首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
相比于数字移相器,模拟移相器具有可以进行连续相位调制的优势。文中设计了一种工作于Ka 波段的反射式模拟电调移相器,该电路利用变容二极管与四分之一波长微带线组成的仔型支路和阻抗变换定向耦合器拓展了移相范围,并利用补偿电阻平衡了插入损耗波动。测试结果表明:在29 GHz ~31 GHz 频段,该移相器可以获得180毅左右的相移量,在中心频率30 GHz 处,插入损耗波动小于0. 4 dB,且线性度优于±2% 。  相似文献   

2.
3.
介绍了变容管反射式360°模拟移相器的设计,对相位与调制电压的线性关系作了分析。制成的模拟移相器采用计算机辅助设计,使用了超突变结变容管管芯和微波集成电路工艺。在9.3~9.7GHz范围内可获得360°连续可变相移,调相电压20V,线性偏离优于±5%,中心频率上的偏离优于±3%,插入损牦随相位的变化3dB。  相似文献   

4.
X波段GaAs单片五位数字移相器   总被引:3,自引:0,他引:3       下载免费PDF全文
设计并制作了X波段五位GaAs MMIC(微波单片集成电路)数字移相器,采用MESFET作为开关元件,五个移相位线性级联布置。在9~10GHz的频率范围内,用HP-8510网络分析仪测试得到的微波性能表明:移相器的插入损耗为(7.2±1)dB,RMS(均方根)相位误差小于5°,回波损耗优于-13dB。  相似文献   

5.
张杨  刘强 《无线电工程》2011,41(4):62-64
利用ADS2009仿真并设计了一种KA波段模拟移相器,其工作频段为19.6~21.2 GHz,工作带宽为1.6 GHz。在设计中采用skyworks公司的SMV2019变容二极管,以砷化镓陶瓷基片作为基板,金属金作为微带线的导体材料,并在设计中采用馈电分支线耦合器电桥模式,最终设计出一款最大移相能力为105.226°的连续可调的压控模拟移相器。  相似文献   

6.
介绍了低损耗反射型模拟移相器电路并报道了实验结果。这个电路集几个设计特征为一体,在X波段产生线性360°相移并且实现在所有相位状态下插损仅4.8dB,变化±0.5dB。这些结果提高了以前报道的X波段移相器性能,相移范围大,衰减小以及随相位状态变化幅度变化低。  相似文献   

7.
宽频带360度电控移相器   总被引:1,自引:0,他引:1  
本文在分析和归纳各种现有移相器的优缺点的基础上,提出了一种新型的矢量合成移相器,它具有“全范围”移相、输出幅度恒定、与频率无关及移相速度快等主要优点.本文分析了其原理和性能,并用实验初步证明了该移相器的可行性.  相似文献   

8.
Ka波段4位数字移相器的设计   总被引:1,自引:0,他引:1  
梅玮  柯新 《电子测试》2010,(6):79-83
移相器的应用十分广泛,比如各种通讯和雷达系统,微波仪器和测量系统,特别在相控阵雷达中应用最多。移相器是相控阵雷达T/R组件的重要组成部分。本文主要对Ka波段4位数字移相器进行了研究,并完成了实际电路的设计、制作和测试。在34.2GHz±300MHz频率范围内,所有相移位(16个)的插入损耗都小于10.71dB,输入端和输出端的回波损耗也都小于-14.84dB。另外,所有相移位在中心频率34.2GHz处的相位误差都小于士3.0°,最小仅有0.15°,所有指标均优于设计要求。  相似文献   

9.
报道了一种Ka波段实时延MEMS移相器芯片。该移相器基于开关线式移相器设计原理,集成了4个MEMS三端口直接接触式毫米波开关单元,使用共面波导(CPW)传输线,利用阶梯阻抗的方式实现传输线拐角和CPW空气桥结构的传输线阻抗匹配。芯片采用RF MEMS表面牺牲层工艺制作在400μm厚的高阻硅衬底上,面积为1.4 mm×2.8 mm。测试显示,在34~36 GHz频率范围内,相移误差3.2°,插入损耗2 dB,反射损耗小于-15 dB。  相似文献   

10.
贾小慧  高杨  柏鹭  王强 《半导体光电》2011,32(2):204-207,275
通过在共面波导上周期性地加载分布电容,外加驱动电压改变电容值,实现分布式MEMS移相器。首先给出了5位分布式MEMS移相器的总体结构图,分析了理论参数的设计方法。再采用HFSS建立单个微桥的三维电磁仿真模型,利用仿真得到的S参数拟合微桥的up态和down态电容值并与理论设计电容值对比,确定MEMS桥精确的结构参数。最后采用ADS建立分布式MEMS移相器整体的微波等效电路,仿真得出移相器的性能指标参数。仿真结果表明移相器在35GHz时移相精度小于0.6°,移相器的插入损耗小于0.3dB,回波损耗大于25dB。  相似文献   

11.
The aim of the paper below is to present the design approach, manufacture process and measurement results of a complete 360°360° phase shifter for Ku band controlled electronically. The phase shifter is based on microstrip technology and tunable reflective lines with varactor technology. This device allows to establish more than 360° phase variation with low insertion losses (2 dB in average), compared with devices found in literature. In this paper, a 12 GHz tunable phase shifter is analyzed, designed, simulated and prototyped. Eventually, prototype measurements are shown.  相似文献   

12.
The design approach and performance of a 22.5°/45°digital phase shifter based on a switched filter network for X-band phased arrays are described. Both the MMIC phase shifters are fabricated employing a 0.25μm gate GaAs pHEMT process and share in the same chip size of 0.82×1.06 mm2. The measurement results of the proposed phase shifters over the whole operating frequency range show that the phase shift error is less than 22.5°±2.5°, 45°±3.5°, which shows an excellent agreement with the simulated performance, the insertion loss is within the range of 0.9-1.2 dB for the 22.5°phase shifter and 0.9-1.4 dB for the 45°phase shifter, and the input/output return loss is better than -12.5 and -11 dB respectively. They also achieve the similar P1dB continuous wave power handing capability of 24.8 dBm at 10 GHz. The phase shifters show a good phase shift error, insertion loss and return loss in the X-band (40%), which can be employed into the wide bandwidth multi-bit digital phase shifter.  相似文献   

13.
数字移相器广泛应用于相控阵雷达中,本文采用一前一后加载支线的方法设计了 11.25°,22.5°和45°移相单元,以3 dB支线耦合器的形式设计90°和180°移相单元,在Ka频段研制出五位数字移相器。该移相器在30 GHz~31 GHz工作频带内,各移相单元实测相移误差最大为6.5°,最小为0.2°;插入损耗最大为11.8 dB,最小为8.6 dB;输入驻波比小于2,整个电路尺寸为110 mm×55 mm×25 mm。  相似文献   

14.
A low-cost method with high yield and good performance is presented by pHEMTs (pseudomorphic high electron mobility transistors) to be used in phase shifter switches. In this method, the capacitor in “off” mode (Coff) of transistor is reduced, without variation of the transistor structure. The transistor structure in switch mode can be optimised. This method increases the transistor isolation in turn “off” mode, while there is no change in resistance of the transistor in “on” mode (Ron). Transistor dimension is determined in turn “off” mode (Vg = ?4.5 V) and standard form of 4 × 75 μm. So, in this method, insertion loss will be reduced without a perceptible change in transistor dimension. Thus, design and fabrication capability of some circuits such as phase shifters, antenna switches, SPDT (single port double throw) – without any change in technology – are increasing. In this paper, post layout and measurement result for a sample block of phase shifter are shown.  相似文献   

15.
借助仿真软件Sonnet研究了金属导电层厚度、电导率和铁电薄膜介质损耗对移相器传输损耗和反射损耗的影响。结果显示:导电层的厚度超过2.0μm后,移相器的传输损耗不再随导电层厚度的增加而改变;随着导电层电导率的增加,移相器的传输损耗在高频段迅速减小;随着铁电薄膜介质损耗的减小,移相器的传输损耗在高频段下降很快;当介质损耗小于0.001时,移相器的传输损耗几乎不再减小。前述三种因素对反射损耗基本无影响。  相似文献   

16.
Some improvements for distributed Schottky diode tunable phase shifters are carried out. First, near- and far-end sections are tapered to improve return loss. Then, to reduce device length, and the number of varactors, inductances are added in series with the varactors, leading to an improved C/sub max//C/sub min/ ratio. For a 360/spl deg/ tunable phase shifter working at 1 GHz, insertion losses are limited to 2.4 dB maximum. Return loss is better than 20 dB. The tapered sections allow a wide working frequency range, typically from 800 to 1200 MHz with the same characteristics: around 2.4 dB insertion losses, 20 dB return loss.  相似文献   

17.
提出了一种双周期性BST电容加载共面波导传输线的移相器结构。基于这种结构设计制作的铁电薄膜移相器较好地解决了整个电路的阻抗匹配问题,其反射损耗的波纹在较宽的工作频带内趋于同一幅度。在沉积有钛酸锶钡(BST)薄膜的氧化镁基片上设计并制作了一个宽带双周期性BST叉指电容加载共面波导移相器,测试结果显示该移相器的反射损耗在0~15GHz内保持在–15dB,其中在14.5GHz处,在30V的外加偏压下其移相能力可达35o。  相似文献   

18.
We present analysis, optimization, design and characterization of an integrated passive analog phase shifter at 24 GHz in a commercially available 45 nm RF-CMOS process. The design is based on a well-known RC bridge topology, which was optimized for maximum phase shift and minimal amplitude response variation versus phase and frequency. Phase is controlled by varying DC voltage on a varactor, resulting in 60° maximum phase shift with 0.1 dB amplitude variation at 24 GHz. The size of the phase shifter circuit excluding pads and input/output buffers is 40×50 μm2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号