首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interfacial interaction strength and transition properties in a reverse selective thin film nanocomposite system, silica-poly[(trimethylsilyl)propyne] (SiO(x)-PTMSP), are investigated locally by heated tip atomic force microscopy. SiO(x)-PTMSP has recently been introduced as a new class of reverse selective membrane materials with extraordinarily high permeability and selectivity (reverse selectivity). Here, we examine the thermal transition properties of the polymer matrix and the debonding strength between PTMSP and silica. Transitions at 330 degrees C were identified as degradation processes. Criteria for debonding were found to include polymer viscoelastic responses, particle size, embedding depth, scan speed, and frequency of impact. Probe-particle impact forces revealed a debonding energy of 2.6 J/m(2) and an impact force transition that occurs 30 degrees C below the degradation temperature in the neat polymer, confirming the presence of enhanced polymer mobility at the SiO(x)-PTMSP interface.  相似文献   

2.
The preparation of PMMA-clay nanocomposites was investigated by using sodium dodecylbenzenesulfonate (SDS) and potassium peroxodisulfate (KPS) as a surfactant and chain initiator for an in situ emulsion polymerization reaction, respectively. The as-prepared nanocomposites were then characterized by Fourier transformation infrared (FTIR) spectroscopy, wide-angle X-ray diffraction (WAXRD) patterns and transmission electron microscopy (TEM).It should be noted that the nanocomposite coating containing 1 wt% of clay loading was found to exhibit an observable enhanced corrosion protection on cold-rolled steel (CRS) electrode at higher operational temperature of 50 °C, which was even better than that of uncoated and electrode-coated with PMMA alone at room temperature of 30 °C based on the electrochemical parameter evaluations (e.g., Ecorr, Rp, Icorr, Rcorr and impedance). In this work, all electrochemical measurements were performed at a double-wall jacketed cell, covered with a glass plate, through which water was circulated from a thermostat to maintain a constant operational temperature of 30, 40 and 50 ± 0.5 °C. Moreover, a series of electrochemical parameters shown in Tafel, Nyquist and Bode plots were all used to evaluate PCN coatings at three different operational temperatures in 5 wt% aqueous NaCl electrolyte. The molecular barrier properties at three different operational temperatures of PMMA and PCN membranes were investigated by gas permeability analyzer (GPA) and vapor permeability analyzer (VPA). Effect of material composition on the molecular weight and optical properties of neat PMMA and PCN materials, in the form of solution and membrane, were also studied by gel permeation chromatography (GPC) and UV-vis transmission spectra.  相似文献   

3.
4.
In this study, we present the first practical evaluation for the corrosion protection effect of waterborne polyurethane (WPU)/Na+-montmorillonite (Na+-MMT) clay nanocomposite coating. Typically, a series of waterborne polyurethane (WPU)/Na+-montmorillonite (Na+-MMT) clay nanocomposite materials have been successfully prepared by effectively dispersing the inorganic nanolayers of commercially purified Na+-MMT clay in WPU matrix through direct aqueous solution dispersion technique. First of all, WPU was prepared by polymerizing PCL, DMPA and H12MDI, followed by characterized by nuclear magnetic resonance (1H NMR), Fourier transform infrared (FTIR) and gel permeation chromatography (GPC). Subsequently, the as-prepared PU/Na+-MMT clay nanocomposite (Na+-PCN) materials were subsequently characterized by FTIR, X-ray diffraction (XRD) patterns and transmission electron microscopy (TEM).PCN materials in the form of coating at low Na+-MMT clay loading up to 3 wt% coated on the cold-rolled steel (CRS) coupons were found to exhibit superior corrosion protection effect over those of neat WPU based on a series of electrochemical measurements of corrosion potential, polarization resistance, corrosion current and impedance in 5 wt% aqueous NaCl electrolyte. Effects of the material composition on the gas permeability, thermal stability and optical clarity of neat WPU along with a series of Na+-PCN materials, in the form of coating and free-standing film, were also studies by gas permeability analyzer (GPA), thermogravimetric (TGA), differential scanning calorimetry (DSC) and ultraviolet UV-visible transmission spectroscopy, respectively. As control experiments, a series of PU/organo-MMT nanocomposite (denoted by organo-PCN) materials were also prepared for comparative studies.  相似文献   

5.
To overcome easy oil fouling and poor efficiency of traditional oil/water separation materials, superhydrophilic and superoleophobic coatings were fabricated by spray casting chitosan (CTS)-based nanocomposites. The molecular rearrangement of hydrophilic and oleophobic constituents, combined with the hierarchical rough surface structures, enabled a coating with a water contact angle of 0° and a hexadecane contact angle of 157° ± 1°. Hexadecane droplets can easily slide off the dried and water-wetted coating without leaving any obvious oily trailing stains. When the superhydrophilic and superoleophobic CTS-based nanocomposite coatings were applied to oil/water separation, they exhibited excellent anti-fouling capacity, high separation efficiency and easy recyclability. The superhydrophilic and superoleophobic CTS-based coating would be a good candidate for the treatment of industrial oil-polluted water and the cleanup of oil spills.  相似文献   

6.
This article discusses the effect of increasing mass percentage of nanoclay on the thermal, structural and morphological properties of nanoclay/nylon-6 nanocomposite. Polymerization of ε-caprolactam conducted in the presence of clay resulted in increased d-spacing and expansion of the clay galleries. A combination of differential scanning calorimetry, X-ray diffraction and electron microscopy was used to study the structure–property relationship. The effect of clay on the melting behavior of nylon-6 was studied by using quenched and normally cooled samples. The clay particles acted as external nucleating agents, and a dramatic effect on the crystallization behavior of nylon-6 was observed. The nylon-6 crystals formed are predominantly of the γ-type in the presence of clay. The presence of up to 1 % of clay lead to an increase in the heat of fusion. For nylon-6 samples containing greater than 1 % clay, the heat of fusion decreased significantly.  相似文献   

7.
Using interfacial polymerization (IP) of m-phenylenediamine aqueous solution containing polyoxovanadate nanoclusters (POV) and trimesoyl chloride (TMC) in organic solution, we fabricated a novel polyamide (PA)- polyoxovanadate nanocluster (POV) nanocomposite membranes (PA-POV TFN). The chemical structures and morphologies of the synthesized membranes were characterized by Fourier transform infrared (FTIR) spectroscopy, atomic force microscope (AFM), scanning electron microscopy (SEM) and water contact angle measurements. Experimental results showed that the performances of PA-POV TFN membranes are remarkably dependent on POV incorporation in the membranes, which could be controlled by using different amounts of POV particles. Moreover, the PA-POV TFN membranes illustrated outstanding antibacterial properties against Gram-negative E. coli. On the other hand, the incorporation of various amounts of POV in the membranes improved the membrane separation performances (water flux and salt rejection) as well as the antibacterial activity in FO process as compared to the original thin-film composite (TFC) polyamide membrane.  相似文献   

8.
Observations are reported on high-density polyethylene (HDPE) and nanocomposite, where HDPE matrix is reinforced with montmorillonite (MMT) nanoclay, in uniaxial cyclic tensile tests with various cross-head speeds ranging from 1 to 50 mm/min. Each cycle of deformation involves tension up to the maximal strain ?max = 0.1 and retraction down to the zero stress. The study focuses on low-cycle deformation programs with N = 5 cycles in each test.A constitutive model is derived for the viscoplastic response of polymers at three-dimensional cyclic deformations with small strains. Given a strain rate and a maximum strain, the stress-strain relations involve eight material constants that are found by fitting the experimental data. Good agreement is demonstrated between the observations and the results of numerical simulation. It is shown that the rate of cyclic deformation affects the adjustable parameters in a physically plausible way.  相似文献   

9.
Novel fluorinated coating containing well‐dispersed silicate nanolayers is successfully produced via in‐situ free radical polymerization of 2,2,2‐trifluoroethyl methacrylate in the presence of vinylbenzyl‐functionalized montmorillonite with different loading. The organic modification of sodium montmorillonite is achieved through an ion exchange reaction with triphenylvinylbenzylphosphonium chloride as surfactant prepared before use by reaction with vinylbenyl chloride and phosphine. The following in‐situ polymerization in the presence of organomodified clay leads to fluorinated nanocomposites with of partially exfoliated and intercalated morphologies, as determined via XRD and TEM analysis. The nanoscale dispersion of clay layers is also evidenced by thermal analysis; a moderate decrease of the glass transition temperature about 2–8 °C compared to their virgin PMATRIF and an improvement of their thermal stability as evidenced by TGA. The wettability of the nanocomposite films is also studied by contact angle measurements with water. The incorporation of organomodified clays not only increases the hydrophobicity of the fluorinated polymers but also improves the surface properties of obtained nanocomposites. Compared the virgin homopolymer, the mechanical properties of the nanocomposites are reduced by addition of organomodifed clay at temperature from 30 to 60 °C, whereas this trend is gradually decreased at higher temperature. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 411–418  相似文献   

10.
A facile strategy was used for the synthesis of nickel ferrite/zinc oxide (NiFe2O4/ZnO) nanocomposite via an ultra-sonication method and observed its recyclability and photostability with enhanced visible light-driven photocatalytic performance. The photo degradation activities of as-synthesized photocatalysts were investigated using various dyes including methylene blue, crystal violet and methyl orange under solar light irradiation. Prepared material degrades 49.2% methyl orange, 44.4% methyl blue and 41.3% crystal violet in 40 min. Further, the synergistic effect of nickel ferrite and zinc oxide can reduce the probability of recombination of charge carrier and boost the charge separation which leads to remarkable photocatalytic performance. Magnetic properties of nickel ferrite reduces the agglomeration of material and increases the recyclability. The NiFe2O4/ZnO nanocomposites also exhibited better antibacterial activity for Pseudomonas aeruginosa and Staphylococcus aureus, which shows that they can be used for both environmental and biological applications.  相似文献   

11.
Antimicrobial ultrafiltration membranes were prepared by coating silver nanoparticles on the surface of polyethersulfone (PES) membranes which were fabricated via phase inversion induced by the immersion precipitation technique, and their morphology and performance were compared with the antimicrobial PES membranes synthesized by adding the silver nanoparticles into the casting solution during the phase inversion process. For this purpose, stable and uniform colloidal solutions of the silver nanoparticles were prepared by chemical reduction of silver salt using fructose and dimethylformamide as a reducing agent. The silver nanoparticles were characterized by ultraviolet–visible spectroscopy, X‐ray powder diffraction and dynamic light scattering analysis. The morphology and surface properties of the prepared membranes were examined by field emission scanning electron microscopy and atomic force microscopy analysis. Moreover, the separation properties, antimicrobial efficiency and amount of silver release from the PES nanocomposite membranes during the cross flow ultrafiltration were determined. The results indicated that the silver content of the coated PES membranes was greater than the membranes fabricated by the solution blending method. Also, the permeation flux of the silver‐coated membranes was similar to the neat PES membranes, while the membranes prepared by the second approach had less flux. The membranes synthesized by both coating and blending methods showed high antimicrobial and bactericidal activity against gram‐negative bacteria such as Escherichia coli and gram‐positive bacteria such as Staphylococcus aureus. Finally, the prepared antimicrobial membranes were successfully used for the ultrafiltration of raw milk to reduce the microbial load during the concentration process. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Electrospinning has been emerging as one of the most efficient methods to fabricate polymer nanofibers. In this paper, PS/clay nanocomposite fibers with varying diameters were electrospun onto solid substrates. The fiber diameters were adjusted from 4 microm to 150 nm by changing the solution concentration. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM) were used to characterize the fiber morphology. Shear modulation force microscopy (SMFM) was utilized to investigate the surface nanomechanical properties of electrospun fibers as a function of the fiber diameter and temperature. In the absence of clay, no change in T(g) was observed, even though a large increase of shear modulus below the glass transition temperature was found. This effect was postulated to result from the molecular chain alignment during electrospinning. The addition of functionalized clays to the spinning solution produced fibers with a highly aligned montmorillonite layer structure at a clay concentration of 4 wt %. Clay agglomerates were observed at higher concentrations. The existence of clay further enhanced the shear modulus of fibers and increased the glass transition temperature by nearly 20 degrees C.  相似文献   

13.
A series of gold- and silver-containing ionic liquids, [C(n)MIM][M(CN)(2)] (M = Au, Ag; n = 12, 14, 18), prepared by metathesis reactions, present luminescence depending on their physical state i.e. crystalline or smectic A phases. The photoluminescent measurements as well as DFT calculations suggest that the modulation of aurophilic intermolecular interactions are responsible for this phosphorescent behaviour.  相似文献   

14.
Pervaporation separation of chlorinated hydrocarbon/acetone mixtures has been investigated using nanoclay modified poly(ethylene-co-vinyl acetate) films. The results have been compared with the unfilled poly(ethylene-co-vinyl acetate) films. The nanoclay modified membranes were characterized by X-ray diffraction technique. The dispersion of layered silicates in the polymer matrix was analyzed using transmission electron microscopy. The nanoclay showed excellent dispersion in the polymer matrix. The effect of free volume on the pervaporation performance was investigated by positron annihilation lifetime spectroscopy. Poly(ethylene-co-vinyl acetate) nanocomposite membrane showed high selectivity because of the plateletlike morphology and high aspect ratio of layered silicates. The nano clay content and the swelling effects on pervaporation performance of nano composite membranes have been investigated in detail.  相似文献   

15.
This paper reports the synthesis and characterization of polyurethane (PU)-imide/clay hybrid coatings based on two types of polyester (PE) polyols (PE-1 and PE-2). PE-1 was prepared from neopentyl glycol (NPG), adipic acid (AA) and isophathalic acid (IPA), whereas PE-2 contains NPG, AA, IPA and TMP (trimethylol propane) with the same hydroxyl value 280 as PE-1. Cetyl trimethyl ammonium bromide (CTAB) modified montmorillonite (K10) was used as the organoclay for the synthesis of the hybrid coatings. The organoclay particles (3 wt%) were well-dispersed into the PE matrix by ultrasonication method. Then the isocyanate terminated PU prepolymers were synthesized by the reaction of polyester polyols with hard segments such as 2,4-toluene diisocyanate (TDI) or isophorone diisocyanate (IPDI) in different NCO/OH ratios e.g., 1.6:1, 2:1 and 3:1, respectively. Finally the thermally stable imide rings were incorporated into the PU backbone by complete reaction of excess NCO content present in the PU prepolymer with pyromellitic dianhydride (PMDA). The thermogravimetric analysis (TGA) shows a higher thermal stability for the PU-imide hybrid coatings with respect to the corresponding PU-imide films. A higher NCO/OH ratio has resulted in higher thermal stability. The activation energies of degradation were calculated by the Broido and Coats-Redfern methods, respectively. The dynamic mechanical thermal analysis (DMTA) results show an enhancement in the glass transition temperature value (Tg) for the clay containing hybrid coatings. The surface analysis by angle resolved X-ray photoelectron spectroscopy (AR-XPS) showed an enrichment of the soft segment towards the surface, and an enhancement in the hard segment composition in the hybrid coatings, resulted in phase mixing.  相似文献   

16.
A pristine clay (Na+‐montmorillonite (MMT) and three different organoclays (20A‐MMT, vinylbenzyl dimethyldodecyl ammonium (VDA)‐MMT, and siloxane diamine ammonium (SDA)‐MMT) that originated from the pristine clay were used to prepare polyester‐acrylate (PEA)/clay nanocomposites by in situ ultraviolet (UV)‐curing. Except for the commercial organoclay (20A‐MMT), VDA‐MMT, and SDA‐MMT were prepared in this study by ion exchange method. The effects of organic modifications of the pristine clay on the UV‐curing behavior and structure of the nanocomposite system were investigated. The organic modifications of the clay affected considerably the UV‐curing behavior and structure of the nanocomposite system. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
A polystyrene‐modified epoxidized novolac resin/montmorillonite nanocomposite was fabricated and characterized successfully. For this purpose, novolac resin (NR) was epoxidized through the reaction of phenolic hydroxyl group with epichlorohydrin in super basic medium to produce epoxidized novolac resin (ENR). Afterward, a polystyrene was synthesized by atom transfer radical polymerization (ATRP) technique, and then brominated at the benzylic positions using N‐bromosuccinimide (NBS). The brominated polystyrene (PSt‐Br) was reacted with ethanolamine in basic medium in order to afford an amine‐functionalized polystyrene (PSt‐NH2). An organo‐modified montmorillonite (O‐MMT) was synthesized through the treatment of MMT with hexadecyl trimethyl ammonium chloride salt. Finally, ENR‐PSt/MMT nanocomposite was fabricated through curing a mixture of ENR (70 wt.%) and O‐MMT (5 wt.%) with PSt‐NH2 (25 wt.%). Transition electron microscopy (TEM) and powder X‐ray diffraction (XRD) analysis revealed that the fabricated nanocomposite has an exfoliated structure. Thermal property studies using thermogravimetric analysis (TGA) showed that the curing of ENR by PSt‐NH2, as well as incorporation of a small amount of MMT have synergistic effect on the thermal stability of the ENR resin.  相似文献   

18.
The sorption behavior of137Cs onto kaolinite, bentonite, illite, and zeolite was studied at different ionic strengths of Na+, K+, Ca2+. A significant effect of ionic strengths on the sorption has been observed. Clay minerals with 21 structure (bentonite, illite) showed much higher sorption than that of 11 structure (kaolinite). Zeolite showed high selectivity for137Cs sorption. Sorption behavior of137Cs on clay minerals can be explained by their surface charge characteristics originated from mineral structure.  相似文献   

19.
Cellulose - Nanocomposite hydrogel is helpful to provide a moist and ideal environment for wound healing. In this research study, a nanocomposite hydrogel was prepared based on schizophyllan (SPG)...  相似文献   

20.
Hydrogenated nanocomposite aluminum/carbon thin films (Al/a‐C:H) were fabricated on stainless steel and silicon wafer substrates via unbalanced reactive magnetron sputtering from an Al target in CH4/Ar plasma. The composition and structure of Al/a‐C:H films were investigated by high‐resolution transmission electron microscope (HRTEM), XPS and micro‐Raman spectroscopy. Nanoindenter, interferometer and ball‐on‐disc tribometer were carried out to evaluate the hardness, internal stress and tribological properties of Al/a‐C:H films. HRTEM observations confirmed that the metallic Al nanocrystallites were uniformly dispersed in the amorphous carbon matrix. XPS and Raman analyses indicated that the sp2 content increased with the increase of Al content in the films. Nanoindenter and interferometer tests exhibited that the uniform incorporation of Al nanocrystallites can diminish drastically the magnitude of internal stress with maintaining the higher hardness of as‐deposited films. Especially, the ball‐on‐disc tribometer measurements revealed that the nanocomposite film with 2.3 at.% Al content exhibited relatively better wear resistance and self‐lubrication performance with a friction coefficient of 0.06 and wear rate of 3.1 × 10?16 m3/ N·m under ambient air, which can be attributed to the relatively higher hardness, the formation of continuous graphitized transfer film on counterface and the reduced reaction of oxygen with carbon. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号