首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Highly water-soluble lanthanum and cerium citrates or malates with ethylenediaminetetraacetate (NH(4))(8)[Ln(2)(Hcit)(2)(EDTA)(2)]·9H(2)O [Ln = La, 1; Ce, 2], K(8)[La(2)(Hcit)(2)(EDTA)(2)]·16H(2)O (3) and K(6)[Ln(2)(Hmal)(2)(EDTA)(2)]·14H(2)O [Ln = La, 4; Ce, 5] (H(4)cit = citric acid, H(3)mal = malic acid, and H(4)EDTA = ethylenediaminetetracetic acid) were prepared from the reactions of lanthanide ethylenediaminetetraacetate trihydrates with citric or malic acid at pH 5.0-6.5. These compounds were characterized by elemental analyses, IR, TG-DTG, solution (13)C{(1)H} NMR, solid state (13)C NMR spectra and X-ray structural analyses. The main structural feature of the compounds consists of a dinuclear unit deca-coordinated by EDTA and citrate or malate. The α-hydroxy and α-carboxy groups of citrate and malate chelate in five-membered ring with one lanthanide ion, while one of the β-carboxy group coordinates with the other lanthanide ion, forming a dimeric structure. The other pendent β-carboxy groups in 1-3 form very strong intramolecular hydrogen bond with α-hydroxy groups [O1O7 2.594(4), 2.587(8) and 2.57(1) ? for 1-3 respectively]. (13)C NMR spectra of the lanthanum compounds show obvious downfield shifts based on solid and solution NMR measurements, indicating the coordinations of mixed-ligand in lanthanum complexes, while highfield shifts are observed in cerium complexes.  相似文献   

2.
To tune the lanthanide luminescence in related molecular structures, we synthesized and characterized a series of lanthanide complexes with imidazole-based ligands: two tripodal ligands, tris{[2-{(1-methylimidazol-2-yl)methylidene}amino]ethyl}amine (Me(3)L), and tris{[2-{(imidazol-4-yl)methylidene}amino]ethyl}amine (H(3)L), and the dipodal ligand bis{[2-{(imidazol-4-yl)methylidene}amino]ethyl}amine (H(2)L). The general formulas are [Ln(Me(3)L)(H(2)O)(2)](NO(3))(3)·3H(2)O (Ln = 3+ lanthanide ion: Sm (1), Eu (2), Gd (3), Tb (4), and Dy (5)), [Ln(H(3)L)(NO(3))](NO(3))(2)·MeOH (Ln(3+) = Sm (6), Eu (7), Gd (8), Tb (9), and Dy (10)), and [Ln(H(2)L)(NO(3))(2)(MeOH)](NO(3))·MeOH (Ln(3+) = Sm (11), Eu (12), Gd (13), Tb (14), and Dy (15)). Each lanthanide ion is 9-coordinate in the complexes with the Me(3)L and H(3)L ligands and 10-coordinate in the complexes with the H(2)L ligand, in which counter anion and solvent molecules are also coordinated. The complexes show a screw arrangement of ligands around the lanthanide ions, and their enantiomorphs form racemate crystals. Luminescence studies have been carried out on the solid and solution-state samples. The triplet energy levels of Me(3)L, H(3)L, and H(2)L are 21?000, 22?700, and 23?000 cm(-1), respectively, which were determined from the phosphorescence spectra of their Gd(3+) complexes. The Me(3)L ligand is an effective sensitizer for Sm(3+) and Eu(3+) ions. Efficient luminescence of Sm(3+), Eu(3+), Tb(3+), and Dy(3+) ions was observed in complexes with the H(3)L and H(2)L ligands. Ligand modification by changing imidazole groups alters their triplet energy, and results in different sensitizing ability towards lanthanide ions.  相似文献   

3.
Hydrothermal reactions of the lanthanide chlorides with MeN(CH2CO2H)(CH2PO3H2), (H3L1) (or Me2NCH2PO3H2, H2L2) and sodium oxalate lead to seven new lanthanide oxalate phosphonate hybrids with three types of 3D network structures, namely, [Ln(C2O4){MeNH(CH2CO2)(CH2PO3H)}]0.5 H2O (Ln=Nd: 1; Eu: 2; Gd: 3), [Ln4(C2O4)5(Me2NHCH2PO3)2(H2O)4]2 H2O (Ln=La: 4, Nd: 5), [Ln3(C2O4)4(Me2NHCH2PO3)(H2O)6]6 H2O (Gd: 6, Er: 7). Their structures have been established by X-ray single-crystal diffraction. Complexes 1-3 are isostructural and feature a 3D network formed by the interconnection of 3D network of {Ln(H2L1)}2+ with 1D chains of {Ln(C2O4)}+. Complexes 4 and 5 are isostructural and feature a complex 3D network built from 3D network of lanthanide oxalate and {Ln4(HL2)2} units. The isostructural 6 and 7 form another type of 3D network composed of porous lanthanide-oxalate network inserted by 1D chains of lanthanide-oxalate phosphonate. Compounds 1, 5 and 7 are luminescent materials in the near IR region. Compounds 3 and 6 exhibit a broad blue fluorescent emission band at 451 and 467 nm, respectively. Compound 2 displays very strong and sharp emission bands at 592, 616 and 699 nm with a long luminescent lifetime of 1.13 ms.  相似文献   

4.
A series of cationic lanthanide porphyrinate complexes of the general formula [(Por)Ln(H(2)O)(3)](+) (Ln(3+)=Yb(3+) and Er(3+)) were synthesized in moderate yields through the interaction of meso-pyridyl-substituted porphyrin free bases (H(2)Por) with [Ln{N(SiMe(3))(2)}(3)]·x[LiCl(thf)(3)], and the corresponding neutral derivatives [(Por)Ln(L(OMe))] (L(OMe)(-)=[(η(5)-C(5)H(5))Co{P(=O)(OMe)(2)}(3)](-)) were also prepared from [(Por)Ln(H(2)O)(3)](+) by the addition of the tripodal anion, L(OMe)(-), an effective encapsulating agent for lanthanide ions. Furthermore, the water-soluble lanthanide(III) porphyrinate complexes--including [(cis-DMPyDPP)Yb(H(2)O)(3)]Cl(3) (cis-DMPyDPP=5,10-bis(N-methylpyridinium-4'-y1)-15,20-di(phenyl)porphyrin), [(trans-DMPyDPP)Yb(H(2)O)(3)]Cl(3) (trans-DMPyDPP=5,15-bis(N-methylpyridinium-4'-y1)-10,20-di(phenyl)porphyrin), [(TMPyP)Yb(L(OMe))]I(4), and [(TMPyP)Er(L(OMe))]I(4) (TMPyP=tetrakis(N-methylpyridinium-4-y1)porphyrin)--were obtained by methylation of the corresponding complexes with methyl iodide and unambiguously characterized. The binding interactions and photocleavage activities of the water-soluble lanthanide(III) porphyrinate complexes towards DNA were investigated by UV-visible, fluorescence, and near-infrared luminescence spectroscopy, as well as circular dichroism and gel electrophoresis.  相似文献   

5.
The syntheses, structures, and magnetic properties are reported for four new lanthanide clusters [Sm(4)(μ(3)-OH)(2)L(2)(acac)(6)]·4H(2)O (1), [Gd(4)(μ(3)-OH)(2)L(2)(acac)(6)]·4CH(3)CN (2), and [Ln(4)(μ(3)-OH)(2)L(2)(acac)(6)]·2H(2)L·2CH(3)CN (3, Ln = Tb; 4, Ln = Dy) supported by salen-type (H(2)L = N,N'-bis(salicylidene)-1,2-cyclohexanediamine) and β-diketonate (acac = acetylacetonate) ligands. The four clusters were confirmed to be essentially isomorphous by infrared spectroscopy and single-crystal X-ray diffraction. Their crystal structures reveal that the salen-type ligand provides a suitable tetradentate coordination pocket (N(2)O(2)) to encapsulate lanthanide(III) ions. Moreover, the planar Ln(4) core is bridged by two μ(3)-hydroxide, four phenoxide, and two ketonate oxygen atoms. Magnetic properties of all four compounds have been investigated using dc and ac susceptibility measurements. For 4, the static and dynamic data indicate that the Dy(4) complex exhibits slow relaxation of the magnetization below 5 K associated with single-molecule magnet behavior.  相似文献   

6.
A new bis-β-diketone, 3,3'-bis(4,4,4-trifluoro-1,3-dioxobutyl)biphenyl (BTB), has been designed and prepared for the synthesis of a series of dinuclear lanthanide complexes [Ln(2)(BTB)(3)(C(2)H(5)OH)(2)(H(2)O)(2)] [Ln = Eu (1), Gd (2)], [Ln(2)(BTB)(3)(DME)(2)] [Ln = Nd (3), Yb (4); DME = ethylene glycol dimethyl ether] and [Eu(2)(BTB)(3)(L)(2)] [L = 2,2-bipydine (5); 1,10-phenanthroline (6); 4,7-diphenyl-1,10-phenanthroline (7)]. Complexes 1-7 have been characterized by various spectroscopic techniques and their photophysical properties are investigated. X-ray crystallographical analysis reveals that complexes 1, 3 and 4 adopt triple-stranded dinuclear structures which are formed by three bis-bidentate ligands with two lanthanide ions. The complexes 1 and 3-7 display strong visible red or NIR luminescence upon irradiation at ligand band around 372 nm, depending on the choice of the lanthanide. The solid-state photoluminescence quantum yields and the lifetimes of Eu(3+) complexes are determined and described.  相似文献   

7.
The synthesis and structures of lanthanide complexes supported by benzoxazine-functionalized amine bridged bis(phenolate) ligand 6,6'-(2-(8-tert-butyl-6-methyl-2H-benzo[e][1,3]oxazin-3(4H)-yl)ethylazanediyl)bis(methylene)bis(2-tert-butyl-4-methylphenolato) (L(2-)) are described. Salt metathesis reaction between lanthanide trichloride and 2 eq of LNa(2) in THF at room temperature afforded the corresponding "ate" complexes [L(2)LnNa(THF)(2)] (Ln[double bond, length as m-dash]Y (1), Nd (2), Er (3), Yb (4)). Further treatment of the product with 18-crown-6 afforded discrete ion-pair complexes [L(2)Ln][(18-crown-6)Na(THF)(2)] (Ln[double bond, length as m-dash]Y (5), Yb (6)). The single-crystal structural analyses of 1 and 3-6 revealed that the lanthanide cation and the sodium cation were bridged by two phenolate oxygen atoms in complexes 1, 3 and 4, while in complexes 5 and 6, the anion comprises a lanthanide cation coordinated by two L(2-) and the cation is comprised of a sodium cation surrounded by an 18-crown-6 and two THF molecules. These complexes were found to exhibit distinct activities towards the ring-opening polymerization of ε-caprolactone and l-lactide.  相似文献   

8.
Li J  Li H  Yan P  Chen P  Hou G  Li G 《Inorganic chemistry》2012,51(9):5050-5057
A new β-diketone, 2-(2,2,2-trifluoroethyl)-1-indone (TFI), which contains a trifluorinated alkyl group and a rigid indone group, has been designed and employed for the synthesis of two series of new TFI lanthanide complexes with a general formula [Ln(TFI)(3)L] [Ln = Eu, L = (H(2)O)(2) (1), bpy (2), and phen (3); Ln = Sm, L = (H(2)O)(2) (4), bpy (5), and phen (6); bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline]. X-ray crystallographic analysis reveals that complexes 1-6 are mononuclear, with the central Ln(3+) ion eight-coordinated by six oxygen atoms furnished by three TFI ligands and two O/N atoms from ancillary ligand(s). The room-temperature photoluminescence (PL) spectra of complexes 1-6 show strong characteristic emissions of the corresponding Eu(3+) and Sm(3+) ions, and the substitution of the solvent molecules by bidentate nitrogen ligands essentially enhances the luminescence quantum yields and lifetimes of the complexes.  相似文献   

9.
Reactions of 1,4,7-triazacyclononane-1,4,7-triyl-tris(methylenephosphonic acid) [notpH(6), C(9)H(18)N(3)(PO(3)H(2))3] with different lanthanide salts result in four types of Ln-notp compounds: [Ln{C(9)H(20)N(3)(PO(3)H)(2)(PO(3))}(NO(3))(H(2)O)].4H2O (1), [Ln = Eu (1 Eu), Gd (1 Gd), Tb (1 Tb)], [Ln{C(9)H(20)N(3)(PO(3)H)(2)(PO(3))}(H2O)]Cl.3H2O (2) [Ln = Eu (2 Eu), Gd (2 Gd), Tb (2 Tb)], [Ln{C(9)H(20)N(3)(PO(3)H)(2)(PO(3))}(H2O)]ClO4.8H2O, (3) [Ln = Eu (3 Eu), Gd (3 Gd)], and [Ln{C(9)H(20)N(3)(PO(3)H)(2)(PO(3))}(H2O)]ClO4.3H2O (4), [Ln = Gd (4 Gd), Tb (4 Tb)]. Compounds within each type are isostructural. In compounds 1, dimers of {Ln2(notpH4)2(NO3)2(H2O)2} are found, in which the two lanthanide atoms are connected by two pairs of O-P-O and one pair of mu-O bridges. The NO3- ion serves as a bidentate terminal ligand. Compounds 2 contain similar dimeric units of {Ln2(notpH4)2(H2O)2} that are further connected by a pair of O-P-O bridges into an alternating chain. The Cl- ions are involved in the interchain hydrogen-bonding networks. A similar chain structure is also found in compounds 3; in this case, however, the chains are linked by ClO4- counterions through hydrogen-bonding interactions, forming an undulating layer in the (011) plane. These layers are fused through hydrogen-bonding interactions, leading to a three-dimensional supramolecular network with large channels in the [100] direction. Compounds 4 show an interesting brick-wall-like layer structure in which the neighboring lanthanide atoms are connected by a pair of O-P-O bridges. The ClO4- counterions and the lattice water molecules are between the layers. In all compounds the triazamacrocyclic nitrogen atoms are not coordinated to the Ln(III) ions. The anions and the pH are believed to play key roles in directing the formation of a particular structure. The fluorescence spectroscopic properties of the Eu and Tb compounds, magnetic properties of the Gd compounds, and the catalytic properties of 4 Gd were also studied.  相似文献   

10.
[Ln[N(SiMe3)2]2(THF)2](Ln = Sm, Yb) reacts with 1 equiv. of carbon-bridged biphenols, 2,2'-methylene-bis(6-tert-butyl-4-methylphenol)(L1H2) or 2,2'-ethylidene-bis(4,6-di-tert-butylphenol)(L2H2), in toluene to give the novel aryloxide lanthanide(II) complexes [[LnL1(THF)n]2](Ln = Sm, n = 3 (1); Ln = Yb, n = 2 (2)) and [[LnL2(THF)3]2](Ln = Sm (5); Ln = Yb (6)) in quantitative yield, respectively. Addition of 2 equiv. of hexamethylphosphoric triamide (HMPA) to a tetrahydrofuran (THF) solution of 1, 2 and 5 affords the corresponding HMPA-coordinated complexes, [[LnL1(THF)m(HMPA)n]2(THF)y](Ln = Sm, n = 2, m = 0, y = 2 (3); Ln = Yb, m = 1, n = 1, y = 6 (4)) and [[SmL2(HMPA)2]2](7) in excellent yields. The single-crystal structural analyses of 3, 4 and 7 revealed that these aryloxide lanthanide(II) complexes are dimeric with two Ln-O bridges. The coordination geometry of each lanthanide metal can be best described as a distorted trigonal bipyramid. Complexes 1-3, 5 and 7 can catalyze the ring-opening polymerization of epsilon-caprolactone (epsilon-CL), and 1-3, along with 5 show moderate activity for the ring-opening polymerization of 2,2-dimethyltrimethylene carbonate (DTC) and the copolymerization of epsilon-CL and DTC to give random copolymers with high molecular weights and relatively narrow molecular weight distributions..  相似文献   

11.
Song X  Zhou X  Liu W  Dou W  Ma J  Tang X  Zheng J 《Inorganic chemistry》2008,47(24):11501-11513
To explore the relationships between the structures of ligands and their complexes, we have synthesized and characterized a series of lanthanide complexes with two structurally related ligands, 1,1,1,1-tetrakis{[(2'-(2-benzylaminoformyl))phenoxyl]methyl}methane (L(I)) and 1,1,1,1-tetrakis{[(2'-(2-picolyaminoformyl))phenoxyl]methyl}methane (L(II)). A series of zero- to three-dimensional lanthanide coordination complexes have been obtained by changing the substituents on the Pentaerythritol. Our results revealed that, complexes of the L(I) ligand, {Ln(4)L(I)(3)(NO(3))(12).nC(4)H(10)O}(infinity) (Ln = Nd, Eu, Tb, Er, n = 3 or 6)] show the binodal 3,4-connected three-dimensional interpenetration coordination polymers with topology of a (8(3))(4)(8(6))(3) notation. Compared to L(I), complexes of L(II) present a cage-like homodinuclear [Ln(2)L(II)(2)(NO(3))(6).2H(2)O].nH(2)O (Ln = Nd, Tb, Dy, n = 0 or 1) or a helical one-dimensional coordination {[ErL(II)(NO(3))(3).H(2)O].H(2)O}(infinity) polymer. The luminescence properties of the resulting complexes formed with ions used in fluoroimmunoassays (Ln = Eu, Tb) are also studied in detail. It is noteworthy that subtle variation of the terminal group from benzene to pyridine not only sensibly affects the overall molecular structures but also the luminescence properties as well.  相似文献   

12.
The reaction of LH3 with Ni(ClO4)(2).6H 2O and lanthanide salts in a 2:2:1 ratio in the presence of triethylamine leads to the formation of the trinuclear complexes [L2Ni2Ln][ClO4] (Ln=La (2), Ce (3), Pr (4), Nd (5), Sm (6), Eu (7), Gd (8), Tb (9), Dy (10), Ho (11) and Er (12) and L: (S)P[N(Me)NCH-C6H3-2-O-3-OMe]3). The cationic portion of these complexes consists of three metal ions that are arranged in a linear manner. The two terminal nickel(II) ions are coordinated by imino and phenolate oxygen atoms (3N, 3O), whereas the central lanthanide ion is bound to the phenolate and methoxy oxygen atoms (12O). The Ni-Ni separations in these complexes range from 6.84 to 6.48 A. The Ni-Ni, Ni-Ln and Ln-O phenolate bond distances in 2-12 show a gradual reduction proceeding from 2 to 12 in accordance with lanthanide contraction. Whereas all of the compounds (2-12) are paramagnetic systems, 8 displays a remarkable ST=(11)/2 ground state induced by an intramolecular Ni. . .Gd ferromagnetic interaction, and 10 is a new mixed metal 3d/4f single-molecule magnet generated by the high-spin ground state of the complex and the magnetic anisotropy brought by the dysprosium(III) metal ion.  相似文献   

13.
The first examples of lanthanide(III) organoarsonates, Ln(L(1))(H(2)O)(3) (Ln = La (1), H(3)L(1) = 4-hydroxy-3-nitrophenylarsonic acid), Ln(L(1))(H(2)O)(2) (Ln = Nd (2), Gd (3)), and mixed-ligand lanthanide(III) organoarsonates, Ln(2)(HL(1))(2)(C(2)O(4))(H(2)O)(2) (Ln = Nd (4), Sm (5), Eu (6)), were hydrothermally synthesized and structurally characterized. Compounds 1-3 feature a corrugated lanthanide arsonate layer, in which 1D lanthanide arsonate inorganic chains are further interconnected via bridging L(1)(3-) ligands. Compounds 4-6 exhibit a complicated 3D network. The interconnection of the lanthanide(III) ions by the bridging arsonate ligand leads to the formation of a novel 3D framework with long narrow 1D tunnels along the a-axis, with the oxalate anions are located at the above tunnels and bridging with lanthanide(III) ions. Compounds 2 and 4 exhibit the characteristic emission bands of the Nd(III) ion, whereas compound 6 displays the characteristic emission bands of the Eu(III) ion. The magnetic properties of compounds 3-6 were also investigated.  相似文献   

14.
Du ZY  Xu HB  Mao JG 《Inorganic chemistry》2006,45(24):9780-9788
Hydrothermal reactions of lanthanide(III) salts with m-sulfophenylphosphonic acid (H3L1) and 1,10-phenanthroline (phen) or N,N'-piperazinebis(methylenephosphonic acid) (H4L2) afforded six novel lanthanide(III) sulfonate-phosphonates based on tetranuclear clusters, namely, [La(2)(L1)2(phen)4(H2O)].4.5H2O (1), [Ln2(L1)2(phen)2(H2O)5].3H2O (Ln = Nd, 2; Eu, 3; Er, 4), and [Ln2(HL1)(H2L2)2(H2O)4].8H2O (Ln = La, 5; Nd, 6). Compounds 2-4 contain discrete tetranuclear lanthanide(III) cluster units in which four lanthanide(III) ions are bridged by two tridentate and two tetradentate phosphonate groups. In compound 1, the tetranuclear clusters are further interconnected into a 1D chain through the coordination of the sulfonate groups. The structures of compounds 5 and 6 can be viewed as a 3D architecture based on a different types of tetranuclear cluster units that are interconnected by bridging H2L2 anions. In the tetranuclear clusters of compounds 5 and 6, the four lanthanide(III) centers are interconnected by only two HL1 ligands. Compound 2 is a luminescent material in the near-IR region, whereas compound 3 displays a strong luminescent emission band in the red-light region. Magnetic property measurements of compounds 2-4 and 6 indicate that there are strong antiferromagetic interactions between magnetic centers within the cluster units.  相似文献   

15.
This work illustrates a simple approach for optimizing the lanthanide luminescence in molecular dinuclear lanthanide complexes and identifies a particular multidentate europium complex as the best candidate for further incorporation into polymeric materials. The central phenyl ring in the bis-tridentate model ligands L3–L5, which are substituted with neutral (X = H, L3), electron-withdrawing (X = F, L4), or electron-donating (X = OCH3, L5) groups, separates the 2,6-bis(benzimidazol-2-yl)pyridine binding units of linear oligomeric multi-tridentate ligand strands that are designed for the complexation of luminescent trivalent lanthanides, Ln(III). Reactions of L3–L5 with [Ln(hfac)3(diglyme)] (hfac– is the hexafluoroacetylacetonate anion) produce saturated single-stranded dumbbell-shaped complexes [Ln2(Lk)(hfac)6] (k = 3–5), in which the lanthanide ions of the two nine-coordinate neutral [N3Ln(hfac)3] units are separated by 12–14 ?. The thermodynamic affinities of [Ln(hfac)3] for the tridentate binding sites in L3–L5 are average (6.6 ≤ log(β(2,1)(Y,Lk)) ≤ 8.4) but still result in 15–30% dissociation at millimolar concentrations in acetonitrile. In addition to the empirical solubility trend found in organic solvents (L4 > L3 > L5), which suggests that the 1,4-difluorophenyl spacer in L4 is preferable, we have developed a novel tool for deciphering the photophysical sensitization processes operating in [Eu2(Lk)(hfac)6]. A simple interpretation of the complete set of rate constants characterizing the energy migration mechanisms provides straightforward objective criteria for the selection of [Eu2(L4)(hfac)6] as the most promising building block.  相似文献   

16.
林进  赵汝琪  王昭煜 《有机化学》2000,20(6):924-926
报道了1-甲基-1-乙基-3-丁烯基环戊二烯基稀土二氯化物的合成。用元素分析、质谱、红外光谱和核磁共振表征了这类配合物的组成为[C~5H~4C(CH~3)(C~2H~5)CH~2CH=CH~2]LnCl~2·MgCl~2·THF[Ln=La(1),Nd(2),Sm(3),Gd(4)]。  相似文献   

17.
The hydrolysis of terminal (t)butyl-ester groups provides the novel nonadentate podand tris[2-[N-methylcarbamoyl-(6-carboxypyridine-2)-ethyl]amine] (L13) which exists as a mixture of slowly interconverting conformers in solution. At pH = 8.0 in water, its deprotonated form [L13 - 3H](3-) reacts with Ln(ClO(4))(3) to give the poorly soluble and stable podates [Ln(L13 - 3H)] (log(beta(110)) = 6.7-7.0, Ln = La-Lu). The isolated complexes [Ln(L13 - 3H)](H(2)O)(7) (Ln = Eu, 8; Tb, 9; Lu, 10) are isostructural, and their crystal structures show Ln(III) to be nine-coordinate in a pseudotricapped trigonal prismatic site defined by the donor atoms of the three helically wrapped tridentate binding units of L13. The Ln-O(carboxamide) bonds are only marginally longer than the Ln-O(carboxylate) bonds in [Ln(L13 - 3H)], thus producing a regular triple helix around Ln(III) which reverses its screw direction within the covalent Me-TREN tripod. High-resolution emission spectroscopy demonstrates that (i) the replacement of terminal carboxamides with carboxylates induces only minor electronic changes for the metallic site, (ii) the solid-state structure is maintained in water, and (iii) the metal in the podate is efficiently protected from interactions with solvent molecules. The absolute quantum yields obtained for [Eu(L13 - 3H)] (Phi(Eu)(tot)= 1.8 x 10(-3)) and [Tb(L13 - 3H)] (Phi(Eu)(tot)= 8.9 x 10(-3)) in water remain modest and strongly contrast with that obtained for the lanthanide luminescence step (Phi(Eu) = 0.28). Detailed photophysical studies assign this discrepancy to the small energy gap between the ligand-centered singlet ((1)pi pi*) and triplet ((3)pi pi*) states which limits the efficiency of the intersystem crossing process. Theoretical TDDFT calculations suggest that the connection of a carboxylate group to the central pyridine ring prevents the sizable stabilization of the triplet state required for an efficient sensitization process. The thermodynamic and electronic origins of the advantages (stability, lanthanide quantum yield) and drawbacks (solubility, sensitization) brought by the "carboxylate effect" in lanthanide complexes are evaluated for programming predetermined properties in functional devices.  相似文献   

18.
This report covers studies in trivalent lanthanide complexation by two simple cyclohexanetriols that are models of the two coordination sites found in sugars and derivatives. Several complexes of trivalent lanthanide ions with cis,cis-1,3,5-trihydroxycyclohexane (L(1)()) and cis,cis-1,2,3-trihydroxycyclohexane (L(2)()) have been characterized in the solid state, and some of them have been studied in organic solutions. With L(1)(), Ln(L)(2) complexes are obtained when crystallization is performed from acetonitrile solutions whatever the nature of the salt (nitrate or triflate) [Ln(L(1)())(2)(NO(3))(2)](NO(3)) (Ln = Pr, Nd); [Ln(L(1)())(2)(NO(3))H(2)O](NO(3))(2) (Ln = Eu, Ho, Yb); [Ln(L(1)())(2)(OTf)(2)(H(2)O)](OTf) (Ln = Nd, Eu). Lanthanum nitrate itself gives a mixed complex [La(L(1)())(2)(NO(3))(2)][LaL(1)()(NO(3))(4)] from acetonitrile solution while [La(L(1)())(2)(NO(3))(2)](NO(3)) is obtained using dimethoxyethane as reaction solvent and crystallization medium. With L(2)(), Ln(L)(2) complexes have also been crystallized from methanol solution [Ln(L(2)())(2)(NO(3))(2)]NO(3), (Ln = Pr, Nd, Eu). Single-crystal X-ray diffraction analyses are reported for these complexes. Complex formation in solution has been studied for several triflate salts (La, Pr, Nd, Eu, and Yb) with L(1 )()and L(2)(), respectively in acetonitrile and in methanol. In contrast to the solid state, both structures Ln(L) and Ln(L)(2) equilibrate in solution, as was demonstrated by low-temperature (1)H NMR and electrospray ionization mass spectrometry experiments. Competing experiments in complexing abilities of L(1)() and L(2)() with trivalent lanthanide cations have shown that only L(2)() exhibits a small selectivity (Nd > Pr > Yb > La > Eu) in methanol.  相似文献   

19.
The reaction of the lanthanide trichloride hexahydrates [LnCl(3).6H(2)O] (Ln = Yb, Lu) with two equivalents of benzoylferrocenoylmethane resulted in the tetranuclear lanthanide hydroxo clusters [Ln(4)(mu(3)-OH)(4)(FcacacPh)(8)] (Ln = Yb (1), Lu (2); FcacacPh = benzoylferrocenoylmethanide). Compounds 1 and 2 are made up of a distorted tetranuclear lanthanide Ln(4)O(4) cubane core consisting of four mu(3)-oxygen atoms while the eight FcacacPh ligands build up the peripheral part of the cluster. These compounds contain the maximum number of ferrocene units anchored to any molecular metal-heteroatom framework reported so far and for which the X-ray structures are known.  相似文献   

20.
Solid complexes of lanthanide picrates with N,N-dibenzyl-2-[2'-[(dibenzylcarbamoyl)-methoxy]-[1,1']binaphthalenyl-2-yloxy]-acetamide (L), [Ln(pic)(3)L] (Ln = La, Nd, Eu, Gd, Tb, Dy, Y), have been prepared and characterized by elemental analysis, IR, 1H NMR, UV-Vis spectra and conductivity measurements. The fluorescence property of the europium complex in solid state and in CHCl(3), acetone, AcOEt and DMF was studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号