首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report some electric field controlled photorefractive higher-order diffraction phenomena of a paraelectric phase potassium lithium tantalate niobate crystal doped with iron. In experiments, a p-polarized semiconductor laser (532 nm) was used to record grating at a small incident angle. Higher-order diffraction images were observed when the signal beam was focused behind and in front of the crystal. Then the higher-order diffraction images were reconstructed by a p-polarized He–Ne laser (632.8 nm) in the direction perpendicular to the surface. The higher-order diffraction images could be controlled by the external electric field. A theory about the higher-order diffraction images of the K and 2K grating is developed. The results show that the even order diffraction images of the K grating and the odd order diffraction of the 2K grating overlap each other. The odd order diffraction images of the K grating are diffracted in unattached direction. The electric field controlled higher-order diffraction image provides a useful method for optical information processing.  相似文献   

2.
New proton-conductive polyamide oligomers, oligomeric poly[(1, 2-propanediamine)-alt-(oxalic acid)], were synthesized to investigate the proton transport properties of bulk and thin films. The obtained oligomers were characterized by the X-ray diffraction, FT-IR spectra, 1H NMR, Matrix Assisted Laser Desorption/Ionization Time of Flight (MALDI-TOF) mass spectrum, and electrical conductivity measurements. The bulk proton conductivity is 3.0 × 10? 4 S cm? 1 at the relative humidity (RH) of 80%. The proton conductivity of thin film is relatively higher than that of bulk sample. Thickness dependence of the proton conductivity was observed in these thin films. The maximum proton conductivity of the thin film is 4.0 × 10? 3 S cm? 1 at the relative humidity (RH) of 80%, which is higher one order magnitude than that of the bulk sample. The activation energies of bulk and 200 nm thick film are 1.0 and 0.69 eV at the RH of 60%, respectively.  相似文献   

3.
High speed patterning of a 30 nm thick Aluminium thin film on a flexible Polyethylene Terephthalate substrate was demonstrated with the aid of Computer Generated Holograms (CGH׳s) applied to a phase only Spatial Light Modulator. Low fluence picosecond laser pulses minimise thermal damage to the sensitive substrate and thus clean, single and multi-beam, front side thin film removal is achieved with good edge quality. Interestingly, rear side ablation shows significant Al film delamination. Measured front and rear side ablation thresholds were Fth=0.20±0.01 J cm−2 and Fth=0.15±0.01 J cm−2 respectively. With laser repetition rate of 200 kHz and 8 diffractive spots, a film removal rate of R>0.5 cm2 s−1 was demonstrated during patterning with a fixed CGH and 5 W average laser power. The effective laser repetition rate was feff~1.3 MHz. The application of 30 stored CGH׳s switching up to 10 Hz was also synchronised with motion control, allowing dynamic large area multi-beam patterning which however, slows micro-fabrication.  相似文献   

4.
We reported on the ablation depth control with a resolution of 40 nm on indium tin oxide (ITO) thin film using a square beam shaped femtosecond (190 fs) laser (λp=1030 nm). A slit is used to make the square, flat top beam shaped from the Gaussian spatial profile of the femtosecond laser. An ablation depth of 40 nm was obtained using the single pulse irradiation at a peak intensity of 2.8 TW/cm2. The morphologies of the ablated area were characterized using an optical microscope, atomic force microscope (AFM), and energy dispersive X-ray spectroscopy (EDS). Ablations with square and rectangular types with various sizes were demonstrated on ITO thin film using slits with varying xy axes. The stereo structure of the ablation with the depth resolution of approximately 40 nm was also fabricated successfully using the irradiation of single pulses with different shaped sizes of femtosecond laser.  相似文献   

5.
Lanthanum-modified lead zirconate titanate (Pb0.93La0.07(Zr0.3Ti0.7)0.93O3, PLZT7/30/70) thin films with and without a seeding layer of PbTiO3 (PT) were successfully deposited on indium-doped tin oxide (ITO) coated glass substrate via spin coating in conjunction with a sol–gel process, and a top transparent conducting thin film of SnO2 was also prepared in the same way. The thicknesses of PLZT and PT layers are 0.5 μm and 24 nm, respectively. The retardance of PLZT film was measured by a new heterodyne interferometer and enhanced by application of a seeding layer of PT. The Pockels linear electro-optical coefficient of PLZT film with a PT layer was determined to be 3.17 × 10?9 m/V when the refractive index is considered as 2.505, which is one order larger than 1.4 × 10?10 m/V for PLZT12/40/60 doped with Dy reported in the literature. The root-mean-square (rms) roughness of PLZT thin film with a PT layer (Rrms = 6.867 nm) was larger than that of PLZT film (Rrms = 0.799 nm). From the comparisons, the average transmittance of PLZT film with a PT seeding layer was 77.01%, which was a little smaller than that of PLZT film (around 80.75%). Experimental results imply that the PT seeding layer plays a key role in the increase of retardance value, leading to a higher Pockels coefficient.  相似文献   

6.
We investigate selective patterning of ultra-thin 20 nm Indium Tin Oxide (ITO) thin films on glass substrates, using 343, 515, and 1030 nm femtosecond (fs), and 1030 nm picoseconds (ps) laser pulses. An ablative removal mechanism is observed for all wavelengths at both femtosecond and picoseconds time-scales. The absorbed threshold fluence values were determined to be 12.5 mJ cm2 at 343 nm, 9.68 mJ cm2 at 515 nm, and 7.50 mJ cm2 at 1030 nm for femtosecond and 9.14 mJ cm2 at 1030 nm for picosecond laser exposure. Surface analysis of ablated craters using atomic force microscopy confirms that the selective removal of the film from the glass substrate is dependent on the applied fluence. Film removal is shown to be primarily through ultrafast lattice deformation generated by an electron blast force. The laser absorption and heating process was simulated using a two temperature model (TTM). The predicted surface temperatures confirm that film removal below 1 J cm−2 to be predominately by a non-thermal mechanism.  相似文献   

7.
Stable gold nanoparticles have been prepared by using soluble starch as both the reducing and stabilizing agents; this reaction was carried out at 40 °C for 5 h. The obtained gold nanoparticles were characterized by UV–Vis absorption spectroscopy, transmission electron microscopy (TEM) and z-scan technique. The size of these nanoparticles was found to be in the range of 12–22 nm as analyzed using transmission electron micrographs. The optical properties of gold nanoparticles have been measured showing the surface plasmon resonance. The second-order nonlinear optical (NLO) properties were investigated by using a continuous-wave (CW) He–Ne laser beam with a wavelength of 632.8 nm at three different incident intensities by means of single beam techniques. The nonlinear refractive indices of gold nanoparticles were obtained from close aperture z-scan in order of 10?7 cm2/W. Then, they were compared with diffraction patterns observed in far-field. The nonlinear absorption of these nanoparticles was obtained from open aperture z-scan technique. The values of nonlinear absorption coefficient are obtained in order of 10?1 cm/W.  相似文献   

8.
A study of the diffraction efficiency parameter, of holographic gratings recorded with thin emulsion layers of corn syrup (Karo®) photosensitized with potassium dichromate salt is presented. This was possible by the interference produced by amplitude division setup using two wavelengths at 473 nm and 530 nm respectively. The maximum diffraction efficiency for corn syrup with potassium dichromate films was on average in the order of 4.0% at first diffraction order. The energy that was applied at blue light was 10 times less than that applied at green light.Evolution in the behavior profile from the diffraction efficiency parameter is presented as a function of relaxation time necessary to obtain major performance of these gratings made with peculiar sweetener.Holograms with this material do not require developing processes, because these samples develop by themselves. After of exposition with light laser, is necessary wait to stabilize the material 96 h, to protect the film against the environmental humidity.  相似文献   

9.
The nonlinear optical properties of Sudan I were investigated by a single beam Z-scan technique. The Sudan I ethanol solution exhibited large nonlinear refractive indices under both CW and pulse laser excitations. The nonlinear refractive indices of Sudan I were in the order of ?10?8 cm2/W under CW 633 nm excitation and ?10?6 cm2/W under CW 488 nm excitation, respectively. Under the excitation of a pulse 532 nm laser, the nonlinear refractive index n2 was calculated to be 1.19 × 10?14 cm2/W. It was discussed that the mechanism accounting for the process of nonlinear refraction was attributed to the laser heating for the CW laser excitation and the electronic effect for the pulse excitation. Moreover, the second hyperpolarizability of Sudan I was also estimated in this paper.  相似文献   

10.
Time-resolved dynamics of plasma formation and bulk refractive-index modification in fluoride glass (ZBLAN) excited by a tightly focused femtosecond (130 fs) Ti:sapphire laser (λp=790 nm) was observed in situ. The femtosecond time-resolved pump–probe measurement with perpendicularly linear polarized beams was used to study the dynamics of both plasma formation and induced permanent structural transformation with refractive-index change. In the refractive-index domain, the lifetime of induced plasma formation is ~35 ps and structural transition time for forming the refractive-index change is ~80 ps. In the optical damage domain, however, the lifetime of induced plasma formation is ~40 ps and structural transition time for forming the optical damage is ~140 ps. We found that the process of refractive-index bulk modification is significantly different from that of optical cracks. From the diffraction efficiency of Kogelnik's coupled mode theory, the maximum value of refractive-index change (Δn) was estimated to be 1.3×10?2. By the scanning of fluoride glass on the optical X–Y–Z stages, the fabrication of internal grating with refractive-index modification was demonstrated in fluoride glass using tightly focused femtosecond laser.  相似文献   

11.
《Current Applied Physics》2010,10(2):452-456
The GZO/Ag/GZO sandwich films were deposited on glass substrates by RF magnetron sputtering of Ga-doped ZnO (GZO) and ion-beam sputtering of Ag at room temperature. The effect of GZO thickness and annealing temperature on the structural, electrical and optical properties of these sandwich films was investigated. The microstructures of the films were studied by X-ray diffraction (XRD). X-ray diffraction measurements indicate that the GZO layers in the sandwich films are polycrystalline with the ZnO hexagonal structure and have a preferred orientation with the c-axis perpendicular to the substrates. For the sandwich film with upper and under GZO thickness of 40 and 30 nm, respectively, it owns the maximum figure of merit of 5.3 × 10−2 Ω−1 with a resistivity of 5.6 × 10−5 Ω cm and an average transmittance of 90.7%. The electrical property of the sandwich films is improved by post annealing in vacuum. Comparing with the as-deposited sandwich film, the film annealed in vacuum has a remarkable 42.8% decrease in resistivity. The sandwich film annealed at the temperature of 350 °C in vacuum shows a sheet resistance of 5 Ω/sq and a transmittance of 92.7%, and the figure of merit achieved is 9.3 × 10−2 Ω−1.  相似文献   

12.
Thin films of tungsten phosphate glasses were deposited on a Pd substrate by a pulsed laser deposition method and the flux of hydrogen passed thorough the glass film was measured with a conventional gas permeation technique in the temperature range 300–500 °C. The glass film deposited at low oxygen pressure was inappropriate for hydrogen permeation because of reduction of W ions due to oxygen deficiency. The membrane used in the hydrogen permeation experiment was a 3-layered membrane and consisted of Pd film (~ 20 nm), the glass film (≤ 300 nm) and the Pd substrate (250 µm). When the pressure difference of hydrogen and thickness of the glass layer were respectively 0.2 MPa and ~ 100 nm, the permeation rate through the membrane was 2.0 × 10? 6 mol cm? 2 s? 1 at 500 °C. It was confirmed that the protonic and electronic mixed conducting glass thin film show high hydrogen permeation rate.  相似文献   

13.
The photo-induced response of an ultra thin polymeric film of poly 4′-(6-acryloxy) hexyloxy-4-methoxyazobenzene (P5) is investigated. A monolayer of P5 at a gas–water interface possesses a mean molecular area of 28.0 Å2/monomer-repeat. Multilayer films of P5 were prepared by horizontal deposition at a surface pressure of 25 mN/m2. The uniformity of the transfer process is shown by UV–vis absorption spectra where a linear relationship between the absorption maxima and the number of transferred layer was observed. The average layer thickness of the transferred film determined by XRD measurements is 34.0 Å. This is longer than the length of the azobenzene side group. The transferred film shows a blue shift of the π–π1 transition from 357 nm for the P5 in solution to 340 nm for the P5 in the film. This suggests the formation of H-aggregate with a head-to-head arrangement of the dipole within the film. The optical property of the transferred film is changed by the irradiation of the film with the UV light at 385 nm. An irreversible change in its molecular packing in the film is seen in the shift of the UV–vis absorption maxima and the change in morphology as observed by AFM. The film morphology changes from being a smooth film into an island-like surface when exposed to the UV irradiation. The layer structure in the film is destroyed. A mass transport is observed during the cis–trans thermal back isomerization process. This suggests that movement of the P5 took place in both the trans–cis isomerization process and the cis–trans back isomerization process. The first movement leads to a molecular expansion while the second, to a molecular contraction.  相似文献   

14.
The high transparency of carbon-containing materials in the spectral region of “carbon window” (λ  4.5–5 nm) introduces new opportunities for various soft X-ray microscopy applications. The development of efficient multilayer coated X-ray optics operating at the wavelengths of about 4.5 nm has stimulated a series of our imaging experiments to study thick biological and synthetic objects. Our experimental set-up consisted of a laser plasma X-ray source generated with the 2nd harmonics of Nd–glass laser, scandium-based thin-film filters, Co/C multilayer mirror and X-ray film UF-4. All soft X-ray images were produced with a single nanosecond exposure and demonstrated appropriate absorption contrast and detector-limited spatial resolution. A special attention was paid to the 3D imaging of thick low-density foam materials to be used in design of laser fusion targets.  相似文献   

15.
Undoped and Erbium (Er) doped zinc oxide (EZO) thin films were deposited on glass substrate by sol–gel method using spin coating technique with different doping concentration. EZO films were characterized using X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), UV–VIS-NIR transmission and single beam z scan method under illumination of frequency doubled Nd:YAG laser. The deposited films were found to be well crystallized with hexagonal wurtzite structure having a preferential growth orientation along the ZnO (002) plane. A blue-shift was observed in the band gap of EZO films with increasing Er concentration. All the films exhibited a negative value of nonlinear refractive index (n2) at 532 nm which is attributed to the two photon absorption and weak free carrier absorption. Third order nonlinear optical susceptibility, χ(3) values of EZO films were observed in the remarkable range of 10? 6 esu. EZO (0.4 at.%) sample was found to be the best optical limiter with limiting threshold of 1.95 KJ/cm2.  相似文献   

16.
Chromotrope 2R (CHR) films of different thicknesses have been prepared using spin coater. The material has been characterized using FT-IR, DTA and X-ray diffraction. The XRD of the material in powder and thin film forms showed polycrystalline structure with triclinic phase. Preferred orientation at the (1 1 4) plane is observed for the deposited films. Initial indexing of the XRD pattern was performed using “Crystalfire” computer program. Miller indices, h k l, values for each diffraction line in X-ray diffraction (XRD) spectrum were calculated and indexed for the first time. The DTA thermograms of CHR powder have been recorded in the temperature range 25–350 °C with different heating rates. The spectra of the infra-red absorption allow characterization of vibration modes for the powder and thin film. The effect of film thickness on the optical properties has been studied in the UV-visible-NIR regions. The films show high transmittance exceeding 0.90 in the NIR region λ > 800 nm. The intensity of the absorption peaks for λ < 800 nm are enhanced as the film thickness increase. The absorption bands are attributed to the (π–π*) and (n–π*) molecular transitions. The optical properties have been analyzed according to the single-oscillator model and the dispersion energy parameters as well as the free charge carrier concentration have been determined. The optical energy gap as well as the oscillator strength and electric dipole strength have been calculated.  相似文献   

17.
We report the effects of BSO addition on the crystallinity, texture, and the field dependency of critical current density (Jc) of GdBCO coated conductors (CCs) prepared by pulsed laser deposition (PLD). Undoped and BSO-doped GdBCO films showed only c-axis oriented growth, and the incorporated BSO nanorods exhibited epitaxial relationship with the GdBCO matrix. In comparison with undoped film, BSO-doped GdBCO film exhibited greatly enhanced Jc and higher pinning force densities in the entire field region of 0–5 T (H//c) at 77 and 65 K. The BSO-doped GdBCO film showed the maximum pinning force densities (Fp) of 6.5 GN/m3 (77 K, H//c) and 32.5 GN/m3 (65 K, H//c), ~2.8 times higher than those of the undoped sample. Cross-sectional TEM analyses exhibited nano-structured BSO nanorods roughly aligned along the c-axis of the GdBCO film, which are believed effective flux pinning centers responsible for strongly improved critical current densities in magnetic fields.  相似文献   

18.
A novel organometallic compound, ethyltriphenylphosphonium bis(2-thioxo-1,3-dithiole-4,5-dithiolato)aurate (III), abbreviated as TPEPADT, was synthesized. The TPEPADT doped poly(methyl methacrylate) (PMMA) thin film with a mass fraction of 1% (1 wt.%) was prepared by using a spin-coating method. The third-order nonlinear optical properties of TPEPADT in acetonitrile solution and TPEPADT-doped PMMA thin film were investigated by using the laser Z-scan technique at the wavelength 1064 nm with laser duration of 20 ps. The linear refractive index of the polymer thin film was also studied. The Z-scan curves revealed that both TPEPADT in acetonitrile solution and the polymer thin film possessed negative nonlinear refraction, exhibiting a self-defocusing effect and nonlinear absorption was negligible under the experimental conditions used. The nonlinear refractive index was calculated to be ?1.9 × 10?18 m2/W for TPEPADT in acetonitrile solution and ?8.9 × 10?15 m2/W for the polymer thin film. These results suggest that TPEPADT have potential for the application of all-optical switching devices.  相似文献   

19.
Low level laser therapy (LLLT) is known for its positive results but studies on the biological and biomodulator characteristics of the effects produced in the skeletal muscle are still lacking. In this study the effects of two laser dosages, 5 or 10 J/cm2, on the lesioned tibial muscle were compared. Gerbils previously lesioned by 100 g load impact were divided into three groups: GI (n = 5) controls, lesion non-irradiated; GII (n = 5), lesion irradiated with 5 J/cm2 and GIII (n = 5), lesion irradiated with 10 J/cm2, and treated for 7 consecutive days with a laser He–Ne (λ = 633 nm). After intracardiac perfusion, the muscles were dissected and reduced to small fragments, post-fixed in 1% osmium tetroxide, dehydrated in increasing alcohol concentrations, treated with propylene oxide and embedded in Spurr resin at 60 °C. Ultrafine cuts examined on a transmission electron microscope (Jeol 1010) revealed in the control GI group a large number of altered muscle fibers with degenerating mitochondria, intercellular substance containing degenerating cell fragments and budding blood capillaries with underdeveloped endothelial cells. However, groups GII and GIII showed muscle fibers with few altered myofibrils, regularly contoured mitochondria, ample intermembrane spaces and dilated mitochondrial crests. The clean intercellular substance showed numerous collagen fibers and capillaries with multiple abluminal processes, intraluminal protrusions and several pinocytic vesicles in endothelial cells. It was concluded that laser dosages of 5 or 10 J/cm2 delivered by laser He–Ne (λ = 633 nm) during 7 consecutive days increase mitochondrial activity in muscular fibers, activate fibroblasts and macrophages and stimulate angiogenesis, thus suggesting effectivity of laser therapy under these experimental conditions.  相似文献   

20.
We describe a continuous-wave, low-threshold Tm:YAlO3 (Tm:YAP) laser operating at 1945 nm with incident threshold pump powers in the 10–20 mW range. The z-cavity containing a 2-mm-long Tm:YAP crystal with 4 at.% Tm3+ concentration was end pumped by a continuous-wave Ti:sapphire laser at 795 nm. Tight focusing of the pump and the laser beams enabled low-threshold operation. The power performance of two different cavity configurations with 5-cm radius (R = 5 cm cavity) and 10-cm radius (R = 10 cm cavity) curved mirrors was tested. The best performance was obtained with the R = 10 cm configuration, where, the incident threshold pump power could be lowered to 10 mW after optimizing the polarization direction of the pump beam and by employing double pumping. Theoretical estimation of the threshold power was in good agreement with the experimental observations. The laser could be further tuned from 1842 to 1994 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号