首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Polycrystalline sample of Ba3V2O8 was prepared by a high-temperature solid-state reaction technique. Preliminary X-ray diffraction (XRD) analysis confirms the formation of single-phase compound of hexagonal (rhombohedral) crystal structure at room temperature. Microstructural analysis by scanning electron microscope (SEM) shows that the compound has well defined grains, which are distributed uniformly throughout the surface of the sample. The dielectric properties of the compound studied in a wide frequency range (102–106 Hz) at different temperatures (25–400 °C), exhibits that they are temperature dependent. Detailed analysis of impedance spectra showed that the electric properties of the material are strongly dependent on frequency and temperature. The activation energy, calculated from the temperature dependence of ac conductivity (dielectric data), was found to be 0.23 eV at 50 kHz in the higher temperature region.  相似文献   

2.
Polycrystalline (Bi0.6K0.4) (Fe0.6Nb0.4)O3 material has been prepared using a mixed-oxide route at 950 °C. It was shown by XRD that at room temperature structure of the compound is of single-phase with hexagonal symmetry. Some electrical characteristics (impedance, modulus, conductivity etc.) were studied over a wide frequency (1 kHz–1 MHz) and temperature (25–500 °C) ranges. The Nyquist plot (i.e., imaginary vs real component of complex impedance) of the material exhibit the existence and magnitude of grain interior and grain boundary contributions in the complex electrical parameters of the material depending on frequency, input energy and temperature. The nature of frequency dependence of ac conductivity follows Joncher׳s power law, and dc conductivity follows the Arrhenius behavior. The appearance of PE hysteresis loop confirms the ferroelectric properties of the material with remnant polarization (2Pr) of 1.027 µC/cm2 and coercive field (2Ec) of 16.633 kV/cm. The material shows very weak ferromagnetism at room temperature with remnant magnetization (2Mr) of 0.035 emu/gm and coercive field (2Hc) of 0.211 kOe.  相似文献   

3.
Multiferroic BiFeO3 and Bi0.92Dy0.08FeO3 ceramics were prepared to study their crystal structures and piezoelectric properties. BiFeO3 exhibits rhombohedral phase below 810 °C. Although Bi0.92Dy0.08FeO3 ceramic also shows rhombohedral phase at room temperature, it allows the coexistence of rhombohedral phase and orthorhombic phase at 460–650 °C. Both samples have maximum polarizations of >21 μC/cm2 and piezoelectric d33 values of ~37 pC/N at room temperature. Their polarized slices show the dielectric anomalies and impedance anomalies because of vibrating resonances below 500 °C, and the thickness vibration electromechanical coupling factor is ~0.6 and ~0.4 for BiFeO3 and Bi0.92Dy0.08FeO3, respectively. The vibrating resonances confirm piezoelectric responses. Furthermore, samples' impedance and resistance decrease fast with temperature increasing, which screens piezoelectric response above 550 °C.  相似文献   

4.
《Solid State Ionics》2006,177(7-8):703-707
A polyphosphazene [NP(NHR)2]n with oligo[propylene oxide] side chains − R = –[CH(CH3)–CH2O]m–CH3 (m = 6  10) was synthesized by living cationic polymerisation and polymer-analogue substitution of chlorine from the intermediate precursor [NPCl2]n using the corresponding primary amine RNH2. The polymer had an average molecular weight of 3.3 × 105 D. Polymer electrolytes with different concentrations of dissolved lithium triflate (LiCF3SO3) were prepared. Mechanically stable polymer electrolyte membranes were formed using UV radiation induced crosslinking of the polymer salt mixture in the presence of benzophenone as photoinitiator. The glass transition temperature of the parent polymer was found to be − 75 °C before cross linking. It increases after crosslinking and with increasing amounts of salt to a maximum of − 55 °C for 20 wt.% LiCF3SO3. The ionic conductivity was determined by impedance spectroscopy in the temperature range 0–80 °C. The highest conductivity was found for a salt concentration of 20 wt.% LiCF3SO3: 6.5 × 10 6 S·cm 1 at 20 °C and 2.8 × 10 4 S cm 1 at 80 °C. The temperature dependence of the conductivities was well described by the MIGRATION concept.  相似文献   

5.
《Solid State Ionics》2006,177(26-32):2417-2419
NH4PO3/SiO2 composite based electrolyte with SiO2 as supporting matrix was prepared. A thermogravimetric analysis was performed. Its electrochemical properties were investigated by an impedance spectroscopy within the temperature range of 100–300 °C under dry and humid atmospheres. The maximum conductivity is 6 mS cm 1 at 300 °C under dry N2 and 0.1 S cm 1 at 200 °C under humid N2.  相似文献   

6.
Composition Bi4V2−xSrxO11−δ (0.05≤x≤0.20) is synthesized by melt quench technique followed by heat treatment at 800 °C for 12 h. These compounds are characterised by X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, UV–visible spectroscopy, impedance spectroscopy and scanning electron microscopy. X-ray diffraction patterns of all the samples show γ-phase stabilization at room temperature except x=0.05 heat treated sample. The optical band gap of all the samples is observed in semiconducting range. The lowest and the highest optical band gap is 2.39 eV and 2.57 eV for x=0.10 heat treated and x=0.20 quenched samples, respectively. The highest value of dielectric constant is obtained ~107 with very low dielectric loss for x=0.15 and 0.20 samples at ~350 °C and below 10 Hz. The grain size increases with dopant concentration leads to increase the dielectric constant.  相似文献   

7.
The raw ZrO2 is annealed at 600–1550 °C for 6 h. It is found that the emission at 492 nm increases greatly when the annealing temperature is higher than 1200 °C and its afterglow shows a small improvement at 1200–1450 °C and a large enhancement after annealing at 1550 °C. The results that are obtained indicate that the impurity Ti4+ in ZrO2 is efficiently reduced to Ti3+ when the temperature is higher than 1200 °C, and the increase of Ti3+ centers contributes to the large improvement of emission at 492 nm. The thermoluminescence shows that at least two types of traps with different depths (0.65 eV and 1.46 eV) corresponding to oxygen vacancies exist in monoclinic ZrO2. After annealing at 1200–1450 °C, some new trap clusters related to oxygen vacancies and Ti3+ form and causes the small improvement of afterglow at 1200–1450 °C. The large improvement of afterglow after annealing at 1550 °C originates from the sharp increase of proper shallow traps (0.65 eV) in ZrO2. Accordingly, we present the feasible interpretations and luminescence mechanisms of monoclinic ZrO2 for our observations.  相似文献   

8.
Optical interferometry techniques were used for the first time to measure the surface resistivity and surface conductivity of anodised aluminium samples in aqueous solution, without any physical contact. The anodization process (oxidation) of the aluminium samples was carried out in different sulphuric acid solutions (1.0–2.5% H2SO4), by the technique of electrochemical impedance spectroscopy (EIS), at room temperature. In the mean time, the real-time holographic interferometric was carried out to measure the thickness of anodised (oxide) film of the aluminium samples during the anodization process. Then, the alternating current (AC) impedance (resistance) of the anodised aluminium samples was determined by the technique of electrochemical impedance spectroscopy (EIS) in different sulphuric acid solutions (1.0–2.5% H2SO4) at room temperature. In addition, a mathematical model was derived in order to correlate between the AC impedance (resistance) and to the surface (orthogonal) displacement of the samples in solutions. In other words, a proportionality constant (surface resistivity or surface conductivity=1/surface resistivity) between the determined AC impedance (by EIS technique) and the orthogonal displacement (by the optical interferometry techniques) was obtained. Consequently the surface resistivity (ρ) and surface conductivity (σ) of the aluminium samples in solutions were obtained. Also, electrical resistivity values (ρ) from other source were used for comparison sake with the calculated values of this investigation. This study revealed that the measured values of the resistivity for the anodised aluminium samples were 2.8×109, 7×1012, 2.5×1013, and 1.4×1012  Ω cm in 1.0%, 1.5%, 2.0%, and 2.5% H2SO4 solutions, respectively. In fact, the determined value range of the resistivity is in a good agreement with the one found in literature for the aluminium oxide, 85% Al2O3 (5×1010 Ω cm in air at temperature 30 °C), 96% Al2O3 (1×1014  Ω cm in air at temperature 30 °C), and 99.7% Al2O3 (>1×1014 Ω cm in air at temperature 30 °C).  相似文献   

9.
《Solid State Ionics》2006,177(3-4):237-244
Ongoing studies of the KHSeO4–KH2PO4 system aiming at developing novel proton conducting solids resulted in the new compound K2(HSeO4)1.5(H2PO4)0.5 (dipotassium hydrogenselenate dihydrogenphosphate). The crystals were prepared by a slow evaporation of an aqueous solution at room temperature. The structural properties of the crystals were characterized by single-crystal X-ray analysis: K2(HSeO4)1.5(H2PO4)0.5 (denoted KHSeP) crystallizes in the space group P 1¯ with the lattice parameters: a = 7.417(3) Å, b = 7.668(2) Å, c = 7.744(5) Å, α = 71.59(3)°, β = 87.71(4)° and γ = 86.04(6)°. This structure is characterized by HSeO4 and disordered (HxSe/P)O4 tetrahedra connected to dimers via hydrogen bridges. These dimers are linked and stabilized by additional hydrogen bonds (O–H–O) and hydrogen bridges (O–H…O) to build chains of dimers which are parallel to the [0, 1, 0] direction at the position x = 0.5.The differential scanning calorimetry diagram showed two anomalies at 493 and 563 K. These transitions were also characterized by optical birefringence, impedance and modulus spectroscopy techniques. The conductivity relaxation parameters of the proton conductors in this compound were determined in a wide temperature range. The transport properties in this material are assumed to be due to H+ protons hopping mechanism.  相似文献   

10.
In2O3 films have been deposited using chemical spray pyrolysis technique at different substrate temperatures that varied in the range, 250–450 °C. The structural and morphological properties of the as-deposited films were studied using X-ray diffractometer and scanning electron microscope as well as atomic force microscope, respectively. The films formed at a temperature of 400 °C showed body-centered cubic structure with a strong (2 2 2) orientation. The structural parameters such as the crystallite size, lattice strain and texture coefficient of the films were also calculated. The films deposited at a temperature of 400 °C showed an optical transmittance of >85% in the visible region. The change of resistivity, mobility, carrier concentration and activation energies with the deposition temperature was studied. The highest figure of merit for the layers grown at 400 °C was 1.09 × 10−3 Ω−1.  相似文献   

11.
《Solid State Ionics》2006,177(13-14):1107-1110
The dispersion curves of the dielectric response of NH4HSO4 show that the corrected imaginary part of permittivity, εʺ, and its real part ε′ versus frequency reveal a dielectric relaxation around 9.1 × 105 Hz at 31 °C, which shifts to higher frequencies (∼ 106 Hz) as the temperatures increases. The relaxation frequency shows an activated relaxation process over the temperature range 31–83 °C with activation energy Ea = 0.14 eV, which is close to that derived from the dc conductivity. We suggest that the observed dielectric relaxation could be produced by the H+ jump and SO4 reorientation that cause distortion and change the local lattice polarizability inducing dipoles like HSO4.  相似文献   

12.
The dielectric and pyroelectric responses of MgO-modified Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 ceramics were investigated near FR(LT)–FR(HT) phase transition. It was found that MgO additive reduced the FR(LT)–FR(HT) phase transition temperature from 41 °C to room temperature (24 °C). Superior room-temperature pyroelectric properties were obtained in the composition of 0.10 wt% MgO addition without DC bias. The largest pyroelectric coefficient, 65 × 10−8 C cm−2 K−1, was detected. Accordingly, the detectivity figures of merit Fd had maximum values of 20 × 10−5 Pa−1/2, and especially the voltage responsivity Fv = 0.91 m2C−1 is the highest value reported so far among all pyroelectric materials. It shows promising potential for application in uncooled pyroelectric infrared detector.  相似文献   

13.
Fluorinated ceramics with initial composition (1−x)CaTiO3+xPbF2+xLiF were sintered at 950 °C. The X-ray diffraction (XRD) patterns of the samples showed the formation of a novel solid solution in the initial composition range 0⩽x⩽0.125. SEM observations were performed on fractured ceramics and DSC analyses were carried out from room temperature up to 600 °C. Three second-order phase transitions were detected for all the samples. Capacitors were prepared from the pre-sintered ceramics then dielectric measurements were performed as a function of temperature in the frequency range 102–4×107 Hz. The ε′r−T curves exhibit the profile of dielectrics for class I capacitors, however the values of tan δ are too high (tan δ⩾1%).  相似文献   

14.
Porous lead zirconate titanate (PbZr0.3Ti0.7O3, PZT30/70) thick films and detectors for pyroelectric applications have been fabricated on alumina substrates by screen-printing technology. Low temperature sintering of PZT thick films have been achieved at 850 °C by using Li2CO3 and Bi2O3 sintering aids. The microstructure of PZT thick film has been investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The dielectric properties were measured using HP 4284 at 1 kHz under 25 °C. The permittivity and loss tangent of the thick films were 94 and 0.017, respectively. Curie temperature of PZT thick film was 425 °C as revealed by dielectric constant temperature measurement. The pyroelectric coefficient was determined to be 0.9 × 10−8 Ccm−2 K−1 by dynamic current measurement. Infrared detector sensitive element of dual capacitance was fabricated by laser directly write technology. Detectivity of the detectors were measured using mechanically chopped blackbody radiation. Detectivity ranging from 1.23 × 108 to 1.75 × 108 (cm Hz1/2 W−1) was derived at frequency range from 175.5 Hz to 1367 Hz, and D*’s −3 dB cut-off frequency bandwidth was 1.2 kHz. The results indicate that the infrared detectors based on porous thick films have great potential applications in fast and wide-band frequency response conditions.  相似文献   

15.
The polycrystalline sample of Na1/2Dy1/2TiO3 ceramic was prepared by a standard high-temperature solid-state reaction technique. X-ray structural analysis confirmed the formation of single-phase (with minor secondary phase) compound in the orthorhombic (distorted tetragonal) crystal system at room temperature. Study of surface morphology by scanning electron microscope exhibits uniform distribution of rectangular/cubical grains with less voids. The elemental composition of the prepared compound was confirmed by energy dispersive X-ray spectroscopy microanalysis. Detailed studies of dielectric properties exhibit a dielectric anomaly at 94 °C suggesting a possible ferroelectric–paraelectric phase transition in the compound. The activation energy (Ea), calculated from the temperature dependence of ac conductivity plot, was found to be small (∼0.1 eV) in low temperature and large (∼0.5 eV) in high temperature region.  相似文献   

16.
Thermally stimulated current (TSC) spectra were examined for ethylene–propylene (EP) random co-polymer at different charging voltages Vp with positive and negative polarities. Observed TSC spectra showed two well-separated TSC bands, BL and BH, which respectively appeared in the temperature regions below and above 100 °C. Observed Vp dependence of BL was quite different from that of typical polypropylene homo-polymer: As Vp increased, BL band grew keeping its peak position same at 65 °C, and the band shape unchanged, as if the traps responsible for the BL band are a single set of traps with the same trap depth and capture cross section. The trap depth of BL was about 1.9 eV and 1.7 eV for positively charged EP and talc-containing EP samples, respectively. EP samples also showed unique TSC bands above 100 °C: one is a narrow TSC band peaked at 120 °C and the other is an unusual TSC band which was non-vanishing even at 165 °C just before destruction of samples by their melting. Consequently, the utmost stable charge density in EP co-polymer above 100 °C was found to be 3.5 × 10?4 C/m2 and 6.0 × 10 ?4 C/m2 for positively and negatively charged samples, respectively. These equivalent surface charge densities are much larger than those of usual polypropylene homo-polymer.  相似文献   

17.
《Current Applied Physics》2010,10(4):1071-1075
The physical and electrochemical properties of the activated carbon pellet electrodes have been investigated. Activated carbon pellets were prepared from single step carbonization process of pre-carbonized rubber wood sawdust at a temperature of 800 °C that followed with a CO2 activation process at temperature in the range of 700–1000 °C. The BET characterization on the sample found that the surface area of the carbon pellet increased with the increasing of the activation temperature. The optimum value was as high as 683.63 m2 g−1. The electrical conductivity was also found to increase linearly with the increasing of the activation temperature, namely from 0.0075 S cm−1 to 0.0687 S cm−1 for the activation temperature in the range of 700–1000 °C. The cyclic voltammetry characterization of the samples in aqueous solution of 1 M H2SO4 also found that the specific capacitance increased with the increasing of the activation temperature. Typical optimum value was shown by the sample activated at 900 °C with the specific capacitance was as high as 33.74 F g−1 (scan rate 1 mV s−1). The retained ratio was as high as 32.72%. The activated carbon pellet prepared from the rubber wood sawdust may found used in supercapacitor applications.  相似文献   

18.
《Solid State Ionics》2006,177(26-32):2611-2615
Mechanical milling (MM) has been used to prepare the nanosized Li1.4Al0.4Ti1.6(PO4)3 (denoted LATP) glassy powders, which was converted into glass-ceramics through thermal treating at 700–1000 °C. The XRD, TEM, FESEM and ac impedance techniques were used to characterize the products. The results showed that completely amorphous products were prepared by MM for 40 h, and single-phase LiTi2(PO4)3-type structured glass-ceramics were obtained by further heat treatment. The lithium ion conductivity of the glass-ceramics increased with the growth of the crystalline phase and decrease of the grain size. The highest bulk conductivity (σb) of 1.09 × 10 3 S cm 1 with an energy of activation as low as 0.28 eV was obtained at room temperature for the specimen treated at 900 °C for 6 h. The high conductivity, easy fabrication and low cost make the LATP glass-ceramics promising to be used as inorganic solid electrolyte for all-solid-state Li-ion rechargeable batteries.  相似文献   

19.
Lead-free (1?x)[K0.5Na0.5NbO3]?x[LiSbO3] (x=0, 0.04, 0.05 and 0.06)/(KNN-LS) ceramics were prepared by conventional solid-state reaction route (CSSR). For dense morphology pure KNN ceramic was sintered at 1120 °C and LS modified KNN ceramics were sintered at 1080 °C for 4 h, respectively. The structural study at room temperature (RT) revealed the transformation of pure orthorhombic to tetragonal structure with the increase in LS content in KNN-LS ceramics. Temperature dependent dielectric study confirmed the increase of diffuse phase transition nature with the increase in LS content in KNN-LS ceramics. The presence of orthorhombic to tetragonal (TO?T) polymorphic phase transition temperature (PPT) ~43 °C confirmed the presence of two ferroelectric (orthorhombic and tetragonal) phases in 0.95KNN-0.05LS ceramics at RT. 0.95KNN-0.05LS ceramics showed better ferroelectric and piezoelectric properties i.e., remnant polarization (Pr)~18.7 μC/cm2, coercive field (Ec)~11.8 kV/cm, piezoelectric coefficient (d33)~215 pC/N, coupling coefficient (kp)~0.415 and remnant strain ~0.07% were obtained.  相似文献   

20.
LiCaAlF6 (LiCAF) crystals doped with two different ions (europium and lead) have been investigated as potential new dosimetric materials. The stability of thermally stimulated luminescence (TSL) glow peaks in LiCAF:Eu was evaluated by means of the initial rise technique. The decay times at room temperature of the traps related to the dosimetric glow peaks were found to range between 40 and 2 × 104 years confirming the good dosimetric characteristics of this crystal. The glow curve of LiCAF:Pb is dominated by a peak at approximately 300 °C emitting in the UV region (3P0,11S0 transition of Pb2+) superimposed to a very broad structure at lower temperature (20–200 °C) featuring recombination at an intrinsic defect centre. The anomalous behavior of the low temperature structure during thermal cleaning procedures prevented any reliable numerical analysis of the TSL glow peak at 300 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号