首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthetically accessible borohydride complexes (C(5)Me(4)H)(2)Ln(THF)(BH(4)) and (C(5)Me(5))(2)Ln(THF)(BH(4)) (Ln = Sc, Y) were examined as precursors alternative to the heavily-used tetraphenylborate analogs, [(C(5)Me(4)H)(2)Ln][BPh(4)] and [(C(5)Me(5))(2)Ln][BPh(4)], employed in LnA(2)A'/M reduction reactions (A = anion; M = alkali metal) that generate "LnA(2)" reactivity and form reduced dinitrogen complexes [(C(5)R(5))(2)(THF)(x)Ln](2)(μ-η(2):η(2)-N(2)) (x = 0, 1). The crystal structures of the yttrium borohydrides, (C(5)Me(4)H)(2)Y(THF)(μ-H)(3)BH, 1, and (C(5)Me(5))(2)Y(THF)(μ-H)(2)BH(2), 2, were determined for comparison with those of the yttrium tetraphenylborates, [(C(5)Me(4)H)(2)Y][(μ-Ph)(2)BPh(2)], 3, and [(C(5)Me(5))(2)Y][(μ-Ph)(2)BPh(2)], 4. The complex (C(5)Me(4)H)(2)Sc(μ-H)(2)BH(2), 5, was synthesized and structurally characterized for comparison with (C(5)Me(5))(2)Sc(μ-H)(2)BH(2), 6, [(C(5)Me(4)H)(2)Sc][(μ-Ph)BPh(3)], 7, and [(C(5)Me(5))(2)Sc][(μ-Ph)BPh(3)], 8. Structural information was also obtained on the borohydride derivatives, (C(5)Me(4)H)(2)Sc(μ-H)(2)BC(8)H(14), 9, and (C(5)Me(5))(2)Sc(μ-H)(2)BC(8)H(14), 10, obtained from 9-borabicyclo(3.3.1)nonane (9-BBN) and (C(5)Me(4)R)(2)Sc(η(3)-C(3)H(5)), where R = H, 11; Me, 12. The preference of the metals for borohydride over tetraphenylborate binding was shown by the facile displacement of (BPh(4))(1-) in 3, 4, 7, and 8 by (BH(4))(1-) to make the respective borohydride complexes 1, 2, 5, and 6. These results are consistent with the fact that the borohydrides are not as useful as precursors in A(2)LnA'/M reductions of N(2). An unusual structural isomer of [(C(5)Me(4)H)(2)Sc](2)(μ-η(2):η(2)-N(2)), 13', was isolated from this study that shows the variations in ligand orientation that can occur in the solid state.  相似文献   

2.
The new mercury vanadium phosphate hydrate Hg(4)(-)(x)()O(1)(-)(y)()(VO)(PO(4))(2).H(2)O has been synthesized under hydrothermal conditions. X-ray investigations led to orthorhombic symmetry, space group P2(1)2(1)2(1) (No. 19), a = 6.3632(2) A, b = 12.4155(5) A, c = 14.2292(6) A, Z = 4. The crystal structure was solved and refined from single-crystal diffractometer data to residuals R[F(2) > 2sigmaF(2)] = 0.039, R(w)(F(2)) = 0.055. The VPO framework consists of infinite one-dimensional [VO(PO(4))(2)]( infinity ) chains with corner-connected VO(6) octahedra and PO(4) tetrahedra. The chains run along the [100] direction and are held together by the unprecedented tetrahedral cationic units [Hg(4)(-)(x)()O(1)(-)(y)()](4+). Presence of Hg-Hg bonding contacts is proved from theoretical calculations.  相似文献   

3.
The heats of formation for the molecules BH(3)PH(3), BH(2)PH(2), HBPH, AlH(3)NH(3), AlH(2)NH(2), HAlNH, AlH(3)PH(3), AlH(2)PH(2), HAlPH, AlH(4)(-), PH(3), PH(4), and PH(4)(+), as well as the diatomics BP, AlN, and AlP, have been calculated by using ab initio molecular orbital theory. The coupled cluster with single and double excitations and perturbative triples method (CCSD(T)) was employed for the total valence electronic energies. Correlation consistent basis sets were used, up through the augmented quadruple-zeta, to extrapolate to the complete basis set limit. Additional d core functions were used for Al and P. Core/valence, scalar relativistic, and spin-orbit corrections were included in an additive fashion to predict the atomization energies. Geometries were calculated at the CCSD(T) level up through at least aug-cc-pVTZ and frequencies were calculated at the CCSD(T)/aug-cc-pVDZ level. The heats of formation of the salts [BH(4)(-)][PH(4)(+)](s), [AlH(4)(-)][NH(4)(+)](s), and [AlH(4)(-)][PH(4)(+)](s) have been estimated by using an empirical expression for the lattice energy and the calculated heats of formation of the two component ions. The calculations show that both AlH(3)NH(3)(g) and [AlH(4)(-)][NH(4)(+)](s) can serve as good hydrogen storage systems that release H(2) in a slightly exothermic process. In addition, AlH(3)PH(3) and the salts [AlH(4)(-)][PH(4)(+)] and [BH(4)(-)][PH(4)(+)] have the potential to serve as H(2) storage systems. The hydride affinity of AlH(3) is calculated to be -70.4 kcal/mol at 298 K. The proton affinity of PH(3) is calculated to be 187.8 kcal/mol at 298 K in excellent agreement with the experimental value of 188 kcal/mol. PH(4) is calculated to be barely stable with respect to loss of a hydrogen to form PH(3).  相似文献   

4.
The electronic structure and metal-metal bonding in the classic d(7)d(7) tetra-bridged lantern dimer [Pt(2)(O(2)CCH(3))(4)(H(2)O)(2)](2+) has been investigated by performing quasi-relativistic Xalpha-SW molecular orbital calculations on the analogous formate-bridged complex. From the calculations, the highest occupied and lowest unoccupied metal-based levels are delta(Pt(2)) and sigma(Pt(2)), respectively, indicating a metal-metal single bond analogous to the isoelectronic Rh(II) complex. The energetic ordering of the main metal-metal bonding levels is, however, quite different from that found for the Rh(II) complex, and the upper metal-metal bonding and antibonding levels have significantly more ligand character. As found for the related complex [W(2)(O(2)CH)(4)], the inclusion of relativistic effects leads to a further strengthening of the metal-metal sigma bond as a result of the increased involvement of the higher-lying platinum 6s orbital. The low-temperature absorption spectrum of [Pt(2)(O(2)CCH(3))(4)(H(2)O)(2)](2+) is assigned on the basis of Xalpha-SW calculated transition energies and oscillator strengths. Unlike the analogous Rh(II) spectrum, the visible and near-UV absorption spectrum is dominated by charge transfer (CT) transitions. The weak, visible bands at 27 500 and 31 500 cm(-)(1) are assigned to Ow --> sigma(Pt(2)) and OAc --> sigma(Pt(2)) CT transitions, respectively, although the donor orbital in the latter transition has around 25% pi(Pt(2)) character. The intense near-UV band around 37 500 cm(-)(1) displays the typical lower energy shift as the axial substituents are changed from H(2)O to Cl and Br, indicative of significant charge transfer character. From the calculated oscillator strengths, a number of transitions, mostly OAc --> sigma(Pt-O) CT in nature, are predicted to contribute to this band, including the metal-based sigma(Pt(2)) --> sigma(Pt(2)) transition. The close similarity in the absorption spectra of the CH(3)COO(-), SO(4)(2)(-), and HPO(4)(2)(-) bridged Pt(III) complexes suggests that analogous spectral assignments should apply to [Pt(2)(SO(4))(4)(H(2)O)(2)](2)(-) and [Pt(2)(HPO(4))(4)(H(2)O)(2)](2)(-). Consequently, the anomalous MCD spectra reported recently for the intense near-UV band in the SO(4)(2)(-) and HPO(4)(2)(-) bridged Pt(III) complexes can be rationalized on the basis of contributions from either SO(4) --> sigma(Pt-O) or HPO(4) --> sigma(Pt-O) CT transitions. The electronic absorption spectrum of [Rh(2)(O(2)CCH(3))(4)(H(2)O)(2)] has been re-examined on the basis of Xalpha-SW calculated transition energies and oscillator strengths. The intense UV band at approximately 45 000 cm(-)(1) is predicted to arise from several excitations, both metal-centered and CT in origin. The lower energy shoulder at approximately 40 000 cm(-)(1) is largely attributed to the metal-based sigma(Rh(2)) --> sigma(Rh(2)) transition.  相似文献   

5.
The protonation of [Ru(2)(CO)(4)(mu-H)(mu-PBu(t)()(2))(mu-dppm)(mu-eta(2)-ONNO)] (1) with HBF(4) occurs at the oxygen of the noncoordinating side of the trans-hyponitrite ligand to give [Ru(2)(CO)(4)(mu-H)(mu-PBu(t)()(2))(mu-dppm)(mu-eta(2)-ONNOH)][BF(4)] (2) in good yield. The monoprotonated hyponitrite in 2 is deprotonated easily by strong bases to regenerate 1. Furthermore, 1 reacts with the methylating reagent [Me(3)O][BF(4)] to afford [Ru(2)(CO)(4)(mu-H)(mu-PBu(t)()(2))(mu-dppm)(mu-eta(2)-ONNOMe)][BF(4)] (3). The molecular structures of 2 and 3 have been determined crystallographically, and the structure of 2 is discussed with the results of the DFT/B3LYP calculations on the model complex [Ru(2)(CO)(4)(mu-H)(mu-PH(2))(mu-H(2)PCH(2)PH(2))(mu-eta(2)-ONNOH)](+) (2a). Moreover, the thermolysis of 2 in ethanol affords [Ru(2)(CO)(4)(mu-H)(mu-OH)(mu-PBu(t)()(2))(mu-dppm)][BF(4)] (4) in high yield, and the deprotonation of 4 by DBU in THF yields the novel complex [Ru(2)(CO)(4)(mu-OH)(mu-PBu(t)()(2))(mu-dppm)] (5).  相似文献   

6.
Six metal carbido-carbonyl clusters have been isolated and recognized as members of a multivalent family based on the dioctahedral Rh(10)(C)(2) frame, with variable numbers of CO ligands, AuPPh(3) moieties, and anionic charge: [Rh(10)(C)(2)(CO)(x)(AuPPh(3))(y)](n-) (x = 18, 20; y = 4, 5, 6; n = 0, 1, 2). Anions [Rh(10)(C)(2)(CO)(18)(AuPPh(3))(4)](-) ([2](-)) and [Rh(10)(C)(2)(CO)(18)(AuPPh(3))(4)](2-) ([2](2-)) have been obtained by the reduction of [Rh(10)(C)(2)(CO)(18)(AuPPh(3))(4)] (2) under N(2), while [Rh(10)(C)(2)(CO)(18)(AuPPh(3))(5)](-) ([3](-)) was obtained from [Rh(10)(C)(2)(CO)(20)(AuPPh(3))(4)] (1) by reduction under a CO atmosphere. [3](-) can be better obtained by the addition of AuPPh(3)Cl to [2](2-). [Rh(10)(C)(2)(CO)(18)(AuPPh(3))(6)] (4) is obtained from [3](-) and 2 as well by the reduction and subsequent addition of AuPPh(3)Cl. The molecular structures of [2](2-) ([NBu(4)](+) salt), [3](-) ([NMe(4)](+) salt), and 4 have been determined by single-crystal X-ray diffraction. The redox activities of complexes 1, 2 and [3](-) have been investigated by electrochemical and electron paramagnetic resonance (EPR) techniques. The data from EPR spectroscopy have been accounted for by theoretical calculations.  相似文献   

7.
The deliberate design of a series of single crystals of conducting two-dimensional radical cation salts of o-bis(amide)-appended ethylenedithiotetrathiafulvalene, beta'-[EDT-TTF-(CONH(2))(2)](2)X (X = HSO(4)(-), ClO(4)(-), ReO(4)(-), or AsF(6)(-)) and of their parent monocomponent solid EDT-TTF-(CONH(2))(2) is demonstrated and allows us to reach a level of prediction of the structure of molecular conductors. Their conductivity is activated with a gap of 1650 K and a sizable room-temperature conductivity of 0.15 S.cm(-)(1) (for X = ClO(4)(-)) and a singular spin susceptibility for a beta'-type salt that, in addition, changes very remarkably with the anion. The key design element is that of a recurrent, puckered ribbon constructed out of self-complementary, hydrogen-bonded amide...amide ring motifs whose minute modulations of curvature and shape throughout the series have been shown to correlate to very remarkable differences in the intrastack beta(HOMO)(-)(HOMO) interaction energies and changes in the density of states at the Fermi level and on to important differences of spin susceptibility behavior in a system where electron correlations are significant. The coupled activation of structure, electron interactions, and magnetic susceptibility discovered and discussed throughout the paper is unprecedented and is seen as a genuine expression of interfacial hydrogen-bond interactions onto the collective electronic properties.  相似文献   

8.
Infrared predissociation (IRPD) spectra of Li(+)(C(6)H(6))(1-4)(H(2)O)(1-2)Ar(0-1) and Na(+)(C(6)H(6))(2-4)(H(2)O)(1-2)Ar(1) are presented along with ab initio calculations. The results indicate that the global minimum energy structure for Li(+)(C(6)H(6))(2)(H(2)O)(2) has each water forming a π-hydrogen bond with the same benzene molecule. This bonding motif is preserved in Li(+)(C(6)H(6))(3-4)(H(2)O)(2)Ar(0-1) with the additional benzene ligands binding to the available free OH groups. Argon tagging allows high-energy Li(+)(C(6)H(6))(2-4)(H(2)O)(2)Ar isomers containing water-water hydrogen bonds to be trapped and detected. The monohydrated, Li(+) containing clusters contain benzene-water interactions with varying strength as indicated by shifts in OH stretching frequencies. The IRPD spectra of M(+)(C(6)H(6))(1-4)(H(2)O)(1-2)Ar are very different for lithium-bearing versus sodium-bearing cluster ions emphasizing the important role of ion size in determining the most favorable balance of competing noncovalent interactions.  相似文献   

9.
Reaction between the Os(VI)-hydrazido complex, trans-[Os(VI)(tpy)(Cl)(2)(NN(CH(2))(4)O)](2+) (tpy = 2,2':6',2"-terpyridine and O(CH(2))(4)N(-) = morpholide), and a series of N- or O-bases gives as products the substituted Os(VI)-hydrazido complexes, trans-[Os(VI)(4'-RNtpy)(Cl)(2)(NN(CH(2))(4)O)](2+) or trans-[Os(VI)(4'-ROtpy)(Cl)(2)(NN(CH(2))(4)O)](2+) (RN(-) = anilide (PhNH(-)); S,S-diphenyl sulfilimide (Ph(2)S=N(-)); benzophenone imide (Ph(2)C=N(-)); piperidide ((CH(2))(5)N(-)); morpholide (O(CH(2))(4)N(-)); ethylamide (EtNH(-)); diethylamide (Et(2)N(-)); and tert-butylamide (t-BuNH(-)) and RO(-) = tert-butoxide (t-BuO(-)) and acetate (MeCO(2)(-)). The rate law for the formation of the morpholide-substituted complex is first order in trans-[Os(VI)(tpy)(Cl)(2)(NN(CH(2))(4)O)](2+) and second order in morpholine with k(morp)(25 degrees C, CH(3)CN) = (2.15 +/- 0.04) x 10(6) M(-)(2) s(-)(1). Possible mechanisms are proposed for substitution at the 4'-position of the tpy ligand by the added nucleophiles. The key features of the suggested mechanisms are the extraordinary electron withdrawing effect of Os(VI) on tpy and the ability of the metal to undergo intramolecular Os(VI) to Os(IV) electron transfer. These substituted Os(VI)-hydrazido complexes can be electrochemically reduced to the corresponding Os(V), Os(IV), and Os(III) forms. The Os-N bond length of 1.778(4) A and Os-N-N angle of 172.5(4) degrees in trans-[Os(VI)(4'-O(CH(2))(4)Ntpy)(Cl)(2)(NN(CH(2))(4)O)](2+) are consistent with sp-hybridization of the alpha-nitrogen of the hydrazido ligand and an Os-N triple bond. The extensive ring substitution chemistry implied for the Os(VI)-hydrazido complexes is discussed.  相似文献   

10.
The synthesis and structure of the first Mo/Fe/S/BH(4) cluster is reported. Reaction of (Cl(4)-cat)(2)Mo(2)Fe(6)S(8)(PPr(3))(6) with 4 equiv of Bu(4)NBH(4) results in the formation of [(Cl(4)-cat)(PPr(3))MoFe(3)S(4)(BH(4))(2)](2)(Bu(4)N)(4) (Cl(4)-cat = tetrachloro-catecholate) which has been fully characterized. X-ray structural determination of this double-fused cubane reveals four BH(4)(-) ligands bound to four Fe atoms in a bidentate fashion. A synopsis of the solution characterization as well as the reactivity of this cluster is also presented.  相似文献   

11.
A cyanide-bridged molecular square of [Ru(II) (2)Fe(II) (2)(mu-CN)(4)(bpy)(8)](PF(6))(4).CHCl(3).H(2)O, abbreviated as [Ru(II) (2)Fe(II) (2)](PF(6))(4), has been synthesised and electrochemically generated mixed-valence states have been studied by spectroelectrochemical methods. The complex cation of [Ru(II) (2)Fe(II) (2)](4+) is nearly a square and is composed of alternate Ru(II) and Fe(II) ions bridged by four cyanide ions. The cyclic voltammogram (CV) of [Ru(II) (2)Fe(II) (2)](PF(6))(4) in acetonitrile showed four quasireversible waves at 0.69, 0.94, 1.42 and 1.70 V (vs. SSCE), which correspond to the four one-electron redox processes of [Ru(II) (2)Fe(II) (2)](4+) right arrow over left arrow [Ru(II) (2)Fe(II)Fe(III)] (5+) right arrow over left arrow [Ru(II) (2)Fe(III) (2)](6+) right arrow over left arrow [Ru(II)Ru(III)Fe(III) (2)](7+) right arrow over left arrow [Ru(III) (2)Fe(III) (2)](8+). Electrochemically generated [Ru(II) (2)Fe(II)Fe(III)](5+) and [Ru(II) (2)Fe(III) (2)](6+) showed new absorption bands at 2350 nm (epsilon =5500 M(-1) cm(-1)) and 1560 nm (epsilon =10 500 M(-1) cm(-1)), respectively, which were assigned to the intramolecular IT (intervalence transfer) bands from Fe(II) to Fe(III) and from Ru(II) to Fe(III) ions, respectively. The electronic interaction matrix elements (H(AB)) and the degrees of electronic delocalisation (alpha(2)) were estimated to be 1090 cm(-1) and 0.065 for the [Ru(II) (2)Fe(II)Fe(III) (2)](5+) state and 1990 cm(-1) and 0.065 for the [Ru(II) (2)Fe(III) (2)](6+) states.  相似文献   

12.
13.
Polymerization of methyl methacrylate (MMA) initiated by the rare-earth borohydride complexes [Ln(BH(4))(3)(thf)(3)] (Ln=Nd, Sm) or [Sm(BH(4))(Cp*)(2)(thf)] (Cp*=eta-C(5)Me(5)) proceeds at ambient temperature to give rather syndiotactic poly(methyl methacrylate) (PMMA) with molar masses M(n) higher than expected and quite broad molar mass distributions, which is consistent with a poor initiation efficiency. The polymerization of MMA was investigated by performing density functional theory (DFT) calculations on an eta-C(5)H(5) model metallocene and showed that in the reaction of [Eu(BH(4))(Cp)(2)] with MMA the borate [Eu(Cp)(2){(OBH(3))(OMe)C=C(Me)(2)}] (e-2) complex, which forms via the enolate [Eu(Cp)(2){O(OMe)C=C(Me)(2)}] (e), is calculated to be exergonic and is the most likely of all of the possible products. This product is favored because the reaction that leads to the formation of carboxylate [Eu(Cp)(2){OOC-C(Me)(=CH(2))}] (f) is thermodynamically favorable, but kinetically disfavored, and both of the potential products from a Markovnikov [Eu(Cp)(2){O(OMe)C-CH(Me)(CH(2)BH(3))}] (g) or anti-Markovnikov [Eu(Cp)(2){O(OMe)C-C(Me(2))(BH(3))}] (h) hydroboration reaction are also kinetically inaccessible. Similar computational results were obtained for the reaction of [Eu(BH(4))(3)] and MMA with all of the products showing extra stabilization. The DFT calculations performed by using [Eu(Cp)(2)(H)] to model the mechanism previously reported for the polymerization of MMA initiated by [Sm(Cp*)(2)(H)](2) confirmed the favorable exergonic formation of the intermediate [Eu(Cp)(2){O(OMe)C=C(Me)(2)}] (e') as the kinetic product, this enolate species ultimately leads to the formation of PMMA as experimentally observed. Replacing H by BH(4) thus prevents the 1,4-addition of the [Eu(BH(4))(Cp)(2)] borohydride ligand to the first incoming MMA molecule and instead favors the formation of the borate complex e-2. This intermediate is the somewhat active species in the polymerization of MMA initiated by the borohydride precursors [Ln(BH(4))(3)(thf)(3)] or [Sm(BH(4))(Cp*)(2)(thf)].  相似文献   

14.
The synthesis and characterizations of a family of isomorphous [Mn(III)(2)M(III)(4)L(2)(μ(4)-O)(2)(N(3))(2)(CH(3)O)(2)(CH(3)OH)(4)(NO(3))(2)]·2H(2)O (M = Y(1), Gd(2), Tb(3), Dy(4)) are reported, where H(4)L = N,N'-dihydroxyethyl-N,N'-(2-hydroxy-4,5-dimethylbenzyl)ethylenediamine. They were obtained from the reactions of H(4)L with M(NO(3))(3)·6H(2)O, Mn(ClO(4))(2)·6H(2)O, NaN(3) and NEt(3) in a 1?:?1?:?1?:?2?:?2 molar ratio. The core structure consists of a Mn(2)M(4) unit. The four M(III) ions that are held together by two μ(4)-bridging oxygen atoms form a butterfly M(4) moiety. The M(4) core is further connected to the two five-coordinate trigonal-bipyramidal Mn(III) ions via one μ(4)-O(2-), two alkyloxo and one methoxo triple bridges. Magnetic susceptibility measurements indicate the presence of intramolecular antiferromagnetic interactions in complex 2, and overall intramolecular ferromagnetic interactions in complexes 3 and 4. The alternating current (AC) magnetic susceptibility studies revealed that complexes 3 and 4 showed frequency-dependent out-of-phase signals, which indicates that they exhibit slow relaxation of the magnetization.  相似文献   

15.
Reaction of [V(IV)OCl(2)(THF)(2)] in aqueous solution with 2 equiv of AgBF(4) or AgSbF(6) and then with 2 equiv of 2,2'-bipyridine (bipy), 4,4'-di-tert-butyl-2,2'-bipyridine (4,4'-dtbipy), or 4,4'-di-methyl-2,2'-bipyridine (4,4'-dmbipy) affords compounds of the general formula cis-[V(IV)O(OH)(L(NN))(2)]Y [where L(NN) = bipy, Y = BF(4)(-) (1), L(NN) = 4,4'-dtbipy, Y = BF(4)(-) (2.1.2H(2)O), L(NN) = 4,4'-dmbipy, Y = BF(4)(-) (3.2H(2)O), and L(NN) = 4,4'-dtbipy, Y = SbF(6)(-) (4)]. Sequential addition of 1 equiv of Ba(ClO(4))(2) and then of 2 equiv of bipy to an aqueous solution containing 1 equiv of V(IV)OSO(4).5H(2)O yields cis-[V(IV)O(OH)(bipy)(2)]ClO(4) (5). The monomeric compounds 1-5 contain the cis-[V(IV)O(OH)](+) structural unit. Reaction of 1 equiv of V(IV)OSO(4).5H(2)O in water and of 1 equiv of [V(IV)OCl(2)(THF)(2)] in ethanol with 2 equiv of bipy gives the compounds cis-[V(IV)O(OSO(3))(bipy)(2)].CH(3)OH.1.5H(2)O (6.CH(3)OH.1.5H(2)O) and cis-[V(IV)OCl(bipy)(2)]Cl (7), respectively, while reaction of 1 equiv of [V(IV)OCl(2)(THF)(2)] in CH(2)Cl(2) with 2 equiv of 4,4'-dtbipy gives the compound cis-[V(IV)OCl(4,4'-dtbipy)(2)]Cl.0.5CH(2)Cl(2) (8.0.5CH(2)Cl(2)). Compounds cis-[V(IV)O(BF(4))(4,4'-dtbipy)(2)]BF(4) (9), cis-[V(IV)O(BF(4))(4,4'-dmbipy)(2)]BF(4) (10), and cis-[V(IV)O(SbF(6))(4,4'-dtbipy)(2)]SbF(6) (11) were synthesized by sequential addition of 2 equiv of 4,4'-dtbipy or 4,4'-dmbipy and 2 equiv of AgBF(4) or AgSbF(6) to a dichloromethane solution containing 1 equiv of [V(IV)OCl(2)(THF)(2)]. The crystal structures of 2.1.2H(2)O, 6.CH(3)OH.1.5H(2)O, and 8.0.5CH(2)Cl(2) were demonstrated by X-ray diffraction analysis. Crystal data are as follows: Compound 2.1.2H(2)O crystallizes in the orthorhombic space group Pbca with (at 298 K) a = 21.62(1) A, b = 13.33(1) A, c = 27.25(2) A, V = 7851(2) A(3), Z = 8. Compound 6.CH(3)OH.1.5H(2)O crystallizes in the monoclinic space group P2(1)/a with (at 298 K) a = 12.581(4) A, b = 14.204(5) A, c = 14.613(6) A, beta = 114.88(1) degrees, V = 2369(1), Z = 4. Compound 8.0.5CH(2)Cl(2) crystallizes in the orthorhombic space group Pca2(1) with (at 298 K) a = 23.072(2) A, b = 24.176(2) A, c = 13.676(1) A, V = 7628(2) A(3), Z = 8 with two crystallographically independent molecules per asymmetric unit. In addition to the synthesis and crystallographic studies, we report the optical, infrared, magnetic, conductivity, and CW EPR properties of these oxovanadium(IV) compounds as well as theoretical studies on [V(IV)O(bipy)(2)](2+) and [V(IV)OX(bipy)(2)](+/0) species (X = OH(-), SO(4)(2)(-), Cl(-)).  相似文献   

16.
The addition of [N(CH(3))(4)]OH to a methanolic solution of FeCl(3) and thme (thme = 1,1,1-tris(hydroxymethyl)ethane) yielded [N(CH(3))(4)](2)[OFe(6)(H(-)(3)thme)(3)(OCH(3))(3)Cl(6)].2H(2)O (1). Crystal data: C(26)H(64)Cl(6)Fe(6)N(2)O(15), trigonal space group P31c, a = 12.459(2) ?, c = 18.077(4) ?, Z = 2. The complex anion exhibits the well-known &mgr;(6)-O-Fe(6)-(&mgr;(2)-OR)(12) structure with three &mgr;(2)-methoxo bridges, three triply deprotonated H(-)(3)thme ligands, where each alkoxo group bridges two Fe(III) centers, and six terminally coordinating Cl(-) ligands. In contrast to two previously described ferric complexes with an analogous structure of the complex core, compound 1 is stable in air. Variable-temperature magnetic susceptibility measurements established antiferromagnetic exchange coupling interactions with J(trans)(Fe-&mgr;(6)-O-Fe) = 24.5 cm(-)(1), J(cis)(Fe-&mgr;(2)-O(thme)-Fe) = 11.5 cm(-)(1), and J(cis)'(Fe-&mgr;(2)-OCH(3)-Fe) = 19.5 cm(-)(1). The unexpectedly high value for J(trans) is explained by means of a superexchange pathway and is discussed for a simplified model by using MO calculations at the extended Hückel level.  相似文献   

17.
Reduction of TiCl(4) with 1 equiv of HSnBu(3) followed by addition of [PPh(4)]Cl and then PR(3) leads to two new dinuclear titanium(III) compounds, [PPh(4)][Ti(2)(&mgr;-Cl)(3)Cl(4)(PR(3))(2)] (R = Et and R(3) = Me(2)Ph), both of which contain an anion with the face-sharing bioctahedral type structure. Their crystal structures are reported. [PPh(4)][Ti(2)(&mgr;-Cl)(3)Cl(4)(PEt(3))(2)].2CH(2)Cl(2) crystallized in the triclinic space group P&onemacr;. Cell dimensions: a = 12.461(1) ?, b = 20.301(8) ?, c = 11.507(5) ?, alpha = 91.44 degrees, beta = 113.27(1) degrees, gamma = 104.27(2) degrees, and Z = 2. The distance between titanium atoms is 3.031(2) ?. [PPh(4)][Ti(2)(&mgr;-Cl)(3)Cl(4)(PMe(2)Ph)(2)].CH(2)Cl(2) also crystallized in the triclinic space group P&onemacr; with cell dimensitions a = 11.635(4) ?, b = 19.544(3) ?, c = 11.480(3) ?, alpha = 100.69(2) degrees, beta = 109.70(1) degrees, gamma = 95.08(2) degrees, and Z = 2. The distance between titanium atoms in this compound is 2.942(1) ?. Variable temperature magnetic susceptibilities were measured for [PPh(4)][Ti(2)(&mgr;-Cl)(3)Cl(4)(PEt(3))(2)]. Electronic structure calculations were carried out for a model ion, [Ti(2)(&mgr;-Cl)(3)Cl(4)(PH(3))(2)](-), and another well-known anion, [Ti(2)(&mgr;-Cl)(3)Cl(6)](3)(-), by employing an ab initio configuration interaction method. The results of the calculations reveal that the metal-metal interaction in these Ti(III) face-sharing compounds can be best described by strong antiferromagnetic coulping that leads to a singlet ground state and a thermally accessible triplet first excited state. Accordingly the measured magnetic data were satisfactorily fitted to a spin-only formula.  相似文献   

18.
A reaction of trans-[Ir(4-C(5)NF(4))(η(2)-C(2)H(4))(PiPr(3))(2)] (1) with an excess of water in THF at room temperature affords the hydrido hydroxo complex trans-[Ir(4-C(5)NF(4))(H)(OH)(PiPr(3))(2)] (2). Treatment of 2 with CO furnishes trans-[Ir(4-C(5)NF(4))(H)(OH)(CO)(PiPr(3))(2)] (3). Reductive elimination of water from 3 leads to the formation of the iridium(I) carbonyl complex trans-[Ir(4-C(5)NF(4))(CO)(PiPr(3))(2)] (4). The insertion of CO(2) into the Ir-O bond of 2 forms the hydrido hydrogencarbonato complex trans-[Ir(4-C(5)NF(4))(H)(κ(2)-(O,O)-O(2)COH)(PiPr(3))(2)] (5). Treatment of 2 with NH(3) in C(6)D(6) yields trans-[Ir(4-C(5)NF(4))(H)(OH)(NH(3))(PiPr(3))(2)] (6). Storage of the reaction mixture at room temperature reveals the formation of the N-H activation product [Ir(4-C(5)NF(4))(H)(μ-NH(2))(NH(3))(PiPr(3))](2) (7).  相似文献   

19.
The trifluorido complex mer-[CrF(3)(py)(3)] (py = pyridine) reacts with 1 equiv. of [Ln(hfac)(3)(H(2)O)(2)] and depending on the solvent forms the tetranuclear clusters [Cr(2)Ln(2)(μ-F)(4)(μ-OH)(2)(py)(4)(hfac)(6)], 1Ln, and [Cr(2)Ln(2)(μ-F)(4)F(2)(py)(6)(hfac)(6)], 2Ln, in acetonitrile and 1,2-dichloroethane, respectively (Ln = Y, Gd, Tb, Dy, Ho, and Er; hfacH = 1,1,1,5,5,5-hexafluoroacetylacetone). Reaction with [Dy(hfac)(3)(H(2)O)(2)] in dichloromethane produces the dinuclear cluster [CrDy(μ-F)F(OH(2))(py)(3)(hfac)(4)], 3Dy. All the clusters feature fluoride bridges between the chromium(iii) and lanthanide(iii) centres. Fits of susceptibility data for 1Gd and 2Gd reveal the fluoride-mediated chromium(iii)-lanthanide(iii) exchange interactions to be 0.43(5) cm(-1) and 0.57(7) cm(-1), respectively (in the convention). Heat capacity measurements on 2Gd reveal a moderate magneto-caloric effect (MCE) reaching -ΔS(m)(T) = 11.4 J kg(-1) K(-1) for ΔB(0) = 9 T → 0 T at T = 4.1 K. Out-of-phase alternating-current susceptibility (χ') signals are observed for 1Dy, 2Dy and 2Tb, demonstrating slow relaxation of the magnetization.  相似文献   

20.
The molecular structures of Zr[(mu-H)(3)BH](4) and U[(mu-H)(3)BH](4) have been investigated by density functional theory (DFT) calculations and gas electron diffraction (GED). The triply bridged bonding mode of the tetrahydroborate groups in the former is confirmed, but both DFT calculations and GED structure refinements indicate that the BH(4) groups are rotated some 12 degrees away from the orientation in which the three bridging B-H bonds are staggered with respect to the opposing ZrB(3) fragment. As a result the symmetry of the equilibrium conformation is reduced from T(d) to T. Bond distances and valence angles are as follows (DFT/GED): Zr-B = 232.2/232.4(5) pm; Zr-H(b) = 214.8/214.4(6) pm; B-H(b) = 125.3/127.8(8) pm; B-H(t) = 119.4/118.8(17) pm; angle ZrBH(b) = 66.2/65.6(3) degrees; the smallest dihedral angle of type tau(BZrBH(b)) = 48/45(2) degrees. DFT calculations on Hf(BH(4))(4) indicate that the structure of this molecule is very similar to that of the Zr analogue. Matrix-isolation IR spectroscopy and DFT calculations on U(BH(4))(4) show that while the polymeric solid-state structure is characterized by terminal triply bridging and metal-metal bridging bidentate BH(4) groups, all BH(4) groups are triply bridging in the gaseous monomer. Calculations with one of the two nonbonding 5f electrons on U occupying an a(1) and the other distributed equally among the three t(2) orbitals indicate that the equilibrium conformation has T(d) symmetry, i.e. that the three B-H(b) bonds of each tetrahydroborate group are exactly staggered with respect to the opposing UB(3) fragment with tau(BUBH(b)) = 60 degrees. Calculations including spin-orbit interactions indicate that Jahn-Teller distortions from T(d) symmetry are either absent or very small. The best agreement between observed and calculated GED intensity data was obtained for a model of T(d) symmetry, but models of T symmetry with dihedral angles tau(BUBH(b)) > 42 degrees cannot be ruled out. Bond distances and valence angles are as follows (DFT/GED): U-B = 248.8/251.2(4) pm; U-H(b) = 227.7/231.5(6) pm; B-H(b) = 126.0/131.6(5) pm, B-H(t) = 119.5/117.8(11) pm; angle UBH(b) = 65.6/63.1(3) degrees. It is suggested that the different equilibrium conformations of the three molecules are determined primarily by repulsion between bridging H atoms in different tetrahydroborate groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号