首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The transfer of geometrical data from CAD (Computer Aided Design) to FEA (Finite-Element Analysis) is a bottleneck of automated design optimization procedures, yielding a loss of accuracy and cumbersome software couplings. Isogeometric analysis methods propose a new paradigm that allows one to overcome these difficulties by using a unique geometrical representation, yielding a direct relationship between geometry and analysis. In this study, in the framework of linear elasticity problems, we investigate its use for sensitivity analysis and, more specifically, shape gradient computations.  相似文献   

2.
In this study a new framework for solving three-dimensional (3D) time fractional diffusion equation with variable-order derivatives is presented. Firstly, a θ-weighted finite difference scheme with second-order accuracy is introduced to perform temporal discretization. Then a meshless generalized finite difference (GFD) scheme is employed for the solutions of remaining problems in the space domain. The proposed scheme is truly meshless and can be used to solve problems defined on an arbitrary domain in three dimensions. Preliminary numerical examples illustrate that the new method proposed here is accurate and efficient for time fractional diffusion equation in three dimensions, particularly when high accuracy is desired.  相似文献   

3.
Multivalue methods are a class of time‐stepping procedures for numerical solution of differential equations that progress to a new time level using the approximate solution for the function of interest and its derivatives at a single time level. The methods differ from multistep procedures, which make use of solutions to the differential equation at multiple time levels to advance to the new time level. Multistep methods are difficult to employ when a change in time‐step is desired, because the standard formulas (e.g., Adams‐Moulton or Gear) must be modified to accommodate the change. Multivalue methods seem to possess the desirable feature that the time‐step may be changed arbitrarily as one proceeds, since the solution proceeds from a single time level. However, in practice, changes in the time‐step introduce lower order errors or alter the coefficient in the truncation error term. Here, the multivalue Adams‐Moulton method is presented based on a general interpolation procedure. Modifications required to retain the high‐order accuracy of these methods during a change in time‐step are developed. Additionally, a formula for the unknown initial derivatives is presented. Finally, two examples are provided to illustrate the potential merit of the modification to the standard multivalue methods. © 2000 John Wiley & Sons, Inc. Numer Methods Partials Differential Eq 16: 312–326, 2000  相似文献   

4.
Peridynamics via finite element analysis   总被引:2,自引:0,他引:2  
Peridynamics is a recently developed theory of solid mechanics that replaces the partial differential equations of the classical continuum theory with integral equations. Since the integral equations remain valid in the presence of discontinuities such as cracks, the method has the potential to model fracture and damage with great generality and without the complications of mathematical singularities that plague conventional continuum approaches. Although a discretized form of the peridynamic integral equations has been implemented in a meshless code called EMU, the objective of the present paper is to describe how the peridynamic model can also be implemented in a conventional finite element analysis (FEA) code using truss elements. Since FEA is arguably the most widely used tool for structural analysis, this implementation may hasten the verification of peridynamics and significantly broaden the range of problems that the practicing analyst might attempt. Also, the present work demonstrates that different subregions of a model can be solved with either the classical partial differential equations or the peridynamic equations in the same calculation thus combining the efficiency of FEA with the generality of peridynamics. Several example problems show the equivalency of the FEA and the meshless peridynamic approach as well as demonstrate the utility and robustness of the method for problems involving fracture, damage and penetration.  相似文献   

5.
Adaptive strategies are a necessary tool to make finite element analysis applicable to engineering practice. In this paper, attention is restricted to mesh adaptivity. Traditionally, the most common mesh adaptive strategies for linear problems are used to reach a prescribed accuracy. This goal is best met with an h-adaptive scheme in combination with an error estimator. In an industrial context, the aim of the mechanical simulations in engineering design is not only to obtain greatest quality but more often a compromise between the desired quality and the computation cost (CPU time, storage, software, competence, human cost, computer used). In this paper, we propose the use of alternative mesh refinement criteria with an h-adaptive procedure for 3D elastic problems. The alternative mesh refinement criteria (MR) are based on: prescribed number of elements with maximum accuracy, prescribed CPU time with maximum accuracy and prescribed memory size with maximum accuracy. These adaptive strategies are based on a technique of error in constitutive relation (the process could be used with other error estimators) and an efficient adaptive technique which automatically takes into account the steep gradient areas. This work proposes a 3D method of adaptivity with the latest version of the INRIA automatic mesh generator GAMHIC3D.  相似文献   

6.
A finite element formulation is presented for modeling the plate structure containing distributed piezoelectric sensors and actuators (S/As). A new plate bending element for analysis of the plate with distributed piezoelectric S/As is developed. This element saves much memory and computation time. Using the bending plate element, a general method of static shape control for the intelligent structure is put forth. Two examples are given to illustrate the application of the method presented in this paper. The purpose of the first example is to check the accuracy of the finite element method presented in this paper. The second example is to study the problem of the static shape control for the intelligent structure. It is concluded that the shape of the intelligent structure can reach the desired shape through passive control or active control.  相似文献   

7.
Many subsurface reservoirs compact or subside due to production-induced pressure changes. Numerical simulation of this compaction process is important for predicting and preventing well-failure in deforming hydrocarbon reservoirs. However, development of sophisticated numerical simulators for coupled fluid flow and mechanical deformation modeling requires a considerable manpower investment. This development time can be shortened by loosely coupling pre-existing flow and deformation codes via an interface. These codes have an additional advantage over fully-coupled simulators in that fewer flow and mechanics time steps need to be taken to achieve a desired solution accuracy. Specifically, the length of time before a mechanics step is taken can be adapted to the rate of change in output parameters (pressure or displacement) for the particular application problem being studied. Comparing two adaptive methods (the local error method—a variant of Runge–Kutta–Fehlberg for solving ode’s—and the pore pressure method) to a constant step size scheme illustrates the considerable cost savings of adaptive time stepping for loose coupling. The methods are tested on a simple loosely-coupled simulator modeling single-phase flow and linear elastic deformation. For the Terzaghi consolidation problem, the local error method achieves similar accuracy to the constant step size solution with only one third as many mechanics solves. The pore pressure method is an inexpensive adaptive method whose behavior closely follows the physics of the problem. The local error method, while a more general technique and therefore more expensive per time step, is able to achieve excellent solution accuracy overall.  相似文献   

8.
A numerical method for the resolution of the one-dimensional Schrödinger equation with open boundary conditions was presented in N. Ben Abdallah and O. Pinaud (Multiscale simulation of transport in an open quantum system: resonances and WKB interpolation. J. Comp. Phys. 213(1), 288–310 (2006)). The main attribute of this method is a significant reduction of the computational cost for a desired accuracy. It is based particularly on the derivation of WKB basis functions, better suited for the approximation of highly oscillating wave functions than the standard polynomial interpolation functions. The present paper is concerned with the numerical analysis of this method. Consistency and stability results are presented. An error estimate in terms of the mesh size and independent on the wavelength λ is established. This property illustrates the importance of this method, as multiwavelength grids can be chosen to get accurate results, reducing by this manner the simulation time.  相似文献   

9.
We provide an upper bound for the number of iterations necessary to achieve a desired level of accuracy for the Ando-Li-Mathias [Linear Algebra Appl. 385 (2004) 305-334] and Bini-Meini-Poloni [Math. Comput. 79 (2010) 437-452] symmetrization procedures for computing the geometric mean of n positive definite matrices, where accuracy is measured by the spectral norm and the Thompson metric on the convex cone of positive definite matrices. It is shown that the upper bound for the number of iterations depends only on the diameter of the set of n matrices and the desired convergence tolerance. A striking result is that the upper bound decreases as n increases on any bounded region of positive definite matrices.  相似文献   

10.
In this paper, an improved algorithm PSVD for computing the singular subspace of a matrix corresponding to its smallest singular values is presented. As only a basis of the desired singular subspace is needed, the classical Singular Value Decomposition (SVD) algorithm can be modified in three ways. First, the Householder transformations of the bidiagonalization need only to be applied on the base vectors of the desired singular subspace. Second, the bidiagonal must only be partially diagonalized and third, the convergence rate of the iterative diagonalization can be improved by an appropriate choice between QR and QL iteration steps. An analysis of the operation counts, as well as computational results, show the relative efficiency of PSVD with respect to the classical SVD algorithm. Depending on the gap, the desired numerical accuracy and the dimension of the desired subspace, PSVD can be three times faster than the classical SVD algorithm while the same accuracy can be maintained. The new algorithm can be successfully used in total least squares applications, in the computation of the null space of a matrix and in solving (non) homogeneous linear equations. Based on PSVD a very efficient and reliable algorithm is also derived for solving nonhomogeneous equations.  相似文献   

11.
Adaptive numerical methods for solving partial differential equations (PDEs) that control the movement of grid points are called moving mesh methods. In this paper, these methods are examined in the case where a separate PDE, that depends on a monitor function, controls the behavior of the mesh. This results in a system of PDEs: one controlling the mesh and another solving the physical problem that is of interest. For a class of monitor functions resembling the arc length monitor, a trade off between computational efficiency in solving the moving mesh system and the accuracy level of the solution to the physical PDE is demonstrated. This accuracy is measured in the density of mesh points in the desired portion of the domain where the function has steep gradient. The balance of computational efficiency versus accuracy is illustrated numerically with both the arc length monitor and a monitor that minimizes certain interpolation errors. Physical solutions with steep gradients in small portions of their domain are considered for both the analysis and the computations.  相似文献   

12.
In this work, the use of mini cantilever beams for characterization of rheological properties of viscous materials is demonstrated. The dynamic response of a mini cantilever beam partially submerged in air and water is measured experimentally using a duel channel PolyTec scanning vibrometer. The changes in dynamic response of the beam such as resonant frequency, and frequency amplitude are compared as functions of the rheological properties (density and viscosity) of fluid media. Next, finite element analysis (FEA) method is adopted to predict the dynamic response of the same cantilever beam. The numerical prediction is then compared with experimental results already performed to validate the FEA modeling scheme. Once the model is validated, further numerical analysis was conducted to investigate the variation in vibration response with changing fluid properties. Results obtained from this parametric study can be used to measure the rheological properties of any unknown viscous fluid.  相似文献   

13.
Recognition of preconflict situations has a powerful potential for early warning of violent political conflicts. This paper focuses on the design and application of artificial neural networks as classifiers of preconflict situations. Achieving a desired level of performance of the neural network relies on the appropriate construction of recognition space (selection of indicators) and the choice of network architecture. A fast and effective method for the design of reliable neural recognition systems is described. It is based on genetic algorithm techniques and optimizes both the configuration of input space and the network parameters. The implementation of the methodology provides for increased performance of the classifier in terms of accuracy, generalization capacity, computational and data requirements. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
Selecting an appropriate number of replications to run with a simulation model is important in assuring that the desired accuracy and precision of the results are attained with minimal effort. If too few are selected then accuracy and precision are lost; if too many are selected then valuable time is wasted. Given that simulation is often used by non-specialists, it seems important to provide guidance on the number of replications required with a model. In this paper an algorithm for automatically selecting the number of replications is described. Test results show the algorithm to be effective in obtaining coverage of the expected mean at a given level of precision and in reducing the bias in the estimate of the mean of the simulation output. The algorithm is consistent in selecting the expected number of replications required for a model output.  相似文献   

15.
In a recent work, we have proposed a new iterative method based on the eigenfunction expansion to integrate nonlinear parabolic systems sequentially. In this paper, we prove that the method is convergent and give analytical rate for its convergence. Moreover, we determine the number of iterations needed to obtain a solution with a pre-determined level of accuracy. We then illustrate the convergence analysis with a problem in combustion theory. It is expected that the convergence analysis can be used for similar systems with time dependence.  相似文献   

16.
A new efficient type of Chebyshev wavelet is used to find the optimal solutions of general linear, continuous-time, multi-delay systems with quadratic performance indices and also to obtain the responses of linear time-delay systems. According to the new definition of Chebyshev wavelets, the operational matrices of integration, product, delay and inverse time and the integration matrix are derived. Furthermore, new operational matrices as the piecewise delay operational matrix and the stretch operational matrix of the desired Chebyshev wavelets are introduced to analyze systems with, in turn, piecewise constant delays and stretched arguments or proportional delays. Two novel algorithms based on newly Chebyshev wavelet method are proposed for the optimal control and the analysis of delay models. Some examples are solved to establish that the accuracy and applicability of Chebyshev wavelet method in delay systems are increased.  相似文献   

17.
The present paper describes a simple method to find an indicator of the error in solutions found by a procedure using the simplex-technique, and also describes a method for improving these solutions to any desired accuracy provided certain conditions are met.  相似文献   

18.
This study considers using Metropolis-Hastings algorithm for stochastic simulation of chemical reactions. The proposed method uses SSA (Stochastic Simulation Algorithm) distribution which is a standard method for solving well-stirred chemically reacting systems as a desired distribution. A new numerical solvers based on exponential form of exact and approximate solutions of CME (Chemical Master Equation) is employed for obtaining target and proposal distributions in Metropolis-Hastings algorithm to accelerate the accuracy of the tau-leap method. Samples generated by this technique have the same distribution as SSA and the histogram of samples show it''s convergence to SSA  相似文献   

19.
In this era of big data, more and more models need to be trained to mine useful knowledge from large scale data. It has become a challenging problem to train multiple models accurately and efficiently so as to make full use of limited computing resources. As one of ELM variants, online sequential extreme learning machine (OS-ELM) provides a method to learn from incremental data. MapReduce, which provides a simple, scalable and fault-tolerant framework, can be utilized for large scale learning. In this paper, we propose an efficient parallel method for batched online sequential extreme learning machine (BPOS-ELM) training using MapReduce. Map execution time is estimated with historical statistics, where regression method and inverse distance weighted interpolation method are used. Reduce execution time is estimated based on complexity analysis and regression method. Based on the estimations, BPOS-ELM generates a Map execution plan and a Reduce execution plan. Finally, BPOS-ELM launches one MapReduce job to train multiple OS-ELM models according to the generated execution plan, and collects execution information to further improve estimation accuracy. Our proposal is evaluated with real and synthetic data. The experimental results show that the accuracy of BPOS-ELM is at the same level as those of OS-ELM and parallel OS-ELM (POS-ELM) with higher training efficiencies.  相似文献   

20.
In this article, we present a unified analysis of the simple technique for boosting the order of accuracy of finite difference schemes for time dependent partial differential equations (PDEs) by optimally selecting the time step used to advance the numerical solution and adding defect correction terms in a non-iterative manner. The power of the technique, which is applicable to time dependent, semilinear, scalar PDEs where the leading-order spatial derivative has a constant coefficient, is its ability to increase the accuracy of formally low-order finite difference schemes without major modification to the basic numerical algorithm. Through straightforward numerical analysis arguments, we explain the origin of the boost in accuracy and estimate the computational cost of the resulting numerical method. We demonstrate the utility of optimal time step (OTS) selection combined with non-iterative defect correction (NIDC) on several different types of finite difference schemes for a wide array of classical linear and semilinear PDEs in one and more space dimensions on both regular and irregular domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号