首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Parallel nonlinear multisplitting methods   总被引:1,自引:0,他引:1  
Summary Linear multisplitting methods are known as parallel iterative methods for solving a linear systemAx=b. We extend the idea of multisplittings to the problem of solving a nonlinear system of equationsF(x)=0. Our nonlinear multisplittings are based on several nonlinear splittings of the functionF. In a parallel computing environment, each processor would have to calculate the exact solution of an individual nonlinear system belonging to his nonlinear multisplitting and these solutions are combined to yield the next iterate. Although the individual systems are usually much less involved than the original system, the exact solutions will in general not be available. Therefore, we consider important variants where the exact solutions of the individual systems are approximated by some standard method such as Newton's method. Several methods proposed in literature may be regarded as special nonlinear multisplitting methods. As an application of our systematic approach we present a local convergence analysis of the nonlinear multisplitting methods and their variants. One result is that the local convergence of these methods is determined by an induced linear multisplitting of the Jacobian ofF.Dedicated to the memory of Peter Henrici  相似文献   

2.
In actual practice, iteration methods applied to the solution of finite systems of equations yield inconclusive results as to the existence or nonexistence of solutions and the accuracy of any approximate solutions obtained. On the other hand, construction of interval extensions of ordinary iteration operators permits one to carry out interval iteration computationally, with results which can give rigorous guarantees of existence or nonexistence of solutions, and error bounds for approximate solutions. Examples are given of the solution of a nonlinear system of equations and the calculation of eigenvalues and eigenvectors of a matrix by interval iteration. Several ways to obtain lower and upper bounds for eigenvalues are given.Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.  相似文献   

3.
An efficient algorithm is proposed for finding all solutions of nonlinear equations using linear programming (LP). This algorithm is based on a simple test (termed the LP test) for nonexistence of a solution to a system of nonlinear equations in a given region. In the conventional LP test, the system of nonlinear equations is transformed into an LP problem, to which the simplex method is applied. However, although the LP test is very powerful, it requires many pivotings for each region. In this paper, we use the dual simplex method in the LP test, which makes the average number of pivotings per region much smaller (less than one, for example) and makes the algorithm very efficient. By numerical examples, it is shown that the proposed algorithm can find all solutions of systems of 200 nonlinear equations in practical computation time.  相似文献   

4.
Finding all solutions of nonlinear or piecewise-linear equations is an important problem which is widely encountered in science and engineering. Various algorithms have been proposed for this problem. However, the implementation of these algorithms are generally difficult for non-experts or beginners. In this paper, an efficient method is proposed for finding all solutions of separable systems of piecewise-linear equations using integer programming. In this method, we formulate the problem of finding all solutions by a mixed integer programming problem, and solve it by a high-performance integer programming software such as GLPK, SCIP, or CPLEX. It is shown that the proposed method can be easily implemented without making complicated programs. It is also confirmed by numerical examples that the proposed method can find all solutions of medium-scale systems of piecewise-linear equations in practical computation time.  相似文献   

5.
A new algorithm is proposed which, under mild assumptions, generates a sequence{x i } that starting at any point inR n will converge to a setX defined by a mixed system of equations and inequalities. Any iteration of the algorithm requires the solution of a linear programming problem with relatively few constraints. By only assuming that the functions involved are continuously differentiable a superlinear rate of convergence is achieved. No convexity whatsoever is required by the algorithm.  相似文献   

6.
Summary Continuation methods compute paths of solutions of nonlinear equations that depend on a parameter. This paper examines some aspects of the multicomputer implementation of such methods. The computations are done on a mesh connected multicomputer with 64 nodes.One of the main issues in the development of concurrent programs is load balancing, achieved here by using appropriate data distributions. In the continuation process, many linear systems have to be solved. For nearby points along the solution path, the corresponding system matrices are closely related to each other. Therefore, pivots which are good for theLU-decomposition of one matrix are likely to be acceptable for a whole segment of the solution path. This suggests to choose certain data distributions that achieve good load balancing. In addition, if these distributions are used, the resulting code is easily vectorized.To test this technique, the invariant manifold of a system of two identical nonlinear oscillators is computed as a function of the coupling between them. This invariant manifold is determined by the solution of a system of nonlinear partial differential equations that depends on the coupling parameter. A symmetry in the problem reduces this system to one single equation, which is discretized by finite differences. The solution of the discrete nonlinear system is followed as the coupling parameter is changed.This material is based upon work supported by the NSF under Cooperative Agreement No. CCR-8809615. The government has certain rights in this material.  相似文献   

7.
An efficient algorithm is proposed for finding all solutions of systems of n nonlinear equations. This algorithm is based on interval analysis and a new strategy called LP narrowing. In the LP narrowing strategy, boxes (n-dimensional rectangles in the solution domain) containing no solution are excluded, and boxes containing solutions are narrowed so that no solution is lost by using linear programming techniques. Since the LP narrowing is very powerful, all solutions can be found very efficiently. By numerical examples, it is shown that the proposed algorithm could find all solutions of systems of 5000-50,000 nonlinear equations in practical computation time.  相似文献   

8.
Based on the ideas of norm-relaxed sequential quadratic programming (SQP) method and the strongly sub-feasible direction method, we propose a new SQP algorithm for the solution of nonlinear inequality constrained optimization. Unlike the previous work, at each iteration, the norm-relaxed quadratic programming subproblem (NRQPS) in our algorithm only consists of the constraints corresponding to an estimate of the active set, and the high-order correction direction (used to avoid the Maratos effect) is obtained by solving a system of linear equations (SLE) which also only consists of such a subset of constraints and gradients. Moreover, the line search technique can effectively combine the initialization process with the optimization process, and therefore (if the starting point is not feasible) the iteration points always get into the feasible set after a finite number of iterations. The global convergence is proved under the Mangasarian–Fromovitz constraint qualification (MFCQ), and the superlinear convergence is obtained without assuming the strict complementarity. Finally, the numerical experiments show that the proposed algorithm is effective and promising for the test problems.  相似文献   

9.
Precondition plays a critical role in the numerical methods for large and sparse linear systems. It is also true for nonlinear algebraic systems. In this paper incomplete Gröbner basis (IGB) is proposed as a preconditioner of homotopy methods for polynomial systems of equations, which transforms a deficient system into a system with the same finite solutions, but smaller degree. The reduced system can thus be solved faster. Numerical results show the efficiency of the preconditioner.  相似文献   

10.
For Toeplitz system of weakly nonlinear equations, by using the separability and strong dominance between the linear and the nonlinear terms and using the circulant and skew-circulant splitting (CSCS) iteration technique, we establish two nonlinear composite iteration schemes, called Picard-CSCS and nonlinear CSCS-like iteration methods, respectively. The advantage of these methods is that they do not require accurate computation and storage of Jacobian matrix, and only need to solve linear sub-systems of constant coefficient matrices. Therefore, computational workloads and computer storage may be saved in actual implementations. Theoretical analysis shows that these new iteration methods are local convergent under suitable conditions. Numerical results show that both Picard-CSCS and nonlinear CSCS-like iteration methods are feasible and effective for some cases.  相似文献   

11.
The random product homotopy and deficient polynomial systems   总被引:3,自引:0,他引:3  
Summary Most systems ofn polynomial equations inn unknowns arising in applications aredeficient, in the sense that they have fewer solutions than that predicted by the total degree of the system. We introduce the random product homotopy, an efficient homotopy continuation method for numerically determining all isolated solutions of deficient systems. In many cases, the amount of computation required to find all solutions can be made roughly proportional to the number of solutions.  相似文献   

12.
This is the second of three papers in which we study global convergence of iterations using linear information for the solution of nonlinear equations. In Wasilkowski [6] we proved that for the class of all analytic scalar complex functions having only simple zeros there exists no globally convergentstationary iteration using linear information. Here we exhibit anonstationary iteration using linear information which is globally convergent even for the multivariate and abstract cases. This demonstrates the strength of nonstationary iteration. In Wasilkowski [7] we shall prove that any globally convergent iteration using linear information hasinfinite complexity even for the class of scalar complex polynomials having only simple zeros.  相似文献   

13.
We show that the superposition principle applies to coupled nonlinear Schrödinger equations with cubic nonlinearity where exact solutions may be obtained as a linear combination of other exact solutions. This is possible due to the cancelation of cross terms in the nonlinear coupling. First, we show that a composite solution, which is a linear combination of the two components of a seed solution, is another solution to the same coupled nonlinear Schrödinger equation. Then, we show that a linear combination of two composite solutions is also a solution to the same equation. With emphasis on the case of Manakov system of two-coupled nonlinear Schrödinger equations, the superposition is shown to be equivalent to a rotation operator in a two-dimensional function space with components of the seed solution being its coordinates. Repeated application of the rotation operator, starting with a specific seed solution, generates a series of composite solutions, which may be represented by a generalized solution that defines a family of composite solutions. Applying the rotation operator to almost all known exact seed solutions of the Manakov system, we obtain for each seed solution the corresponding family of composite solutions. Composite solutions turn out, in general, to possess interesting features that do not exist in the seed solution. Using symmetry reductions, we show that the method applies also to systems of N-coupled nonlinear Schrödinger equations. Specific examples for the three-coupled nonlinear Schrödinger equation are given.  相似文献   

14.
We investigate the approximation of the solutions of a class of nonlinear second order singular boundary value problems with a self-adjoint linear part. Our strategy involves two ingredients. First, we take advantage of certain boundary condition functions to obtain well behaved functions of the solutions. Second, we integrate the problem over an interval that avoids the singularity. We are able to prove a uniform convergence result for the approximate solutions. We describe how the approximation is constructed for the various values of the deficiency index associated with the differential equation. The solution of the nonlinear problem is obtained by a globally convergent iterative method.  相似文献   

15.
Accelerated Landweber iterations for the solution of ill-posed equations   总被引:9,自引:0,他引:9  
Summary In this paper, the potentials of so-calledlinear semiiterative methods are considered for the approximate solution of linear ill-posed problems and ill conditioned matrix equations. Several efficient two-step methods are presented, most of which have been introduced earlier in the literature. Stipulating certain conditions concerning the smoothness of the solution, a notion of optimal speed of convergence may be formulated. Various direct and converse results are derived to illustrate the properties of this concept.If the problem's right hand side data are contaminated by noise, semiiterative methods may be used asregularization methods. Assuming optimal rate of convergence of the iteration for the unperturbed problem, the regularized approximations will be of order optimal accuracy.To derive these results, specific properties of polynomials are used in connection with the basic theory of solving ill-posed problems. Rather recent results onfast decreasing polynomials are applied to answer an open question of Brakhage.Numerical examples are given including a comparison to the method of conjugate gradients.This research was sponsored by the Deutsche Forschungsgemeinschaft (DFG).  相似文献   

16.
This paper is concerned with monotone algorithms for the finite difference solutions of a class of nonlinear reaction-diffusion-convection equations with nonlinear boundary conditions. A modified accelerated monotone iterative method is presented to solve the finite difference systems for both the time-dependent problem and its corresponding steady-state problem. This method leads to a simple and yet efficient linear iterative algorithm. It yields two sequences of iterations that converge monotonically from above and below, respectively, to a unique solution of the system. The monotone property of the iterations gives concurrently improving upper and lower bounds for the solution. It is shown that the rate of convergence for the sum of the two sequences is quadratic. Under an additional requirement, quadratic convergence is attained for one of these two sequences. In contrast with the existing accelerated monotone iterative methods, our new method avoids computing local maxima in the construction of these sequences. An application using a model problem gives numerical results that illustrate the effectiveness of the proposed method.  相似文献   

17.
A new parallel algorithm for the solution of banded linear systems is proposed. The scheme tears the coefficient matrix into several overlapped independent blocks in which the size of the overlap is equal to the system’s bandwidth. A corresponding splitting of the right-hand side is also provided. The resulting independent, and smaller size, linear systems are solved under the constraint that the solutions corresponding to the overlap regions are identical. This results in a linear system whose size is proportional to the sum of the overlap regions which we refer to as the “balance” system. We propose a solution strategy that does not require obtaining this “balance” system explicitly. Once the balance system is solved, retrieving the rest of the solution can be realized with almost perfect parallelism. Our proposed algorithm is a hybrid scheme that combines direct and iterative methods for solving a single banded system of linear equations on parallel architectures. It has broad applications in finite-element analysis, particularly as a parallel solver of banded preconditioners that can be used in conjunction with outer Krylov iterative schemes.  相似文献   

18.
19.
A large scale hydroelectric system optimization is considered and solved by using a non-linear programming method. The largest numerical case involves approximately 6 000 variables, 4 000 linear equations, 11 000 linear and nonlinear inequality constraints and a nonlinear objective function. The solution method is based on
  1. partial elimination of independent variables by solving linear equations,
  2. essentially unconstrained optimization of a compound function that consists of the objective function, nonlinear inequality constraints and part of the linear inequality constraints. The compound function is obtained via penalty formulation.
The algorithm takes full advantage of the problem's structure and provides useful solutions for real life problems that, in general, are defined over empty feasible regions.  相似文献   

20.
This work deals with the efficient numerical solution of a class of nonlinear time-dependent reaction-diffusion equations. Via the method of lines approach, we first perform the spatial discretization of the original problem by applying a mimetic finite difference scheme. The system of ordinary differential equations arising from that process is then integrated in time with a linearly implicit fractional step method. For that purpose, we locally decompose the discrete nonlinear diffusion operator using suitable Taylor expansions and a domain decomposition splitting technique. The totally discrete scheme considers implicit time integrations for the linear terms while explicitly handling the nonlinear ones. As a result, the original problem is reduced to the solution of several linear systems per time step which can be trivially decomposed into a set of uncoupled parallelizable linear subsystems. The convergence of the proposed methods is illustrated by numerical experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号