首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
We report flow visualisations and laser Doppler anemometry (LDA) velocity measurements in the near field of two swirling jets. The Reynolds number based on jet diameter and bulk velocity at the nozzle exit is 1.4 × 105. In the first jet, a small recirculation region is formed around the jet axis, while, in the second, the streamwise velocity remains positive and overshoots near the jet centre. In both cases, flow visualisations show that the vortex core of the jets is depleted of seeding particles. By using time-averaged distributions of the streamwise and tangential velocities measured at the nozzle outlet, the dynamics of the particles is simulated, by integrating their simplified equations of motion. The particles trajectory thus computed agrees well with that observed in the flow visualisations. Although the turbulence intensity is substantially different in the core of the two jets, its effect on the seeding concentration is localised near the edge of the core.  相似文献   

2.
The mean velocity field and skin friction characteristics of a plane turbulent wall jet on a smooth and a fully rough surface were studied using Particle Image Velocimetry. The Reynolds number based on the slot height and the exit velocity of the jet was Re = 13,400 and the nominal size of the roughness was k = 0.44 mm. For this Reynolds number and size of roughness element, the flow was in the fully rough regime. The surface roughness results in a distinct change in the shape of the mean velocity profile when scaled in outer coordinates, i.e. using the maximum velocity and outer half-width as the relevant velocity and length scales, respectively. Using inner coordinates, the mean velocity in the lower region of the inner layer was consistent with a logarithmic profile which characterizes the overlap region of a turbulent boundary layer; for the rough wall case, the velocity profile was shifted downward due to the enhanced wall shear stress. For the fully rough flow, the decay rate of the maximum velocity of the wall jet is increased, and the skin friction coefficient is much larger than for the smooth wall case. The inner layer is also thicker for the rough wall case. The effects of surface roughness were observed to penetrate into the outer layer and slightly enhance the spread rate for the outer half-width, which was not observed in most other studies of transitionally rough wall jet flows.  相似文献   

3.
The effect of sidewalls on rectangular jets   总被引:1,自引:0,他引:1  
An experimental study is presented regarding the influence of sidewalls on the turbulent free jet flow issuing from a smoothly contracting rectangular nozzle of aspect ratio 15. “Sidewalls” are two parallel plates, flush with each of the slots’ short sides, practically establishing bounding walls extending the nozzle sidewalls in the downstream direction. Measurements of the streamwise and lateral velocity mean and turbulent characteristics have been accomplished, with an x-sensor hot wire anemometer, up to an axial distance of 35 nozzle widths, for jets with identical inlet conditions with and without sidewalls. Centreline measurements for both configurations have been collected for three Reynolds numbers, ReD = 10,000, 20,000 and 30,000. For ReD = 20,000 measurements in the transverse direction were collected at 13 different downstream locations in the range, x = 0–35 nozzle widths, and in the spanwise direction at three different downstream locations, x = 2, 6 and 25 nozzle widths.Results indicate that, the two jet configurations (with and without sidewalls) produce statistically different flow fields. Sidewalls do not lead to the production of a 2D flow field as undulations in the spanwise mean velocity distribution indicate. They do increase the two-dimensionality of the jet increasing the longevity of 2D spanwise rollers structures formed in the initial stages of entrainment, which are responsible for the convection of longitudinal momentum towards the outer field, establishing larger streamwise mean velocities at the jet edges. In the near field, up to 25 nozzle widths, lower outward lateral velocities in the presence of the sidewalls are held responsible for the decrease of turbulent terms including rms of velocity fluctuations and Reynolds stresses. Skewness factors increase monotonically across the shear layers from negative values to positive forming sharp peaks at the outer edges of the jet, illustrative of the presence of well defined 2D roller structures in the jet with sidewalls.  相似文献   

4.
The mean wake of a surface-mounted finite-height square prism was studied experimentally in a low-speed wind tunnel to explore the combined effects of incidence angle (α) and aspect ratio (AR). Measurements of the mean wake velocity field were made with a seven-hole pressure probe for finite square prisms of AR = 9, 7, 5 and 3, at a Reynolds number of Re = 3.7 × 104, for incidence angles from α = 0° to 45°. The relative thickness of the boundary layer on the ground plane, compared to the prism width, was δ/D = 1.5. As the incidence angle increases from α = 0° to 15°, the mean recirculation zone shortens and the mean wake shifts in the direction opposite to that of the mean lift force. The downwash is also deflected to this side of the wake and the mean streamwise vortex structures in the upper part of the wake become strongly asymmetric. The shortest mean recirculation zone, and the greatest asymmetry in the mean wake, is found at the critical incidence angle of αcritical  15°. As the incidence angle increases from α = 15° to 45°, the mean recirculation zone lengthens and the mean streamwise vortex structures regain their symmetry. These vortices also elongate in the wall-normal direction and become contiguous with the horseshoe vortex trailing arms. The mean wake of the prism of AR = 3 has some differences, such as an absence of induced streamwise vorticity near the ground plane, which support its classification as lying below the critical aspect ratio for the present flow conditions.  相似文献   

5.
The vortical evolutions and spreading characteristics of a low-speed plane jet under anti-symmetric long-wave excitations are investigated experimentally. The perturbation is introduced with two oscillating strips located at the nozzle exit. The experiments were operated at Reynolds number of 8.2 × 103 based on the nozzle exit height. Mixing and spreading properties are influenced obviously by long-wave excitation after the end of potential core. The increments of half-width, momentum thickness, and volume flow rate depend on the excitation frequency. The results of flow visualization also reveal the dependence of excitation frequency. The power spectra of fluctuating velocities shows that the evolution of coherent structure is significantly influenced by the long-wave excitation in the downstream, but it is similar to the natural jet in the near field. The long-wave excitation at certain frequencies can promote large-scaled anti-symmetric vortical structures in the far field.  相似文献   

6.
Measurements of mean and turbulence quantities are presented for a curved wake of an airfoil. The wake is generated by placing a NACA 0012 airfoil of 0.150 m chord length at one chord length upstream of a 90° bend. The bend has a square cross-section of 0.457 m × 0.457 m, a mean radius-to-height ratio of R/H=1.17, and concave and convex radii of curvature 0.764 and 0.307 m, respectively. In addition to streamwise curvature, the wake is subjected to varying streamwise and radial pressure. The measurements were carried out at mainstream air velocities of 10, 15 and 20 m/s. The results are presented for the mean streamwise velocity, five components of turbulence stresses, the calculated wake half-width and the maximum velocity defect. The results showed the formation of an asymmetric wake about the wake centreline, with a larger wake half-width on the inner side. The wake half-width on both inner side and outer side of the wake decrease with mainstream velocity, whereas the maximum velocity defect, turbulence stresses increase with mainstream velocity. The turbulence stresses are enhanced on the inner side but suppressed on the outer side.  相似文献   

7.
Using direct numerical simulation (DNS) data, this study appraises existing scaling laws in literature for turbulent natural convection of air in a differentially heated vertical channel. The present data is validated using past DNS studies, and covers a range of Rayleigh number, Ra between 5.4 × 105 and 2.0 × 107. We then appraise and compare the various scaling laws proposed by Versteegh and Nieuwstadt, 1999, Hölling and Herwig, 2005, Shiri and George, 2008, George and Capp, 1979 with the profiles of the mean temperature defect, mean streamwise velocity, normal velocity fluctuations, temperature fluctuations and Reynolds shear stress. Based on the arguments of an inner (near-wall) and outer (channel centre) region, the data is found to support a minus one-third power law for the mean temperature in an overlap region. Using the inner and outer temperature profiles, an implicit heat transfer equation is obtained and we show that a correction term is non-negligible for the present Ra range when compared with explicit equations found in literature. In addition, we determined that the mean streamwise velocity and normal velocity fluctuations collapse in the inner region when using the outer velocity scale. We also find that the temperature fluctuations scale in inner coordinates, in contrast to the outer scaling behaviour reported in the past. Lastly, we show evidence of an incipient proportional relationship between friction velocity, uτ, and the outer velocity scale, uo, with increasing Ra.  相似文献   

8.
The experimental and theoretical researches on the radial jet of two opposed jets have been carried out in this paper. The radial velocities of opposed jets with various exit velocities, nozzle diameters and nozzle separations were measured experimentally by a hot-wire anemometer (HWA). The results show that, the normalized radial velocities are self-similar across various radial sections at r ? 1.5D and the radial velocity profiles can be described by a Gaussian distribution function. The half-width increases linearly with increasing radial distance at r ? 1.5D, and spreading rates of radial jet are about 0.121. The normalized radial velocity at impingement plane increases firstly, and then decreases with the increasing normalized radial distance. The normalized radial velocity is independent on nozzle diameter, nozzle separation and exit velocity. The maximum radial velocity at impingement plane is proportional to the exit velocity, and it is inversely proportional to the 0.551th power of the normalized nozzle separation. The position of the maximum radial velocity increases with the nozzle separation at L/D < 1, and keeps invariant at L/D ? 1.  相似文献   

9.
This work presents the investigation for an organized turbulent structure in a drag-reducing flow of dilute surfactant solution by utilizing a particle image velocimetry system to perform the pattern recognition technique on a trajectory in four quadrants of streamwise and wall-normal velocity fluctuations. The pattern recognition is added to a new algorithm in order to directly capture the spatial rotation motion. The Reynolds number based on the channel height and bulk mean velocity was set to 1.5 × 104. Surfactant solution with a weight concentration of 150 ppm was employed and the drag reduction rate was 65%. In the drag-reducing flow, we observe increased frequencies of occurrence of the flow events that correspond to a meandering motion in the wall-normal direction of the high-and low-speed regions. Three findings from investigation of the ensemble-averaged Reynolds shear stress and vortex structure are as follows: (i) the Reynolds shear stress in the large fluctuation range occurs in the narrow region; (ii) Size, strength, arrangement and inclination in the spatial vortex structure in the drag-reducing flow differ from those of the water; and (iii) all trajectory contributions for the wall friction coefficient decrease. Finally, we interpreted that the viscoelasticity characterizing the viscoelastic stress and relaxation time in rheological properties of the flow changes specific elementary vortex for the drag-reducing flow, and the trajectories of each flow pattern change drastically.  相似文献   

10.
A circular water jet (Re = 1.6 × 105; We = 8.8 × 103) plunging at shallow angles (θ  12.5°) into a quiescent pool is investigated computationally and experimentally. A surprising finding from the work is that cavities, of the order of jet diameter, are formed periodically in the impact location, even though the impinging flow is smooth and completely devoid of such a periodicity. Computational prediction of these frequencies was compared with experimental findings, yielding excellent agreement. The region in the vicinity of the impact is characterized by strong churning due to splashing and formation of air cavities. Measured velocity profiles indicate a concentration of momentum beneath the free surface slightly beyond the impact location (X/Dj  14), with a subsequent shift towards the free surface further downstream of this point (X/Dj  30). This shift is due primarily to the action of buoyancy on the cavity/bubble population. Comparisons of the mean velocity profile between simulations and experiments are performed, yielding good agreement, with the exception of the relatively small churning flow region. Further downstream (X/Dj  40), the flow develops mostly due to diffusion and the location of peak velocity coincides with the free surface. In this region, the free surface acts as an adiabatic boundary and restricts momentum diffusion, causing the peak velocity to occur at the free surface.  相似文献   

11.
An experimental study was conducted to investigate the effect of bottom wall heating on the flow structure inside a horizontal square channel at low Reynolds numbers (Re) and high Grashof numbers (Gr). The flow field was found to be complex and three-dimensional due to the interactions of buoyancy-induced rising plumes of warm fluid, falling parcels of cold fluid and the shear flow. The mean streamwise velocity profiles were altered by bottom wall heating; and back flow was induced in the upper half of the channel when Gr/Re2 > 55. The bottom wall temperatures were found to have more significant influence on the turbulent velocity magnitudes than the flow rate. The Reynolds stress became negative in the channel core region indicating the momentum transfer from the turbulent velocity field to the buoyancy field. The POD analysis revealed the presence of convective cells primarily in the lower half of the channel.  相似文献   

12.
Flow control using zero-net-mass-flow jets in an S-shaped diffusing duct was investigated. Experiments were conducted in a channel flow facility at a Reynolds number, Re = 4.1 × 104 with particle image velocimetry measurements in the symmetry plane of the duct. In the natural configuration, separation of the boundary layer occurs in a region of the duct with an high degree of curvature. A stability analysis of the wall normal base flow at the location of the applied control is presented and estimates the most effective frequency of the actuator. Time-averaged velocity fields show total reattachment of the boundary layer using active flow control.  相似文献   

13.
A computational fluid dynamics (CFD) model is used to investigate the hydrodynamics of a gas–solid fluidized bed with two vertical jets. Sand particles with a density of 2660 kg/m3 and a diameter of 5.0 × 10?4 m are employed as the solid phase. Numerical computation is carried out in a 0.57 m × 1.00 m two-dimensional bed using a commercial CFD code, CFX 4.4, together with user-defined Fortran subroutines. The applicability of the CFD model is validated by predicting the bed pressure drop in a bubbling fluidized bed, and the jet detachment time and equivalent bubble diameter in a fluidized bed with a single jet. Subsequently, the model is used to explore the hydrodynamics of two vertical jets in a fluidized bed. The computational results reveal three flow patterns, isolated, merged and transitional jets, depending on the nozzle separation distance and jet gas velocity and influencing significantly the solid circulation pattern. The jet penetration depth is found to increase with increasing jet gas velocity, and can be predicted reasonably well by the correlations of Hong et al. (2003) for isolated jets and of Yang and Keairns (1979) for interacting jets.  相似文献   

14.
Hybrid large-eddy type simulations for chevron nozzle jet flows are performed at Mach 0.9 and Re = 1.03 × 106. Without using any subgrid scale model (SGS), the numerical approach applied in the present study is essentially implicit large-eddy simulation (ILES). However, a Reynolds-averaged Navier–Stokes (RANS) solution is patched into the near wall region. This makes the overall solution strategy hybrid RANS–ILES. The disparate turbulence length scales, implied by these different modeling approaches, are matched using a Hamilton–Jacobi equation. The complex geometry features of the chevron nozzles are fully meshed. With numerical fidelity in mind, high quality, hexahedral multi-block meshes of 12.5 × 106 cells are used. Despite the modest meshes, the novel RANS–ILES approach shows encouraging performance. Computed mean and second-order fluctuating quantities of the turbulent near field compare favorably with measurements. The radiated far-field sound is predicted using the Ffowcs Williams and Hawkings (FW–H) surface integral method. Encouraging agreement of the predicted far-field sound directivity and spectra with measurements is obtained.  相似文献   

15.
An experimental study using Particle Image Velocimetry (PIV) on free jets issuing from different orifice plate (OP) nozzles is reported. Mean velocity, turbulence intensity and higher order profiles relevant for large and small scale mixing are considered in the near field and interaction zone (0 < X/D < 20). This is done to determine mixing enhancement due to rectangular, squared, elliptic and triangular nozzles in comparison to circular nozzle results in two orthogonal planes. The effect of Reynolds number on the differences among the nozzle shapes is also considered by performing measurements just after laminar–turbulent transition (Re = 8000) and in the fully turbulent regime (Re = 35,000). The results at low Reynolds number show two classes of jets, i.e. at one side, those closer to axial-symmetric conditions, as circular, square and triangular jets, whereas on the other side those with elongated nozzles as rectangular and elliptic. The reason for the different behavior of the latter is connected to the phenomenon of axis-switching which allows a rearrangement of turbulence over the different velocity components and directions. However, for the highest Reynolds number investigated, all nozzles show similar behavior especially in the jet far field (X/D > 10), thus suggesting a significant Reynolds number dependence of the results.  相似文献   

16.
Numerical investigation is made for three-dimensional fluid flow and convective heat transfer from an array of solid and perforated fins that are mounted on a flat plate. Incompressible air as working fluid is modeled using Navier–Stokes equations and RNG based k ? ? turbulent model is used to predict turbulent flow parameters. Temperature field inside the fins is obtained by solving Fourier’s conduction equation. The conjugate differential equations for both solid and gas phase are solved simultaneously by finite volume procedure using SIMPLE algorithm. Perforations such as small channels with square cross section are arranged streamwise along the fin’s length and their numbers varied from 1 to 3. Flow and heat transfer characteristics are presented for Reynolds numbers from 2 × 104 to 4 × 104 based on the fin length and Prandtl number is taken Pr = 0.71. Numerical computations are validated with experimental studies of the previous investigators and good agreements were observed. Results show that fins with longitudinal pores, have remarkable heat transfer enhancement in addition to the considerable reduction in weight by comparison with solid fins.  相似文献   

17.
Laboratory experiments were carried out to study the effects of sand particles on circular sand–water wall jets. Mean and turbulence characteristics of sand particles in the sand–water wall jets were measured for different sand concentrations co ranging from 0.5% to 2.5%. Effects of sand particle size on the centerline sand velocity of the jets were evaluated for sand size ranging from 0.21 mm to 0.54 mm. Interesting results with the range of measurements are presented in this paper. It was found that the centerline sand velocity of the wall jets with larger particle size were 15% higher than the jets with smaller particle size. Concentration profiles in the vertical direction showed a peak value at x/d = 5 (where x is the longitudinal distance from the nozzle and d is the nozzle diameter) and the sand concentration decreased linearly for x/d > 5. Experimental results showed that the turbulence level enhanced from the nozzle to x/d = 10. For sand–water wall jets with a higher concentration (co = 1.5–2.5%), the turbulence intensity became smaller than the corresponding single-phase wall jets by 34% due to turbulent modulation. A modified logarithmic formulation was introduced to model the longitudinal turbulent intensity at the centerline and along the axis of the jet.  相似文献   

18.
In the present study, flow control mechanism of single groove on a circular cylinder surface is presented experimentally using Particle image velocimetry (PIV). A square shaped groove is patterned longitudinally on the surface of the cylinder with a diameter of 50 mm. The flow characteristics are studied as a function of angular position of the groove from the forward stagnation point of the cylinder within 0°  θ  150°. In the current work, instantaneous and time-averaged flow data such as vorticity, ω streamline, Ψ streamwise, u/Uo and transverse, v/Uo velocity components, turbulent kinetic energy, TKE and RMS of streamwise, urms and transverse, vrms velocity components are utilized in order to present the results of quantitative analyses. Furthermore, Strouhal numbers are calculated using Karman vortex shedding frequency, fk obtained from single point spectral analysis. It is concluded that a critical angular position of the groove, θ = 80° is observed. The flow separation is controlled within 0°  θ < 80°. At θ = 80°, the flow separation starts to occur in the upstream direction. The instability within the shear layer is also induced on grooved side of the cylinder with frequencies different than Karman vortex shedding frequency, fk.  相似文献   

19.
An experimental study of a fully developed turbulent channel flow and an adverse pressure gradient (APG) turbulent channel flow over smooth and rough walls has been performed using a particle image velocimetry (PIV) technique. The rough walls comprised two-dimensional square ribs of nominal height, k = 3 mm and pitch, p = 2k, 4k and 8k. It was observed that rib roughness enhanced the drag characteristics, and the degree of enhancement increased with increasing pitch. Similarly, rib roughness significantly increased the level of turbulence production, Reynolds stresses and wall-normal transport of turbulence kinetic energy and Reynolds shear stress well beyond the roughness sublayer. On the contrary, the distributions of the eddy viscosity, mixing length and streamwise transport of turbulence kinetic energy and Reynolds shear stress were reduced by wall roughness, especially in the outer layer. Adverse pressure gradient produced a further reduction in the mean velocity (in comparison to the results obtained in the parallel section) but increased the wall-normal extent across which the mean flow above the ribs is spatially inhomogeneous in the streamwise direction. APG also reinforced wall roughness in augmenting the equivalent sand grain roughness height. The combination of wall roughness and APG significantly increased turbulence production and Reynolds stresses except in the immediate vicinity of the rough walls. The transport velocities of the turbulence kinetic energy and Reynolds shear stress were also augmented by APG across most part of the rough-wall boundary layer. Further, APG enhanced the distributions of the eddy viscosity across most of the boundary layer but reduced the mixing length outside the roughness sublayer.  相似文献   

20.
Turbulence modulation by the inertia particles in a spatially developing turbulent boundary layer flow over a hemisphere-roughened wall was investigated using the direct numerical simulation method. The Eulerian and Lagrangian approaches were used for the gas- and particle-phases, respectively. An immersed boundary method was employed to resolve the hemispherical roughness element. The hemispheres were staggered in the downstream direction and arranged periodically in the streamwise and spanwise directions with spacing of px/d= 4 and pz/d= 2 (where px and pz are the streamwise and spanwise spacing of the hemispheres, and d is the diameter). The effects of particles on the turbulent coherent structures, turbulent statistics and quadrant events were analyzed. The results show that the addition of particles significantly damps the vortices structures and increases the length scales of streak structures. Compared with the particle-laden flow over the smooth wall, the existence of the wall roughness decreases the mean streamwise velocity in the near wall region, and makes the peaks of Reynolds stresses profiles shift up. In addition, the existence of particles also increases the percentage contributions to Reynolds shear stress from the Q4 events, however, decreases the percentage contributions from other quadrant events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号