首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The results of the experimental study of the crystalline structure and morphology of carbon fibers based on viscose in a FEBUS carbon-ceramic composite and its preform as functions of temperature ranging from room values to ~400°C under irradiation with Ar+ ions with an energy of 10–30 keV are obtained. The average level of radiation damage corresponding to the initial fiber graphitization (〈νgr> ~ 80 dpa) is determined based on an analysis of the energy dependences of the ion-electron emission coefficient at different irradiation temperatures. It is shown that carbon fibers based on viscose are immune (in contrast to polyacrylonitrile fibers) to ion-induced destruction in the form of crimping. This is indicative of their enhanced radiation resistance.  相似文献   

2.
Zinc oxide (ZnO) nanowires (NWs) are exposed to energetic proton (H+), nitrogen (N+), phosphorus (P+), and argon (Ar+) ions to understand the radiation hardness and structural changes induced by these irradiations. High-resolution transmission electron microscopy is utilized to see the irradiation effects in NWs. Multiple doses and energies of radiation at different temperatures are used for different set of samples. The study reveals that wurtzite (crystalline)-structured ZnO NWs experience amorphization, degradation, and morphological changes after the irradiation. At room temperature, deterioration of the crystalline structure is observed under high fluence of H+, N+, and P+ ions. While for ZnO NWs, bombarded by Ar+ and P+ ions, nano-holes are produced. The ZnO NWs surfaces also show corrugated morphology full of nano-humps when irradiated by Ar+ ions at 400 °C. The corrugated surface could serve as tight-holding interface when interconnecting it with other NWs/nanotubes. These nano-humps may have the function of increasing the surface for surface-oriented sensing applications in the future.  相似文献   

3.
The crystal structure and morphology of the KUP-VM (1D) carbon-carbon fiber composite are investigated upon irradiation with 15- and 30-keV Ne+ ions with high fluences (1018?C1019 ion/cm2) with the purpose of studying fiber crimping. The results are compared with data obtained previously for N 2 + and Ar+ ion irradiation. It is assumed that the formation of regular prismatic topographic elements (crimps) at temperatures near and above the dynamic annealing temperature T a reflects the highly ordered structure of the fiber??s surface shell. The results obtained are discussed within the Bradley-Harper theory.  相似文献   

4.
The results from experiments on measuring the rate of gasification for carbon and boron–carbon films and carbon fiber composite (CFC) exposed in oxygen–ozone mixtures are presented. The rate of gasification is 0.4–0.6 μm h–1 (at temperatures of 220–250°C, a pressure of 0.3 atm, and an ozone concentration of 0.6 at %) for carbon films; plane CFC samples; gaps 1 and 2 mm wide with walls of stainless steel; and gaps 1 mm wide with walls of CFC. It is 15 μm h–1 for plane CFC at a temperature of 250°C, a pressure of 1 atm, and an ozone concentration of 10 at %. The rate of gasification for boron–carbon films is from 3 to 30 nm h–1 for B/C ratios of 2.1 to 0.8 (at 250°C, 1 atm, and ozone concentration of 10 at %).  相似文献   

5.
We present the results of the study of the elemental composition and defects of the electronic structure of the surface layer modified by high-dose irradiation (1018–1019 ion/cm2) of highly oriented pyrolytic graphite (UPV-1T) by 30-keV N 2 + and Ar+ ions in the temperature range from 180 to 400°C. The EPR spectra observed during irradiation with argon ions at high temperatures and with nitrogen ions at temperatures near the liquid-nitrogen temperature T = 77 K exhibit anomalously narrow lines which probably result from the exchange interaction inside paramagnetic clusters of displaced carbon atoms. During nitrogen ion irradiation at room and higher temperatures, paramagnetic defects typical of many carbon materials (single EPR lines with g = 2.0027–2.0029) and belonging to carbon atoms bound to one or three nitrogen atoms were detected.  相似文献   

6.
The temperature dependences (?200°C < T ≤ 350°C) of the ion-induced electron emission yield γ and the structures of modified surface layers have been studied experimentally for SU-850, SU-1000, SU-1300, SU-2000, and SU-2500 glassy carbons under high-dose 30-keV Ar+ and N 2 + ion irradiation. Glassy carbons manufactured using a relatively high heat-treatment temperature T ht exhibit a stepwise increase in the electron yield at certain annealing temperatures T a. The same behavior is observed for graphitized carbon materials. For low-temperature glassy carbons, the electron yield exhibits a monotonic increase with increasing irradiation temperature. The observed differences are related to the occurrence of different structural types of fullerene-like nanoparticles in the low-and high-temperature glassy carbons.  相似文献   

7.
P. Changizian  H. K. Zhang 《哲学杂志》2015,95(35):3933-3949
This study focuses on investigation into the effect of helium implantation on microstructure evolution in Inconel X-750 superalloy during dual-beam (Ni+/He+) irradiation. The 1 MeV Ni+ ions with the damage rate of 10?3 dpa/s as well as 15 keV He+ ions using rate of 200 appm/dpa were simultaneously employed to irradiate specimens at 400 °C to different doses. Microstructure characterization has been conducted using high-resolution analytical transmission electron microscopy (TEM). The TEM results show that simultaneous helium injection has significant influence on irradiation-induced microstructural changes. The disordering of γ′ (Ni3 (Al, Ti)) precipitates shows noticeable delay in dose level compared to mono heavy ion irradiation, which is attributed to the effect of helium on promoting the dynamic reordering process. In contrast to previous studies on single-beam ion irradiation, in which no cavities were reported even at high doses, very small (2–5 nm) cavities were detected after irradiation to 5 dpa, which proved that helium plays crucial role in cavity formation. TEM characterization also indicates that the helium implantation affects the development of dislocation loops during irradiation. Large 1/3 〈1?1?1〉 Frank loops in the size of 10–20 nm developed during irradiation at 400 °C, whereas similar big loops detected at higher irradiation temperature (500 °C) during sole ion irradiation. This implies that the effect of helium on trapping the vacancies can help to develop the interstitial Frank loops at lower irradiation temperatures.  相似文献   

8.

To study the modified surface layers of graphites and deposited films of sputtered material, the dependences of sputtering yield Y , and ion-electron emission coefficient γ on ion incidence angle and target temperature under high dose 30 keV N+ 2 ion irradiation have been measured. In the angular range θ=0-80° Y and γ increase approximately as inverse cosθ, Y of POCO-AXF-5Q are 1.5 times larger than of MPG-LT. The dependences of γ (T) manifests a step-like behaviour typical for the radiation induced phase transitions. EPR analysis shows that at near room temperatures the point electron defects are typical of carbon and the defects due to carbon atoms interacting with 14 N nuclei. At elevated temperatures (≥ 300°C) there are the defects typical of graphite-like structures. The films deposited on glass collectors shows for cold targets only the defects typical of carbon, for the heated graphites - also the defects associated with C-14N nuclei interaction.  相似文献   

9.
The results of experimentally investigating the sputtering and erosion of the basal plane of highly oriented pyrographite UPV-1T under irradiation with 30-keV Ar+ in the range from room temperature to 400°C are presented. It has been found that ion-induced surface-relief evolution at higher temperatures results in a two-fold increase in the sputtering yield (Y = 2) in comparison with sputtering of a surface with a nanosized relief at temperatures less than that of the texture transition T t ≈ 150°C. Sputtering simulation using the OKSANA code for a surface with a sinusoidal nanorelief, which reflects the instability of the basal plane of UPV-1T under ion irradiation, permits to estimate the ratio of the amplitude to the relief period at T < T t.  相似文献   

10.
Annealed Zircaloy-2 was exposed to fast neutron fluences in the range 0.46 to 6.71 × 1019 nvt, E > 1 MeV, at temperatures of up to 450°C. The level of radiation hardening, as measured by the change in yield stress after irradiation, increased with irradiation temperature at least up to 380°C.

Post-irradiation annealing treatments showed that radiation anneal hardening occurred after irradiation at temperatures up to 325°C. After irradiation at 375°C, annealing treatments did not produce a further increase in the yield stress above that produced by the irradiation, however the radiation hardening persisted to 450°C. The uniform strain tended to decrease as the amount of radiation anneal hardening increased and as the fast neutron fluence increased above ~5 × 1018 nvt, E > 1 MeV.

The effects of irradiation temperature and post-irradiation annealing on the yield stress and on uniform strain are explained in terms of the strengthening of radiation damage defect clusters and their increased effectiveness to impede dislocation movement.  相似文献   

11.
Once nanomaterials have been synthesized, inducing further structural modifications is challenging. However, being able to do so in a controlled manner is crucial. In this context, germanium nanowires are irradiated in situ within a transmission electron microscope (TEM) by a 300 keV xenon ion beam at temperatures ranging from room temperature (RT) to 500 °C. The ion irradiation is performed in situ and the evolution of nanowires during irradiation is monitored. At 300 °C and below, where the temperature is low enough to allow amorphization, the ion beam causes the formation of nanostructures within the nanowires. Formation of nanopores and swelling of nanowires is observed for a very low fluence of 2.2 × 1014 and up to 4.2 × 1015 ions cm−2. At higher fluences, the thickness of the nanowires decreases, the nanowires lose their wire-like cylindrical shape and the nanostructuring caused by the ion beam becomes more complex. The nanostructures are observed to be stable upon crystallization when the nanowires are annealed at 530 °C. Furthermore, in situ imaging allows the growth of nanopores during irradiation to be followed at RT and at 300 °C providing valuable insights into the mechanism responsible for the nanostructuring.  相似文献   

12.
The results of experimental studies of the structural and morphological changes of the surface of carbon PAN fibers of a carbon-carbon KUP-VM (1D) composite as a result of high-dose irradiation (1018–1019 ion/cm2) with Ne+ and Ar+ ions with an energy of 10–30 keV are presented. The threshold values of radiation damage, resulting in an amorphization of the PAN carbon fibers at room temperature and ion-induced crimping at temperatures greater than the annealing temperature of the radiation damage, are determined.  相似文献   

13.
This study reports an experimental investigation of evaporative heat transfer and pressure drop of R-134a flowing downward inside vertical corrugated tubes with different corrugation pitches. The double tube test section is 0.5 m long with refrigerant flowing in the inner tube and hot water flowing in the annulus. The inner tubes are comprised of one smooth tube and three corrugated tubes with different corrugation pitches of 6.35, 8.46, and 12.7 mm. The test runs are performed at evaporating temperatures of 10°C, 15°C, and 20°C; heat fluxes of 20, 25, and 30 kW/m2; and mass fluxes of 200, 300, and 400 kg/m2s. The experimental data obtained from the smooth tube are plotted with flow pattern map for vertical flow. Comparisons between smooth and corrugated tubes on the heat transfer and pressure drop are also discussed. It is observed that the heat transfer coefficient and frictional pressure drop obtained from the corrugated tubes are higher than those from the smooth tube. Furthermore, the heat transfer coefficient and frictional pressure drop increase as the corrugation pitch decreases. The maximum heat transfer enhancement factor and penalty factor are up to 1.22 and 4.0, respectively.  相似文献   

14.
Tricalcium aluminate doped with Eu3+ was prepared at furnace temperatures as low as 500°C by using the convenient combustion route and examined using powder X-ray diffraction, scanning electron microscope and photoluminescence techniques. A room-temperature photoluminescence study showed that the phosphors can be efficiently excited by UV/Visible region, emitting a red light with a peak wavelength of 616 nm corresponding to the 5D07F2 transition of Eu3+ ions. The phosphor exhibits three thermoluminescence (TL) peaks at 195°C, 325°C and 390°C. Electron Spin Resonance (ESR) studies were carried out to study the defect centres induced in the phosphor by gamma irradiation and also to identify the defect centres responsible for the TL process. Room-temperature ESR spectrum of irradiated phosphor appears to be a superposition of three distinct centres. One of the centres (centre I) with principal g-value 2.0130 is identified as O ion while centre II with an axially symmetric principal values g =2.0030 and g =2.0072 is assigned to an F+ centre (singly ionized oxygen vacancy). O ion (hole centre) correlates with the TL peak at 195°C and the F+ centre (electron centre), which acts as a recombination centre, is also correlated to the 195°C TL peak. F+ centre further appears to be related to the high temperature peak at 390°C. Centre III is also assigned to an F+ centre and seems to be the recombination centre for the TL peak at 325°C.  相似文献   

15.
Fine Co and Pt nanoparticles are nucleated when a silica sample is implanted with 400 keV Co+ and 1370 keV Pt+ ions. At the implanted range, Co and Pt react to form small Co x Pt(1?x) nanoparticles during Si+ ion irradiation at 300 °C. Thermal annealing of the pre-implanted silica substrate at 1000 °C results in the formation of spherical nanoparticles of various sizes. When irradiated with Si+ ions at 300 °C, particles in the size range of 5–17 nm undergo rod-like shape transformation with an elongation in the direction of the incident ion beam, while those particles in the size range of 17–26 nm turn into elliptical shape. Moreover, it is suspected that very big nanoparticles (size >26 nm) decrease in size, while small nanoparticles (size <5 nm) do not undergo any transformation. During Si+ ion irradiation, the crystalline nature of the nanoparticles is preserved. The results are discussed in the light of the thermal spike model.  相似文献   

16.
NiO thin films grown on Si(100) substrates by electron beam evaporation, were sintered at 500 °C and 700 °C. The films were irradiated with 120 MeV Au9+ ions. Irradiation had different effects depending upon the initial microstructure of the films. Irradiation of the films at a fluence of 3 × 1011 ions cm−2 leads to grain growth for the films sintered at 500 °C and grain fragmentation for the films sintered at 700 °C. At still higher fluences of irradiation, grain size in 500 °C sintered film decreased, but the same improved in 700 °C sintered film. Associated with the grain size, texturing of the films was also shown to undergo significant modifications under irradiation.  相似文献   

17.
《Composite Interfaces》2013,20(4):257-275
Discontinuous surface-treated submicron-diameter carbon filaments are effective for use as an interlayer between continuous carbon fiber laminae in a nylon-6 matrix composite for enhancing the loss tangent (0.2 and 1.0 Hz) under flexure that involves bending of the fibers, without significant decrease of the flexural storage modulus or the tensile modulus or strength in the fiber direction. The surface treatment is oxidation using ozone. Without treatment, the filaments are not effective. The treated filaments amount to 0.64 vol.% of composite; the interlayer thickness is 77 μm. A viscoelastic interlayer is even more effective than the treated filament interlayer for enhancing the loss tangent, but the accompanying decrease in storage modulus is much more. The loss tangent for composite with viscoelastic interlayer decreases upon heating, so the loss modulus for this composite is less than that of the composite with treated filament interlayer at ?50°C.  相似文献   

18.
The composition change of the outermost atom layer of TiC(110) under ion bombardment with 1.5–3 keV He+ and He+ + Ar+ ions has been measured by ion scattering spectroscopy with He+ ions at different sample temperatures. It has been found that the preferential sputtering of C atoms takes place for both the He+ and Ar+ ion bombardment, however the preferred sputtering is more pronounced for Ar+ ions than for He+ ions. The ion bombardment with He+ ions at elevated sample temperatures hardly results in any change in surface composition below ~800°C, while Ar+ ion bombardment results in C enrichment for elevated temperatures as reported so far.  相似文献   

19.
Nickel samples at temperatures of 300–1000°C have been irradiated simultaneously with 10-to 30-keV C+ ions and 1-to 5-keV electrons. The release of implanted carbon atoms on the surface of a sample with the formation of a transparent carbon film with the prevailing sp 3 hybridization has been observed. The thickness of the film is several tens of nanometers. The formation of films is attributed to the acceleration of the formation of carbon structures in samples irradiated by accelerated electrons.  相似文献   

20.
Results from structural and morphological studies, measurements of the sheet electrical resistance, and estimating resistivity ρm of a graphite-like conducting surface layer formed upon high-dose irradiation of the (111) face of a synthetic diamond with Ar+ ions at an energy of 30 keV and a target temperature of 400°C are presented. It is found that the orienting effect of the diamond lattice is visible in the suppression of the formation of graphite crystallites with axis c perpendicular to the surface. The thickness of the modified layer is 40–50 nm, and its sheet resistance is 0.5 kΩ/sq. Resistivity ρm = 20–25 μΩ m of the modified layer lies within the range of ρ values of graphite and glassy carbon materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号