首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The chemical composition, crystalline structure, surface morphology and photoluminescence spectra of Na-doped ZnO thin films with different heat treatment process were investigated by X-ray photoelectron spectroscopy, X-ray diffraction, atomic force microscopy and a fluorescence spectrometer. The results show that preferred orientation, residual stress, average crystal size and surface morphology of the thin films are strongly determined by the preheating temperature. The effects of preheating temperature on microstructure and surface morphology have been discussed in detail. The photoluminescence spectra show that there are strong violet & UV emission, blue emission and green emission bands. The violet & UV emission is ascribed to the electron transition from the localized level below the conduction band to the valence band. The blue emission is attributed to the electron transition from the shallow donor level of oxygen vacancies to the valence band, and the electron transition from the shallow donor level of interstitial zinc to the valence band. The green emission is assigned to the electron transition from the level of ionized oxygen vacancies to the valence band.  相似文献   

2.
Sb-doped ZnO thin films with different values of Sb content (from 0 to 1.1 at.%) are deposited by the sol-gel dip- coating method under different sol concentrations. The effects of Sb-doping content, sol concentration, and annealing ambient on the structural, optical, and electrical properties of ZnO films are investigated. The results of the X-ray diffraction and ultraviolet-visible spectroscopy (UV-VIS) spectrophotometer indicate that each of all the films retains the wurtzite ZnO structure and possesses a preferred orientation along the c axis, with high transmittance (〉 90%) in the visible range. The Hall effect measurements show that the vacuum annealed thin films synthesized in the sol concentration of 0.75 mol/L each have an adjustable n-type electrical conductivity by varying Sb-doping density, and the photoluminescence (PL) spectra revealed that the defect emission (around 450 nm) is predominant. However, the thin films prepared by the sol with a concentration of 0.25 mol/L, despite their poor conductivity, have priority in ultraviolet emission, and the PL peak position shows first a blue-shift and then a red-shift with the increase of the Sb doping content.  相似文献   

3.
In this work, ZnO thin films were synthesized by sol–gel method on glass substrates followed by calcinations on different temperatures. The effect of annealing temperature on the structure and optical properties of the films was studied. The structural characteristics of the samples were analyzed by X-ray diffraction and atomic force microscope. The optical properties were studied by a UV-visible spectrophotometer. The results show that all the prepared ZnO thin films have a high preferential oriented c-axis orientation with compact hexagonal wurtzite structure. With the increasing annealing temperature (mse.ufl.edu), the intensity of (002) peak, particle size, surface RMS roughness, and absorbance of the ZnO thin films were increased as well. On the contrary, the transmittance and optical band gaps were decreased.  相似文献   

4.
Nanocrystallites of cadmium oxide (CdO) thin films were deposited by sol–gel dip coating technique on glass and Si substrates. XRD and TEM diffraction patterns confirmed the nanocrystalline cubic CdO phase formation. TEM micrograph of the film revealed the manifestation of nano CdO phase with average particle size lying in the range 1.6–9.3 nm. UV–Vis spectrophotometric measurement showed high transparency (nearly 75% in the wavelength range 500–800 nm) of the film with a direct allowed bandgap lying in the range 2.86–3.69 eV. Particle size has also been calculated from the shift of bandgap with that of bulk value for the films for which the particles sizes are comparable to Bohr exitonic radius. The particle size increases with the increase in annealing temperature and also the intensity of XRD peaks increases which implies that better crystallinity takes place at higher temperature.This revised version was published online in August 2005 with a corrected issue number.  相似文献   

5.
SnO2 thin films doped with various manganese concentrations were prepared on glass substrates by sol–gel dip coating method. The decomposition procedure of compounds produced by alcoholysis reactions of tin and manganese chlorides was studied by thermogravimetric analysis (TGA). The effects of Mn doping on structural, morphological, electrical and optical properties of prepared films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), Hall effect measurement, Fourier Transform Infrared (FTIR) spectral analysis, UV–Vis spectrophotometry, and photoluminescence (PL) spectroscopy. The results of the X-ray diffraction show that the samples are crystalline with a tetragonal rutile structure and the grain size decreases with increasing the doping concentration. The SEM and AFM images demonstrate that the surface morphology of the films was affected from the manganese incorporation. The Sn1?x Mn x O2 thin films exhibited electrically p-type behavior in doping level above x=0.035 and electrical resistivity increases with increase in Mn doping. The optical transmission spectra show a shift in the position of absorption edge towards higher wavelength (lower energy). The optical constants (refractive index and extinction coefficient) and the film thickness were determined by spectral transmittance and using a numerical approximation method. The oscillator and dispersion energies were calculated using the Wemple–DiDomenico dispersion model. The estimated optical band gap is found to decrease with higher manganese doping. The room-temperature PL measurements illustrate the decrease in intensity of the emission lines when content of Mn is increased in Mn-doped SnO2 thin films.  相似文献   

6.
Thin films of zinc oxide have been deposited onto (0001) sapphire substrate by sol–gel and spin-coating methods. The XRD pattern showed that the crystallinity of the annealed ZnO films had improved in comparison with that of the as-grown films. Photoluminescence spectra revealed a two-line structure, which is identified in terms of UV emission and defect-related emission. The emission intensity was found to be greatly dependent on heat treatment. Host phonons of ZnO and a shift of the E2E2 (high) peak from its position have been observed from Raman spectra. The surface morphologies of the film had been improved after annealing was observed from AFM images.  相似文献   

7.
Lithium tantalite (LiTaO3) thin films have been deposited on Pt(111)/SiO2/Si(100) substrates by means of sol–gel spin-coating technology. Using a diol-based precursor solution and rapid thermal processing (RTP), highly c-axis oriented LiTaO3 thin films are obtained and the degree of orientation is increased with an increase of the heating rate. By changing the heating rate (600–3000 °C/min) and heating temperature (500–800 °C), the effects of various processing parameters on the growth of films are investigated. With the increase of heating rate, the grain size of LiTaO3 thin films decreases markedly, and the relative dielectric constant (r) increases from 28 up to 45.6. It was found that the dielectric loss factor (cos) decreased, and the ferroelectric properties were improved by the increase of heating rate. The figures of merit (Fv and Fm) indicate that the LiTaO3 thin film with a heating rate of 1800 °C/min is suitable for application as a high-performance pyroelectric thin-film detector. PACS 81.20.Fw; 81.40.-z; 61.10.Eq; 77.84.-s  相似文献   

8.
9.
The effect of In doping on the electroluminescence (EL) properties of Zn2SiO4:In thin films was investigated. In-doped Zn2SiO4 thin films were deposited on BaTiO3 substrates and their EL properties were characterized in this study. X-ray powder diffraction patterns of In-doped Zn2SiO4 powders revealed a single phase of Zn2SiO4 for In concentrations up to approximately 1.5 mol%, whereas a secondary phase of In2O3 was observed for In concentrations in the range of 2–10 mol%. The maximum luminance of thin film electroluminescent (TFEL) devices varied significantly with the amount of In doping. The highest luminance with blue emission was obtained when 2 mol% In was doped. The blue emission of In-doped Zn2SiO4 thin film may be related to the In substitution for Zn. The 2 mol% In-doped Zn2SiO4 thin film exhibited blue emission with CIE color coordinates of x=0.208 and y=0.086.  相似文献   

10.
The microstructure, and the electrical and optical properties of undoped zinc oxide (ZnO) and cadmium-doped ZnO (CZO) films deposited by a sol–gel method have been investigated. The films have a polycrystalline structure with hexagonal wurtzite ZnO. Scanning electron microscopy (SEM) images indicated that the films have a wrinkle network with uniform size distributions. The elemental analyses of the CZO films were carried out by energy dispersive X-ray analysis. The fundamental absorption edge changed with doping. The optical band gap of the films decreased with Cd dopant. The optical constants of the films such as refractive index, extinction coefficient and dielectric constants changed with Cd dopant. A two-probe method was used to investigate the electrical properties, and the effect of Cd content on the electrical properties was investigated. The electrical conductivity of the films was improved by incorporation of Cd in the ZnO film.  相似文献   

11.
Thin films of Ag–ZnO samples deposited on glass substrates with a different percentage of Ag content (1, 2, and 3 at%) were synthesized, at room temperature, by a dip-coating sol-gel method. The obtained samples are hexagonal wurtzite structure. The average grain size of deposits is about 5 nm. Up to 3 at%, c-axis lattice parameter shifts toward a higher value, which indicates that silver atoms replace Zn atoms in the crystal lattice. As shown by the DRX spectra, growth rate in the (101) direction is favored by the presence of silver ions in the ZnO. The layers present a homogeneous crystallites distribution, as we can remark it on SEM micrographs and exhibit a very low roughness according to AFM images. The entire samples exhibit a transmission value greater than 80 %, in the visible region, while the maximum is obtained for those doped at 2 at%. Energy band varies between 3.15 eV and 3.25 eV. The wider gap obtained is that of the ZnO layer doped with 2 at%. It is worth noting a strong UV emission observed on PL spectrum, performed at very low temperature (liquid nitrogen temperature), for silver doped ZnO compared to that of pure ZnO.  相似文献   

12.
Undoped and Mn-doped ZnO samples with different percentages of Mn content (1, 5 and 10?at%) were synthesized by a dip-coating sol?Cgel method. We have studied the structural, chemical and optical properties of the samples by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-visible spectroscopy. The XRD spectra show that all the samples are hexagonal wurtzite structures. We note that doping favors c-axis orientation along (002) planes. Up to 5?at% of Mn doping level, the c-axis lattice parameter shifts towards higher values with the increase of manganese content in the films. The expansion of the lattice constant of ZnO?CMn indicates that Mn is really doped into the ZnO. The SEM investigations of all samples revealed that the crystallites are of nanometer size. The surface quality of the ZnO?CMn film increases with Mn doping but no significant change of the grain size is observed from SEM images. The transmittance spectra show that the transparency of all the samples is greater than 85?%. We note, also, that a small doping (1?%) lowered the refractive index while the thickness of the layers and the gap increase. However, on raising the proportion of Mn beyond 5?%, practically the same values of index and gap as pure ZnO are found.  相似文献   

13.
Transparent conductive Al-doped zinc oxide (AZO) thin films were prepared by a sol–gel method and their structural, electrical and optical properties were systematically investigated. A minimum resistivity of 4.2 × 10−3 Ω cm was obtained for the 650 °C-annealed films doped with 1.0 at.% Al. All films had the preferential c-axis oriented texture according to the X-ray diffraction (XRD) results. Optical transmittance spectra of the films showed a high transmittance of over 85% in the visible region and the optical band gap of the AZO films broadened with increasing doping concentration.  相似文献   

14.
15.
Undoped and doped ZnO thin films were prepared by sol–gel method and deposited on tin-doped indium oxides (ITO) substrate using spin coating technique. The effects of Sn and Sb dopants on structural and optical properties were investigated. The starting material was zinc acetate dihydrate, 2-methoxyethanol was used as solvent and monoethanolamine (MEA) as stabilizer. ZnO films were doped with 2% and 7% Sn and Sb concentrations. Optical measurements show an important effect of Sn and Sb dopants on optical band gap.  相似文献   

16.
(CdO)1?x–(InO3/2)x thin films were deposited on glass substrates by the sol–gel method. The precursor solutions for the mixed oxide films were obtained from the mixture of the precursor solutions for CdO and In2O3 prepared separately. The investigated In atomic concentrations in the solution, x, were 0.0, 0.16, 0.33, 0.50, 0.67, 0.84, and 1. X-ray diffraction measurements showed that the films were mainly constituted of CdO, In2O3, and CdIn2O4. CdO and In2O3 were obtained for x=0 and 1, respectively. For x=0.67, which is the stoichiometric composition of the CdIn2O4 compound, only this oxide was formed. CdO and CdIn2O4 crystals were obtained in the Cd-rich region, whereas In2O3 and CdIn2O4 crystals were formed in the In-rich region. The PL spectra at 15 K for CdO showed the presence of two main emission bands at energies close to 2.2 and 3.0 eV. A blue-shift of these bands took place for increasing In concentration, which is related to the increase in the band gap energy of the mixed system in going from CdO, with a band gap energy of 2.46 eV, to CdIn2O4, with 3.2 eV, to In2O3, with 3.6 eV.  相似文献   

17.
ZnO micro-tori and cerium-doped hexangulars ZnO have been prepared by the sol–gel method under methanol hypercritical conditions of temperature and pressure. X-ray diffraction (XRD) measurement has revealed the high crystalline quality and the nanometric size of the samples. Scanning electron microscopy (SEM) has shown that the ZnO powder has a torus-like shape while that of ZnO:Ce has a hexangular-like shape, either standing free or inserted into the cores of ZnO tori. Transmission electron microscopy (TEM) has revealed that the ZnO particles have sizes between 25 and 30 nm while Ce-doped ZnO grains have diameters ranging from 75 nm to 100 nm. It is demonstrated from photoluminescence (PL) spectra at room temperature that the introduction of cerium in ZnO reduces the emission intensity lines, particularly the ZnO red and green ones.  相似文献   

18.
We prepared nickel oxide (NiO) thin films with p-type Cu dopants (5 at%) using a sol–gel solution process and investigated their structural, optical, and electrical characteristics by X-ray diffraction (XRD), atomic force microscopy (AFM), optical transmittance and current–voltage (IV) characteristics. The crystallinity of the NiO films improved with the addition of Cu dopants, and the grain size increased from 38 nm (non-doped) to 50 nm (Cu-doped). The transmission of the Cu-doped NiO film decreased slightly in the visible wavelength region, and the absorption edge of the film red-shifted with the addition of the Cu dopant. Therefore, the width of the optical band gap of the Cu-doped NiO film decreased as compared to that of the non-doped NiO film. The resistivity of the Cu-doped NiO film was 23 Ω m, which was significantly less than that of the non-doped NiO film (320 Ω m). Thus, the case of Cu dopants on NiO films could be a plausible method for controlling the properties of the films.  相似文献   

19.
Highly transparent and homogeneous nanocrystalline ZrO2 thin films were prepared by the sol–gel dip coating method. The X-ray diffraction (XRD) pattern of ZrO2 thin films calcined in air, O2 or N2 shows the formation of tetragonal phase with varying crystallite size. X-ray photoelectron spectroscopy (XPS) gives Zr 3d and O 1s spectra of thin film annealed in air, which reveal zirconium suboxide component (ZrOx, 0<x<2), Zr–O bond and surface defects. An average transmittance greater than 85% (in UV–vis region) is observed in all calcined samples. Photoluminescence (PL) reveals an intense emission peak at 379 nm and weak peaks at 294, 586 and 754 nm for ZrO2 film calcined in air. An enhancement of PL intensity and red-shift is observed in films calcined in O2 and N2 atmosphere. This is due to the reconstruction of zirconium nanocrystal interfaces and vacancies, which help passivate the non-radiative defects. The oxygen deficient defect, which is due to the distorted Zr–O bond, is suggested to be responsible for photoluminescence. The defect states in the nanocrystalline zirconia thin films play an important role in the energy transfer process. The luminescence defects in the film make it suitable for gas sensors development and tunable lasers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号