spectra of bulk glasses. Based on the comparison of Er3 + and Pr3 + ions' energy level schemes, possible energy transfer processes were identified. The prepared glasses are promising candidates for the white light emitting diodes applications.  相似文献   

18.
This study demonstrates that humidity, temperature, and the interlayer anions influence ionic conductivities of Mg–Al layered double hydroxides (LDHs) intercalated with inorganic anions. Results show that Mg–Al LDH intercalated with Br? exhibited the highest ionic conductivity among Mg–Al LDHs intercalated with CO32?, Cl?, Br?, NO3? and SO42?. Its ionic conductivity was 1.1 × 10? 2 S cm? 1 at 80 °C under 80% relative humidity. The electromotive force for the hydroxide ion concentration cell using Mg?Al CO32? LDH showed the same behavior with that using an anion exchange membrane, indicating that Mg–Al CO32? LDH can be a hydroxide ion conductor.  相似文献   

19.
The polymer–salt complex with high molecular weight poly(vinyl chloride) (PVC) as the host polymer and lithium sulphate (Li2SO4) as the dopant salt are constructed in the form of thin film. Ionic conductivity studies in the temperature range of 303–373 K are performed for polymer complexes with 75% and 85% PVC. Arrhenius and Vogel–Tamman–Fulcher (VTF) behaviour was observed before and after the Tg of polymer, respectively. Dielectric constant and electrical modulus were analyzed and it was concluded that the films had ion conducting potential. Fourier transform infrared (FTIR) study confirmed that complexation occurred between PVC and Li2SO4.  相似文献   

20.
《Solid State Ionics》2006,177(26-32):2561-2564
Colloidal monoclinic zirconia ZrO2 particles have been synthesized by hydrothermal treatment from acetate solutions. To increase their surface acidity, they have been treated by aqueous solutions of phosphoric acid, sulfophenylphosphonic acid (SPPA, (HO)2(O)–C6H6–SO3H) and sulfodifluoromethylphosphonic acid (SFPA, (HO)2(O)P–CF2–SO3H). This leads to the covalent bonding of phosphoric or sulfonic acid groups onto the surface of the particles. Solid state NMR (31P, 1H) studies show the covalent grafting of the phosphate and phosphonates groups and qualitatively illustrate the fast proton dynamics of these surface conducting materials as compared with that of crystalline α-Zr(HPO4)2. H2O. But, water adsorption is still necessary to increase the long distance proton mobility. Then, the macroscopic conductivity remains low (between 10 4 S cm 1 and 10 3 S cm 1 25 °C, RH 70%) and shows a strong hysteresis while cycling the relative humidity. The mechanism limiting the conductivity seems to be interparticle transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号