首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A homomorphism of a digraph to another digraph is an edge-preserving vertex mapping. A digraphH is said to be multiplicative if the set of digraphs which do not admit a homomorphism toH is closed under categorical product. In this paper we discuss the multiplicativity of acyclic Hamiltonian digraphs, i.e., acyclic digraphs which contains a Hamiltonian path. As a consequence, we give a complete characterization of acyclic local tournaments with respect to multiplicativity.  相似文献   

3.
For digraphs D and H, a mapping f:V(D)→V(H) is a homomorphism of D to H if uvA(D) implies f(u)f(v)∈A(H). Let H be a fixed directed or undirected graph. The homomorphism problem for H asks whether a directed or undirected input graph D admits a homomorphism to H. The list homomorphism problem for H is a generalization of the homomorphism problem for H, where every vertex xV(D) is assigned a set Lx of possible colors (vertices of H).The following optimization version of these decision problems generalizes the list homomorphism problem and was introduced in Gutin et al. [Level of repair analysis and minimum cost homomorphisms of graphs, Discrete Appl. Math., to appear], where it was motivated by a real-world problem in defence logistics. Suppose we are given a pair of digraphs D,H and a positive integral cost ci(u) for each uV(D) and iV(H). The cost of a homomorphism f of D to H is . For a fixed digraph H, the minimum cost homomorphism problem for H is stated as follows: for an input digraph D and costs ci(u) for each uV(D) and iV(H), verify whether there is a homomorphism of D to H and, if one exists, find such a homomorphism of minimum cost.We obtain dichotomy classifications of the computational complexity of the list homomorphism and minimum cost homomorphism problems, when H is a semicomplete digraph (digraph in which there is at least one arc between any two vertices). Our dichotomy for the list homomorphism problem coincides with the one obtained by Bang-Jensen, Hell and MacGillivray in 1988 for the homomorphism problem when H is a semicomplete digraph: both problems are polynomial solvable if H has at most one cycle; otherwise, both problems are NP-complete. The dichotomy for the minimum cost homomorphism problem is different: the problem is polynomial time solvable if H is acyclic or H is a cycle of length 2 or 3; otherwise, the problem is NP-hard.  相似文献   

4.
We consider the following problem for oriented graphs and digraphs: Given an oriented graph (digraph) H, does it contain an induced subdivision of a prescribed digraph D? The complexity of this problem depends on D and on whether H is an oriented graph or contains 2-cycles. We announce a number of examples of polynomial instances as well as several NP-completeness results.  相似文献   

5.
G , H, and lists , a list homomorphism of G to H with respect to the lists L is a mapping , such that for all , and for all . The list homomorphism problem for a fixed graph H asks whether or not an input graph G together with lists , , admits a list homomorphism with respect to L. We have introduced the list homomorphism problem in an earlier paper, and proved there that for reflexive graphs H (that is, for graphs H in which every vertex has a loop), the problem is polynomial time solvable if H is an interval graph, and is NP-complete otherwise. Here we consider graphs H without loops, and find that the problem is closely related to circular arc graphs. We show that the list homomorphism problem is polynomial time solvable if the complement of H is a circular arc graph of clique covering number two, and is NP-complete otherwise. For the purposes of the proof we give a new characterization of circular arc graphs of clique covering number two, by the absence of a structure analogous to Gallai's asteroids. Both results point to a surprising similarity between interval graphs and the complements of circular arc graphs of clique covering number two. Received: July 22, 1996/Revised: Revised June 10, 1998  相似文献   

6.
7.
For digraphs D and H, a mapping f:V(D)→V(H) is a homomorphism of D to H if uvA(D) implies f(u)f(v)∈A(H). For a fixed digraph H, the homomorphism problem is to decide whether an input digraph D admits a homomorphism to H or not, and is denoted as HOM(H).An optimization version of the homomorphism problem was motivated by a real-world problem in defence logistics and was introduced in Gutin, Rafiey, Yeo and Tso (2006) [13]. If each vertex uV(D) is associated with costs ci(u),iV(H), then the cost of the homomorphism f is ∑uV(D)cf(u)(u). For each fixed digraph H, we have the minimum cost homomorphism problem forH and denote it as MinHOM(H). The problem is to decide, for an input graph D with costs ci(u),uV(D),iV(H), whether there exists a homomorphism of D to H and, if one exists, to find one of minimum cost.Although a complete dichotomy classification of the complexity of MinHOM(H) for a digraph H remains an unsolved problem, complete dichotomy classifications for MinHOM(H) were proved when H is a semicomplete digraph Gutin, Rafiey and Yeo (2006) [10], and a semicomplete multipartite digraph Gutin, Rafiey and Yeo (2008) [12] and [11]. In these studies, it is assumed that the digraph H is loopless. In this paper, we present a full dichotomy classification for semicomplete digraphs with possible loops, which solves a problem in Gutin and Kim (2008) [9].  相似文献   

8.
A digraph is locally-in semicomplete if for every vertex of D its in-neighborhood induces a semicomplete digraph and it is locally semicomplete if for every vertex of D the in-neighborhood and the out-neighborhood induces a semicomplete digraph. The locally semicomplete digraphs where characterized in 1997 by Bang-Jensen et al. and in 1998 Bang-Jensen and Gutin posed the problem if finding a kernel in a locally-in semicomplete digraph is polynomial or not. A kernel of a digraph is a set of vertices, which is independent and absorbent. A digraph D such that every proper induced subdigraph of D has a kernel is said to be critical kernel imperfect digraph (CKI-digraph) if the digraph D does not have a kernel. A digraph without an induced CKI-digraph as a subdigraph does have a kernel. We characterize the locally semicomplete digraphs, which are CKI. As a consequence of this characterization we conclude that determinate whether a locally semicomplete digraph is a CKI-digraph or not, is polynomial.  相似文献   

9.
10.
The descendant setdesc(α) of a vertex α in a digraph D is the set of vertices which can be reached by a directed path from α. A subdigraph of D is finitely generated if it is the union of finitely many descendant sets, and D is descendant-homogeneous if it is vertex transitive and any isomorphism between finitely generated subdigraphs extends to an automorphism. We consider connected descendant-homogeneous digraphs with finite out-valency, specially those which are also highly arc-transitive. We show that these digraphs must be imprimitive. In particular, we study those which can be mapped homomorphically onto Z and show that their descendant sets have only one end.There are examples of descendant-homogeneous digraphs whose descendant sets are rooted trees. We show that these are highly arc-transitive and do not admit a homomorphism onto Z. The first example (Evans (1997) [6]) known to the authors of a descendant-homogeneous digraph (which led us to formulate the definition) is of this type. We construct infinitely many other descendant-homogeneous digraphs, and also uncountably many digraphs whose descendant sets are rooted trees but which are descendant-homogeneous only in a weaker sense, and give a number of other examples.  相似文献   

11.
We prove that every 3-strong semicomplete digraph on at least 5 vertices contains a spanning 2-strong tournament. Our proof is constructive and implies a polynomial algorithm for finding a spanning 2-strong tournament in a given 3-strong semicomplete digraph. We also show that there are infinitely many (2k−2)-strong semicomplete digraphs which contain no spanning k-strong tournament and conjecture that every(2k−1)-strong semicomplete digraph which is not the complete digraph on 2k vertices contains a spanning k-strong tournament.  相似文献   

12.
Homomorphisms to oriented cycles   总被引:2,自引:0,他引:2  
We discuss the existence of homomorphisms to oriented cycles and give, for a special class of cyclesC, a characterization of those digraphs that admit, a homomorphism toC. Our result can be used to prove the multiplicativity of a certain class of oriented cycles, (and thus complete the characterization of multiplicative oriented cycles), as well as to prove the membership of the corresponding decision problem in the classNPcoNP. We also mention a conjecture on the existence of homomorphisms to arbitrary oriented cycles.  相似文献   

13.
A digraph is an interval digraph if each vertex can be assigned a source interval and a sink interval on the real line such that there is an edge from u to v if and only if the source interval for u intersects the sink interval for v. A digraph is an indifference digraph or unit interval digraph if and only if such a representation can be constructed in which every source and sink interval has unit length. We present a new characterization and an efficient recognition algorithm for indifference digraphs and generalized semiorders. © 1996 John Wiley & Sons, Inc.  相似文献   

14.
A digraph H is homomorphically compact if the digraphs G which admit homomorphisms to H are exactly the digraphs whose finite subdigraphs all admit homomorphisms to H. In this paper we define a similar notion of compactness for list-homomorphisms. We begin by showing that it is essentially only finite digraphs that are compact with respect to list-homomorphisms. We then explore the effects of restricting the types of list-assignments which are permitted, and obtain some richer characterizations. Received: May 16, 1997 Final version received: January 16, 1998  相似文献   

15.
For digraphs D and H, a mapping f:V(D)→V(H) is a homomorphism ofDtoH if uvA(D) implies f(u)f(v)∈A(H). For a fixed directed or undirected graph H and an input graph D, the problem of verifying whether there exists a homomorphism of D to H has been studied in a large number of papers. We study an optimization version of this decision problem. Our optimization problem is motivated by a real-world problem in defence logistics and was introduced recently by the authors and M. Tso.Suppose we are given a pair of digraphs D,H and a cost ci(u) for each uV(D) and iV(H). The cost of a homomorphism f of D to H is ∑uV(D)cf(u)(u). Let H be a fixed digraph. The minimum cost homomorphism problem for H, MinHOMP(H), is stated as follows: For input digraph D and costs ci(u) for each uV(D) and iV(H), verify whether there is a homomorphism of D to H and, if it does exist, find such a homomorphism of minimum cost. In our previous paper we obtained a dichotomy classification of the time complexity of when H is a semicomplete digraph. In this paper we extend the classification to semicomplete k-partite digraphs, k≥3, and obtain such a classification for bipartite tournaments.  相似文献   

16.
We find necessary conditions for a digraph H to admit a homomorphism from every oriented planar graph of girth at least n, and use these to prove the existence of a planar graph of girth 6 and oriented chromatic number at least 7. We identify a ${\overleftrightarrow{K_4}}$ -free digraph of order 7 which admits a homomorphism from every oriented planar graph (here ${\overleftrightarrow{K_n}}$ means a digraph with n vertices and arcs in both directions between every distinct pair), and a ${\overleftrightarrow{K_3}}$ -free digraph of order 4 which admits a homomorphism from every oriented planar graph of girth at least 5.  相似文献   

17.
Zhu [X. Zhu, Circular-perfect graphs, J. Graph Theory 48 (2005) 186-209] introduced circular-perfect graphs as a superclass of the well-known perfect graphs and as an important χ-bound class of graphs with the smallest non-trivial χ-binding function χ(G)≤ω(G)+1. Perfect graphs have been recently characterized as those graphs without odd holes and odd antiholes as induced subgraphs [M. Chudnovsky, N. Robertson, P. Seymour, R. Thomas, The strong perfect graph theorem, Ann. Math. (in press)]; in particular, perfect graphs are closed under complementation [L. Lovász, Normal hypergraphs and the weak perfect graph conjecture, Discrete Math. 2 (1972) 253-267]. To the contrary, circular-perfect graphs are not closed under complementation and the list of forbidden subgraphs is unknown.We study strongly circular-perfect graphs: a circular-perfect graph is strongly circular-perfect if its complement is circular-perfect as well. This subclass entails perfect graphs, odd holes, and odd antiholes. As the main result, we fully characterize the triangle-free strongly circular-perfect graphs, and prove that, for this graph class, both the stable set problem and the recognition problem can be solved in polynomial time.Moreover, we address the characterization of strongly circular-perfect graphs by means of forbidden subgraphs. Results from [A. Pêcher, A. Wagler, On classes of minimal circular-imperfect graphs, Discrete Math. (in press)] suggest that formulating a corresponding conjecture for circular-perfect graphs is difficult; it is even unknown which triangle-free graphs are minimal circular-imperfect. We present the complete list of all triangle-free minimal not strongly circular-perfect graphs.  相似文献   

18.
Given graphs G, H, and lists L(v) ? V(H), v ε V(G), a list homomorphism of G to H with respect to the lists L is a mapping f : V(G) → V(H) such that uv ε E(G) implies f(u)f(v) ε E(H), and f(v) ε L(v) for all v ε V(G). The list homomorphism problem for a fixed graph H asks whether or not an input graph G, together with lists L(v) ? V(H), v ε V(G), admits a list homomorphism with respect to L. In two earlier papers, we classified the complexity of the list homomorphism problem in two important special cases: When H is a reflexive graph (every vertex has a loop), the problem is polynomial time solvable if H is an interval graph, and is NP‐complete otherwise. When H is an irreflexive graph (no vertex has a loop), the problem is polynomial time solvable if H is bipartite and H is a circular arc graph, and is NP‐complete otherwise. In this paper, we extend these classifications to arbitrary graphs H (each vertex may or may not have a loop). We introduce a new class of graphs, called bi‐arc graphs, which contains both reflexive interval graphs (and no other reflexive graphs), and bipartite graphs with circular arc complements (and no other irreflexive graphs). We show that the problem is polynomial time solvable when H is a bi‐arc graph, and is NP‐complete otherwise. In the case when H is a tree (with loops allowed), we give a simpler algorithm based on a structural characterization. © 2002 Wiley Periodicals, Inc. J Graph Theory 42: 61–80, 2003  相似文献   

19.
We describe a polynomial (O(n1.5)) time algorithm DHAM for finding hamilton cycles in digraphs. For digraphs chosen uniformly at random from the set of digraphs with vertex set {1, 2, …, n} and m = m(n) edges the limiting probability (as n → ∞) that DHAM finds a hamilton cycle equals the limiting probability that the digraph is hamiltonian. Some applications to random “travelling salesman problems” are discussed.  相似文献   

20.
A homomorphism of a digraph to another digraph is an edgepreserving vertex mapping. A local tournament is a digraph in which the inset as well as the outset of each vertex induces a tournament. Thus acyclic local tournaments generalize both directed paths and transitive tournaments. In both these cases there is a simple characterization of homomorphic preimages. Namely, if H is a directed path, or a transitive tournament, then G admits a homomorphism to H if and only if each oriented path which admits a homomorphism to G also admits a homomorphism to H. We prove that this result holds for all acyclic local tournaments. © 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号