首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polycrystalline sample of Ba3V2O8 was prepared by a high-temperature solid-state reaction technique. Preliminary X-ray diffraction (XRD) analysis confirms the formation of single-phase compound of hexagonal (rhombohedral) crystal structure at room temperature. Microstructural analysis by scanning electron microscope (SEM) shows that the compound has well defined grains, which are distributed uniformly throughout the surface of the sample. The dielectric properties of the compound studied in a wide frequency range (102–106 Hz) at different temperatures (25–400 °C), exhibits that they are temperature dependent. Detailed analysis of impedance spectra showed that the electric properties of the material are strongly dependent on frequency and temperature. The activation energy, calculated from the temperature dependence of ac conductivity (dielectric data), was found to be 0.23 eV at 50 kHz in the higher temperature region.  相似文献   

2.
In the present work, the synthesis and characterization of the Bis(4-acetylanilinium) tetrachlorocuprate(II) compound are presented. The structure of this compound is analyzed by X-ray diffraction which confirms the formation of single phase and is in good agreement the literature. Indeed, the Thermo gravimetric Analysis (TGA) shows that the decomposition of the compound is observed in the range of 420–520 K. However, the differential thermal analysis (DTA) indicates the presence of a phase transition at T=363 k. Furthermore, the dielectric properties and AC conductivity were studied over a temperature range (338–413 K) and frequency range (200 Hz–5 MHz) using complex impedance spectroscopy. Dielectric measurements confirmed such thermal analyses by exhibiting the presence of an anomaly in the temperature range of 358–373 K. The complex impedance plots are analyzed by an electrical equivalent circuit consisting of resistance, constant phase element (CPE) and capacitance. The activation energy values of two distinct regions are obtained from log σT vs 1000/T plot and are found to be E=1.27 eV (T<363 K) and E=1.09 eV (363 K<T).The frequency dependence of ac conductivity, σac, has been analyzed by Jonscher's universal power law σ(ω)=σdc+s. The value of s is to be temperature-dependent, which has a tendency to increase with temperature and the non-overlapping small polaron tunneling (NSPT) model is the most applicable conduction mechanism in the title compound.  相似文献   

3.
The binary system of 0.8Pb(Zr1/2Ti1/2)O3–0.2Pb(Ni1/3Nb2/3)O3 ceramics were synthesized by conventional mixed oxide and columbite method. X-ray diffraction analysis demonstrated the coexistence of both the rhombohedral and tetragonal phases for the columbite prepared sample. Rhombohedral to tetragonal phase transition for columbite method was different compared with those of the mixed oxide method. The permittivity shows a shoulder at the rhombohedral to tetragonal phase transition temperature TRho–Tetra = 195 °C, and then a maximum permittivity (36,000 at 10 kHz) at the transition temperature Tm = 277 °C on ceramics prepared with the columbite method. However, piezoelectric coefficient (d33) was measured to be 282 pC/N for the conventional method and higher than the columbite method. The results were related to the phase compositions and porosity of the ceramics.  相似文献   

4.
Polycrystalline sample of NaCa2V5O15 (NCV) with tungsten bronze structure was prepared by a mixed oxide method at relatively low temperature (i.e. 630 °C). Preliminary structural analysis of the compound showed an orthorhombic crystal structure at room temperature. Microstructural study showed that the grains are uniformly and densely distributed over the surface of the sample. Detailed studies of dielectric properties showed that the compound has dielectric anomaly above the room temperature (i.e. 289 °C), and shows hysteresis in polarization study. The electrical parameters of the compound were studied using complex impedance spectroscopy technique in a wide temperature (23–500 °C) and frequency (102–106 Hz) ranges. The impedance plots showed only bulk (grain) contributions, and there is a non-Debye type of dielectric dispersion. Complex modulus spectrum confirms the grain contribution only in the compound as observed in the impedance spectrum. The activation energy, calculated from the ac conductivity of the compound, was found to be 0.20–0.30 eV. These values of activation energy suggest that the conduction process is of mixed type (i.e. ionic–polaronic).  相似文献   

5.
Magnetic and dielectric properties have been investigated for Bi2CuO4, which has the same chemical formula as that of the parent materials of cuprate superconductors R2CuO4 (R: rare earths). Magnetization measurements show the antiferromagnetic transition of the Cu2+ spins at ~42 K, as reported previously. Dielectric measurements for the frequencies of 1 kHz to 1 MHz show that the dielectric constants are 100–500 at room temperature. The dielectric dispersion reveals that the dielectric response lacks spatial coherence, a property which indicates the possible existence of phase separation as suggested for La2CuO4. The imaginary part of dielectric response gives the activation energy of 0.22 eV, suggesting that the dielectric response is governed by the electron hopping between the Cu ions.  相似文献   

6.
Cobalt ferrite nanoparticles having the chemical formula CoFe2−2xZrxZnxO4 with x ranging from 0.0 to 0.4 were prepared by chemical co-precipitation method. The powder X-ray diffraction pattern confirms the spinel structure for the prepared compound. The particle size was calculated from the most intense peak (3 1 1) using Scherrer formula. The particle size of the samples was found within the range of 12–23 nm for all the compositions. The magnetic and electrical properties of these materials have been studied as a function of temperature. Activation energy and drift mobility have been calculated from the DC electrical resistivity measurements. Dielectric properties such as dielectric constant and dielectric loss tangent were measured at room temperature in the frequency range 100 Hz–1 MHz.  相似文献   

7.
Cd0.9−xZn0.1CuxS (0≤x≤0.06) nanoparticles were successfully synthesized by a conventional chemical co-precipitation method at room temperature. Crystalline phases and optical absorption of the nanoparticles have been studied by X-ray diffraction (XRD) and UV–visible spectrophotometer. XRD confirms the phase singularity of the synthesized material, which also confirmed the formation of Cd–Zn–Cu–S alloy nanocrystals rather than separate nucleation or phase formation. Elemental composition was examined by the energy dispersive X-ray analysis and the microstructure was examined by scanning electron microscope. The blue shift of absorption edge below Cu=2% is responsible for dominance of Cu+ while at higher Cu concentration dominated Cu2+, d–d transition may exist. It is suggested that the addition of third metal ion (Cu2+/Cu+) is an effective way to improve the optical property and stability of the Cd0.9Zn0.1S solid solutions. When Cu is introduced, stretching of Cd–Zn–Cu–S bond is shifted lower wave number side from 678 cm−1 (Cu=0%) to 671 cm−1 (Cu=6%) due to the presence of Cu in Cd–Zn–S lattice and also the size effect. The variation in blue band emission peak from 456 nm (∼2.72 eV) to 482 nm (∼2.58 eV) by Cu-doping is corresponding to the inter-band radiation combination of photo-generated electrons and holes. Intensity of red band emission centered at 656 nm significantly increased up to Cu=4%; beyond 4% it is decreased due to the quenching of Cu concentration.  相似文献   

8.
《Current Applied Physics》2010,10(2):676-681
Thioglycerol capped nanoparticles of ZnO have been prepared in methanol through chemical technique. Nanostructures of the prepared ZnO particles have been confirmed through X-ray diffraction measurement. The Debye–Scherrer formula is used to obtain the particle size. The average size of the prepared ZnO nanoparticles is found to be 50 nm. The frequency-dependent dielectric dispersion of the sample is investigated in the temperature range from 293 to 383 K and in a frequency range from 100 Hz to 1 MHz by impedance spectroscopy. An analysis of the complex permittivity (ε′ and ε′′) and loss tangent (tan δ) with frequency is performed assuming a distribution of relaxation times. The frequency-dependent maxima of the imaginary part of impedance are found to obey Arrhenius law with activation energy ∼1 eV. The scaling behavior of dielectric loss spectra suggests that the relaxation describes the same mechanism at various temperatures. The frequency-dependent electrical data are analyzed in the framework of conductivity and modulus formalisms. The frequency-dependent conductivity spectra obey the power law.  相似文献   

9.
《Solid State Ionics》2006,177(13-14):1107-1110
The dispersion curves of the dielectric response of NH4HSO4 show that the corrected imaginary part of permittivity, εʺ, and its real part ε′ versus frequency reveal a dielectric relaxation around 9.1 × 105 Hz at 31 °C, which shifts to higher frequencies (∼ 106 Hz) as the temperatures increases. The relaxation frequency shows an activated relaxation process over the temperature range 31–83 °C with activation energy Ea = 0.14 eV, which is close to that derived from the dc conductivity. We suggest that the observed dielectric relaxation could be produced by the H+ jump and SO4 reorientation that cause distortion and change the local lattice polarizability inducing dipoles like HSO4.  相似文献   

10.
《Current Applied Physics》2010,10(5):1349-1353
Single crystals of semiorganic material calcium dibromide bis(glycine) tetrahydrate were grown from aqueous solution. The crystal belongs to monoclinic system, with a = 13.261(5) Å, b = 6.792(2) Å, c = 15.671(9) Å and β = 91.68(4)°. The presence of the elements in the title compound was confirmed by energy dispersive X-ray analysis. The solubility and metastable zone width were found. The grown crystals were tested by powder XRD, FTIR, Thermo Gravimetric and Differential Thermal Analysis, UV–vis–NIR analysis, dielectrical and mechanical studies. The transmittance of calcium dibromide bis(glycine) tetrahydrate crystal has been used to calculate the refractive index n, the extinction coefficient K and both the real ɛr and imaginary ɛi components of the dielectric constant as functions of wavelength. The optical band gap of calcium dibromide bis(glycine) tetrahydrate is 3.23 eV.  相似文献   

11.
A novel PVA/CuI nanocomposite polymer electrolyte layer synthesized via the reduction of CuCl2 by NaI in an aqueous PVA solution. The as-prepared films were characterized by X-ray diffraction, scanning electron microscope, as well as impedance spectroscopy. The obtained results indicated the formation of hexagonal CuI nano particles of ≈55 nm sizes embedded in the PVA matrix. In addition, the study of dielectric parameters and conductivity of PVA/CuI nanocomposite in wide range of temperature and frequency are given and discussed. The frequency dependence of ac-conductivity suggests power law with an exponent 0.026 < s < 0.73 which predicts hopping of charge carriers. The bulk conductivity showed activation with temperature, significant values of activation energy are deduced and discussed. An average value of the energy gap width, 2.05 eV obtained using optical absorption in UV–visible spectra for PVA/CuI nanocomposite polymer electrolyte.  相似文献   

12.
Fluorinated ceramics with initial composition (1−x)CaTiO3+xPbF2+xLiF were sintered at 950 °C. The X-ray diffraction (XRD) patterns of the samples showed the formation of a novel solid solution in the initial composition range 0⩽x⩽0.125. SEM observations were performed on fractured ceramics and DSC analyses were carried out from room temperature up to 600 °C. Three second-order phase transitions were detected for all the samples. Capacitors were prepared from the pre-sintered ceramics then dielectric measurements were performed as a function of temperature in the frequency range 102–4×107 Hz. The ε′r−T curves exhibit the profile of dielectrics for class I capacitors, however the values of tan δ are too high (tan δ⩾1%).  相似文献   

13.
Good quality and bulk size single crystal (size: 20×13×8 mm3) of bis(glycine) lithium nitrate (BGLiN) was grown by a slow evaporation solution technique from the aqueous solutions at constant temperature i.e. 27 °C using synthesized materials. Crystal system and lattice parameters were determined by single crystals as well as powder X-ray diffraction analysis. The lattice parameters of the titled compound are a=10.0223 Å, b=5.0343 Å, c=17.0510 Å, and V=860.312 Å3 and it crystallized in an orthorhombic system with space group Pca21 obtained by single crystal XRD. Elemental composition was confirmed by energy dispersive X-ray spectroscopic analysis. Optical absorption spectrum was recorded and various optical parameters such as optical transmission (~60%), and optical band gap (4.998 eV) were calculated. Photoluminescence study shows that the grown crystal is free from major defects. Crystalline perfection of the grown crystal was assessed and found good. Ground state optimized geometry has been obtained by using DFT with 6-31G(d,p) basis set. HOMO and LUMO energy gap was found to be 6.01 eV and dipole moment was 1.65 D.  相似文献   

14.
《Solid State Ionics》2006,177(1-2):129-135
LixV2O5 (0.4 < x < 1.4) prepared by solid-state reaction were studied by 7Li and 51V NMR spectroscopy. 7Li NMR spectra showed a narrowing of the line width in relation to Li+ionic diffusion. Analysis of LixV2O5 using a Debye-type relaxation model showed a low activation energy ∼0.07 eV in the sample of x = 0.4 below room temperature, and revealed a Li+ionic diffusion with larger activation energy ∼0.5 eV above 450 K in lithium-rich samples. The latter is ascribed to the existence of a multi-phase system comprising stable ɛ- and γ-phases, resulting from complicated phase transitions at high temperature. These shapes and shifts enable the classification of the β-, ɛ-, δ-, and γ-phases. The ionic diffusion of Li+ ions is discussed in relation to the complicated phase transitions.  相似文献   

15.
《Current Applied Physics》2010,10(2):687-692
The effect of rapid thermal annealing on the electrical and structural properties of Ni/Au Schottky contacts on n-InP have been investigated by current–voltage (IV), capacitance–voltage (CV), auger electron spectroscopy (AES) and X-ray diffraction (XRD) techniques. The Au/Ni/n-InP Schottky contacts are rapid thermally annealed in the temperature range of 200–500 °C for a duration of 1 min. The Schottky barrier height of as-deposited Ni/Au Schottky contact has been found to be 0.50 eV (IV) and 0.86 eV (CV), respectively. It has been found that the Schottky barrier height decreased with increasing annealing temperature as compared to as-deposited sample. The barrier height values obtained are 0.43 eV (IV), 0.72 eV (CV) for the samples annealed at 200 °C, 0.45 eV (IV) and 0.73 eV (CV) for those at 400 °C. Further increase in annealing temperature to 500 °C the barrier height slightly increased to 0.46 eV (IV) and 0.78 eV (CV) compared to the values obtained for the samples annealed at 200 °C and 400 °C. AES and XRD studies showed the formation of indium phases at the Ni/Au and InP interface and may be the reason for the increase in barrier height. The AFM results showed that there is no significant degradation in the surface morphology (rms roughness of 1.56 nm) of the contact even after annealing at 500 °C.  相似文献   

16.
Composition Bi4V2−xSrxO11−δ (0.05≤x≤0.20) is synthesized by melt quench technique followed by heat treatment at 800 °C for 12 h. These compounds are characterised by X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, UV–visible spectroscopy, impedance spectroscopy and scanning electron microscopy. X-ray diffraction patterns of all the samples show γ-phase stabilization at room temperature except x=0.05 heat treated sample. The optical band gap of all the samples is observed in semiconducting range. The lowest and the highest optical band gap is 2.39 eV and 2.57 eV for x=0.10 heat treated and x=0.20 quenched samples, respectively. The highest value of dielectric constant is obtained ~107 with very low dielectric loss for x=0.15 and 0.20 samples at ~350 °C and below 10 Hz. The grain size increases with dopant concentration leads to increase the dielectric constant.  相似文献   

17.
Thin films of CuGaSe2 have been prepared by flash evaporation technique. The optical properties of the prepared films were investigated using spectrophotometric measurements of the transmittance and reflectance at normal incidence of light in the wavelength range from 400 to 2500 nm. The optical constants as refractive index, n, and absorption index, k, were calculated and found to be independent of film thickness in the range of the film thickness 132–423 nm. The analysis of the photon energy against the absorption coefficient showed three direct optical transitions (one of them is allowed while the others are forbidden). This direct transition was ascribed to the crystal field and spin orbital splitting of the upper most valence band. The crystal field and spin orbital splitting of CuGaSe2 were found to be ? 0.15 eV and 0.45 eV, respectively. The dispersion of the refractive index is discussed in terms of the single oscillator Wemple–DiDomenico (WD) model. The single oscillator energy (Eo), the dispersion energy (Ed), the high frequency dielectric constant (ε), the lattice dielectric constant (εL) and the ratio of free charge carrier concentration to the effective mass (N / m*) were estimated. The capacitance–voltage measurements of CuGaSe2/p-Si heterojunction showed that the diode is abrupt junction diode. The carrier concentration and the built-in voltage were estimated. The current–voltage characteristics of the device under illumination were investigated and photovoltaic properties of the device were evaluated.  相似文献   

18.
《Solid State Ionics》2009,180(40):1613-1619
Materials of the LiTi2  xZrx(PO4)3 series (0  x  2) were prepared and characterized by powder X-ray (XRD) and neutron diffraction (ND), 7Li and 31P Nuclear Magnetic Resonance (NMR) and Electric Impedance techniques. In samples with x < 1.8, XRD patterns were indexed with the rhombohedral Rc space group, but in samples with x  1.8, XRD patterns display the presence of rhombohedral and triclinic phases. The Rietveld analysis of the LiTi1.4Zr0.6(PO4)3 neutron diffraction (ND) pattern provided structural information about intermediate compositions. For low Zr contents, compositions deduced from 31P MAS-NMR spectra are similar to nominal ones, indicating that Zr4+ and Ti4+ cations are randomly distributed in the NASICON structure. At increasing Zr contents, differences between nominal and deduced compositions become significant, indicating some Zr segregation in the triclinic phase. The substitution of Ti4+ by Zr4+ stabilizes the rhombohedral phase; however, electrical performances are not improved in expanded networks of Zr-rich samples. Below 300 K, activation energy of all samples is near 0.36 eV; however, above 300 K, activation energy is near 0.23 eV in Ti-rich samples and close to 0.36 eV in Zr-rich samples. The analysis of electrical data suggests that the amount of charge carriers and entropic terms are higher in Zr-rich samples; however, the increment of both parameters does not compensate lower activation energy terms of these samples. As a consequence of different contributions, the bulk conductivity of Zr-rich samples, measured at room temperature, is one order of magnitude lower than that measured in Ti-rich samples.  相似文献   

19.
Aiming at the development of new proton conducting solids, recent studies of the NaH2PO4·H2O–NaH2AsO4·H2O system have lead to the synthesis of a new compound NaH2(PO4)0.48(AsO4)0.52·H2O (NDAP). Calorimetric studies have confirmed the presence of four reversible phase transitions (abbreviated by PhT), at 257/270 (PhT, IV), 261/290 (PhT, III), 267/301 (PhT, II) and 317/317.5 K (PhT, I) (for cooling/heating processes, respectively). It is shown that the III and IV phase transitions are of a first order type, with a “order-disorder and displacive” character, accompanied by specific dielectric anomalies. The behavior of the dielectric constant εr and of tan δ shows that, at 272 K, the (PhT, IV) could be ferroelectric–paraelectric. As for the (PhT, III) at 296 K, it leads to a superionic–protonic phase; a jump in the conductivity is associated to this transition with an unusual high value of conductivity 1.07×10?4 Ω?1 cm?1 and a low activation energy 0.39 eV (Kh. Jarraya et al.). Quandratic nonlinear (NLO) properties of NDAP powder was confirmed efficiency of the grown crystal by the Kurtz and Perry second harmonic generation (SHG) technique.  相似文献   

20.
In this work the Nb2InC phase is investigated by X-ray diffraction, heat capacity, magnetic and resistivity measurements. Polycrystalline samples with Nb2InC nominal compositions were prepared by solid state reaction. X-ray powder patterns suggest that all peaks can be indexed with the hexagonal phase of Cr2AlC prototype. The electrical resistance as a function of temperature for Nb2InC shows superconducting behavior below 7.5 K. The M(H) data show typical type-II superconductivity with HC1  90 Oe at 1.8 K. The specific heat data are consistent with bulk superconductivity. The Sommerfeld constant is estimated as γ  12.6 mJ mol?1 K?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号