首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Paramagnetic effects on the relaxation rate and shift difference of the (17)O nucleus of bulk water enable the study of water exchange mechanisms on transition metal complexes by variable temperature and variable pressure NMR. The water exchange kinetics of [Mn(II)(edta)(H2O)](2-) (CN 7, hexacoordinated edta) was reinvestigated and complemented by variable pressure NMR data. The results revealed a rapid water exchange reaction for the [Mn(II)(edta)(H2O)](2-) complex with a rate constant of k(ex) = (4.1 +/- 0.4) x 10(8) s(-1) at 298.2 K and ambient pressure. The activation parameters DeltaH(double dagger), DeltaS(double dagger), and DeltaV(double dagger) are 36.6 +/- 0.8 kJ mol(-1), +43 +/- 3 J K(-1) mol(-1), and +3.4 +/- 0.2 cm(3) mol(-1), which are in line with a dissociatively activated interchange (I(d)) mechanism. To analyze the structural influence of the chelate, the investigation was complemented by studies on complexes of the edta-related tmdta (trimethylenediaminetetraacetate) chelate. The kinetic parameters for [Fe(II)(tmdta)(H2O)](2-) are k(ex) = (5.5 +/- 0.5) x 10(6) s(-1) at 298.2 K, DeltaH(double dagger) = 43 +/- 3 kJ mol(-1), DeltaS(double dagger) = +30 +/- 13 J K(-1) mol(-1), and DeltaV(double dagger) = +15.7 +/- 1.5 cm(3) mol(-1), and those for [Mn(II)(tmdta)(H2O)](2-) are k(ex) = (1.3 +/- 0.1) x 10(8) s(-1) at 298.2 K, DeltaH(double dagger) = 37.2 +/- 0.8 kJ mol(-1), DeltaS(double dagger) = +35 +/- 3 J K(-1) mol(-1), and DeltaV(double dagger) = +8.7 +/- 0.6 cm(3) mol(-1). The water containing species, [Fe(III)(tmdta)(H2O)](-) with a fraction of 0.2, is in equilibrium with the water-free hexa-coordinate form, [Fe(III)(tmdta)](-). The kinetic parameters for [Fe(III)(tmdta)(H2O)](-) are k(ex) = (1.9 +/- 0.8) x 10(7) s(-1) at 298.2 K, DeltaH(double dagger) = 42 +/- 3 kJ mol(-1), DeltaS(double dagger) = +36 +/- 10 J K(-1) mol(-1), and DeltaV(double dagger) = +7.2 +/- 2.7 cm(3) mol(-1). The data for the mentioned tmdta complexes indicate a dissociatively activated exchange mechanism in all cases with a clear relationship between the sterical hindrance that arises from the ligand architecture and mechanistic details of the exchange process for seven-coordinate complexes. The unexpected kinetic and mechanistic behavior of [Ni(II)(edta')(H2O)](2-) and [Ni(II)(tmdta')(H2O)](2-) is accounted for in terms of the different coordination number due to the strong preference for an octahedral coordination environment and thus a coordination equilibrium between the water-free, hexadentate [M(L)](n+) and the aqua-pentadentate forms [M(L')(H2O)](n+) of the Ni(II)-edta complex, which was studied in detail by variable temperature and pressure UV-vis experiments. For [Ni(II)(edta')(H2O)](2-) (CN 6, pentacoordinated edta) a water substitution rate constant of (2.6 +/- 0.2) x 10(5) s(-1) at 298.2 K and ambient pressure was measured, and the activation parameters DeltaH(double dagger), DeltaS(double dagger), and DeltaV(double dagger) were found to be 34 +/- 1 kJ mol(-1), -27 +/- 2 J K(-1) mol(-1), and +1.8 +/- 0.1 cm(3) mol(-1), respectively. For [Ni(II)(tmdta')(H2O)](2-), we found k = (6.4 +/- 1.4) x 10(5) s(-1) at 298.2 K, DeltaH(double dagger) = 22 +/- 4 kJ mol(-1), and DeltaS(double dagger) = -59 +/- 5 J K(-1) mol(-1). The process is referred to as a water substitution instead of a water exchange reaction, since these observations refer to the intramolecular displacement of coordinated water by the carboxylate moiety in a ring-closure reaction.  相似文献   

2.
Solvent exchange on trans-[Os(en)(2)(eta(2)-H(2))S](2+) (S = H(2)O, CH(3)CN) has been studied in neat solvent as a function of temperature and pressure by (17)O NMR line-broadening and isotopic labeling experiments (S = H(2)O) and by (1)H NMR isotopic labeling experiments (S = CH(3)CN). Rate constants and activation parameters are as follows for S = H(2)O and CH(3)CN, respectively: k(ex)(298) = 1.59 +/- 0.04 and (2.74 +/- 0.03) x 10(-)(4) s(-)(1); DeltaH() = 72.4 +/- 0.5 and 98.0 +/- 1.4 kJ mol(-)(1); DeltaS() = +1.7 +/- 1.8 and +15.6 +/- 4.9 J mol(-)(1) K(-)(1); DeltaV() = -1.5 +/- 1.0 and -0.5 +/- 1.0 cm(3) mol(-)(1). The present investigation of solvent exchange when compared with a previous study on substitution reactions on the same complexes leads to the conclusion that substitution reactions on these compounds undergo an interchange dissociative, I(d), or dissociative, D, reaction mechanism, where solvent dissociation is the rate-limiting step.  相似文献   

3.
Solvated cobalt(II) ions in neat 1,3-propanediamine (tn) and n-propylamine (pa) have been characterized by electronic absorption spectroscopy and extended X-ray absorption fine structure (EXAFS) spectroscopy. The equilibrium between tetrahedral and octahedral geometry for cobalt(II) ion has been observed in a neat pa solution, but not in neat diamine solutions such as tn and ethylenediamine (en). The thermodynamic parameters and equilibrium constant at 298 K for the geometrical equilibrium in pa were determined to be DeltaH degrees = -36.1 +/- 2.3 kJ mol(-1), DeltaS degrees = -163 +/- 8 J mol(-1) K(-1), and K(298) = 6.0 x 10(-3) M(-2), where K = [Co(pa)(6)(2+)]/{[Co(pa)(4)(2+)][pa](2)}. The equilibrium is caused by the large entropy gain in formation of the tetrahedral cobalt(II) species. The solvent exchange of cobalt(II) ion with octahedral geometry in tn and pa solutions has been studied by the (14)N NMR line-broadening method. The activation parameters and rate constants at 298 K for the solvent exchange reactions are as follows: DeltaH() = 49.3 +/- 0.9 kJ mol(-1), DeltaS() = 25 +/- 3 J mol(-1) K(-1), DeltaV() = 6.6 +/- 0.3 cm(3) mol(-1) at 302.1 K, and k(298) = 2.9 x 10(5) s(-1) for the tn exchange, and DeltaH() = 36.2 +/- 1.2 kJ mol(-1), DeltaS() = 35 +/- 6 J mol(-1) K(-1), and k(298) = 2.0 x 10(8) s(-1) for the pa exchange. By comparison of the activation parameters with those for the en exchange of cobalt(II) ion, it has been confirmed that the kinetic chelate strain effect is attributed to the large activation enthalpy for the bidentate chelate opening and that the enthalpic effect is smaller in the case of the six-membered tn chelate compared with the five-membered en chelate.  相似文献   

4.
The kinetics of the unusually fast reaction of cis- and trans-[Ru(terpy)(NH3)2Cl]2+ (with respect to NH3; terpy=2,2':6',2"-terpyridine) with NO was studied in acidic aqueous solution. The multistep reaction pathway observed for both isomers includes a rapid and reversible formation of an intermediate Ru(III)-NO complex in the first reaction step, for which the rate and activation parameters are in good agreement with an associative substitution behavior of the Ru(III) center (cis isomer, k1=618 +/- 2 M(-1) s(-1), DeltaH(++) = 38 +/- 3 kJ mol(-1), DeltaS(++) = -63 +/- 8 J K(-1) mol(-1), DeltaV(++) = -17.5 +/- 0.8 cm3 mol(-1); k -1 = 0.097 +/- 0.001 s(-1), DeltaH(++) = 27 +/- 8 kJ mol(-1), DeltaS(++) = -173 +/- 28 J K(-1) mol(-1), DeltaV(++) = -17.6 +/- 0.5 cm3 mol(-1); trans isomer, k1 = 1637 +/- 11 M(-1) s(-1), DeltaH(++) = 34 +/- 3 kJ mol(-1), DeltaS(++) = -69 +/-11 J K(-1) mol(-1), DeltaV(++) = -20 +/- 2 cm3 mol(-1); k(-1)=0.47 +/- 0.08 s(-1), DeltaH(++)=39 +/- 5 kJ mol(-1), DeltaS(++) = -121 +/-18 J K(-1) mol(-1), DeltaV(++) = -18.5 +/- 0.4 cm3 mol(-1) at 25 degrees C). The subsequent electron transfer step to form Ru(II)-NO+ occurs spontaneously for the trans isomer, followed by a slow nitrosyl to nitrite conversion, whereas for the cis isomer the reduction of the Ru(III) center is induced by the coordination of an additional NO molecule (cis isomer, k2=51.3 +/- 0.3 M(-1) s(-1), DeltaH(++) = 46 +/- 2 kJ mol(-1), DeltaS(++) = -69 +/- 5 J K(-1) mol(-1), DeltaV(++) = -22.6 +/- 0.2 cm3 mol(-1) at 45 degrees C). The final reaction step involves a slow aquation process for both isomers, which is interpreted in terms of a dissociative substitution mechanism (cis isomer, DeltaV(++) = +23.5 +/- 1.2 cm3 mol(-1); trans isomer, DeltaV(++) = +20.9 +/- 0.4 cm3 mol(-1) at 55 degrees C) that produces two different reaction products, viz. [Ru(terpy)(NH3)(H2O)NO]3+ (product of the cis isomer) and trans-[Ru(terpy)(NH3)2(H2O)]2+. The pi-acceptor properties of the tridentate N-donor chelate (terpy) predominantly control the overall reaction pattern.  相似文献   

5.
The effect of temperature and pressure on the water exchange reaction of [Fe(II)(NTA)(H2O)2](-) and [Fe(II)(BADA)(H2O)2](-) (NTA = nitrilotriacetate; BADA = beta-alanindiacetate) was studied by 17O NMR spectroscopy. The [Fe(II)(NTA)(H2O)2](-) complex showed a water exchange rate constant, k(ex), of (3.1 +/- 0.4) x 10(6) s(-1) at 298.2 K and ambient pressure. The activation parameters DeltaH( not equal), DeltaS( not equal) and DeltaV( not equal) for the observed reaction are 43.4 +/- 2.6 kJ mol(-1), + 25 +/- 9 J K(-1) mol(-1) and + 13.2 +/- 0.6 cm(3) mol(-1), respectively. For [Fe(II)(BADA)(H2O)2](-), the water exchange reaction is faster than for the [Fe(II)(NTA)(H2O)2](-) complex with k(ex) = (7.4 +/- 0.4) x 10(6) s(-1) at 298.2 K and ambient pressure. The activation parameters DeltaH( not equal), DeltaS( not equal) and DeltaV( not equal) for the water exchange reaction are 40.3 +/- 2.5 kJ mol(-1), + 22 +/- 9 J K(-1) mol(-1) and + 13.3 +/- 0.8 cm(3) mol(-1), respectively. The effect of pressure on the exchange rate constant is large and very similar for both systems, and the numerical values for DeltaV( not equal) suggest in both cases a limiting dissociative (D) mechanism for the water exchange process.  相似文献   

6.
We report the study of binuclear Ln(III) chelates of OHEC (OHEC=octaazacyclohexacosane-1,4,7,10,14,17,20,23-octaacetate). The interconversion between two isomeric forms, which occurs in aqueous solution, has been studied by NMR, UV/Vis, EPR, and luminescence spectroscopy, as well as by classical molecular dynamics (MD) simulations. For the first time we have characterized an isomerization equilibrium for a Ln(III) polyaminocarboxylate complex (Ln(III)=Y, Eu, Gd and Tb) in which the metal centre changes its coordination number from nine to eight, such that: [Ln(2)(ohec)(H(2)O)(2)](2-) r<==>[Ln(2)(ohec)](2-)+2 H(2)O. The variable temperature and pressure NMR measurements conducted on this isomerization reaction give the following thermodynamic parameters for Eu(III): K(298)=0.42+/-0.01, DeltaH(0)=+4.0+/-0.2 kJ mol(-1), DeltaS(0)=+6.1+/-0.5 J K(-1) mol(-1) and DeltaV(0)=+3.2+/-0.2 cm(3) mol(-1). The isomerization is slow and the corresponding kinetic parameters obtained by NMR spectroscopy are: k(298)(is)=73.0+/-0.5 s(-1), DeltaH++(is)=75.3+/-1.9 kJ mol(-1), DeltaS++(is)= +43.1+/-5.8 J K(-1) mol(-1) and DeltaV++(is)=+7.9+/-0.7 cm(3) mol(-1). Variable temperature and pressure (17)O NMR studies have shown that water exchange in [Gd(2)(ohec)(H(2)O)(2)](2-) is slow, k(298)(ex)=(0.40+/-0.02)x10(6) s(-1), and that it proceeds through a dissociative interchange I(d) mechanism, DeltaV( not equal )=+7.3+/-0.3 cm(3) mol(-1). The anisotropy of this oblong binuclear complex has been highlighted by MD simulation calculations of different rotational correlation times. The rotational correlation time directed on the Gd-Gd axis is 24 % longer than those based on the axes orthogonal to the Gd-Gd axis. The relaxivity of this binuclear complex has been found to be low, since 1) only [Gd(2)(ohec)(H(2)O)(2)](2-), which constitutes 70 % of the binuclear complex, contributes to the inner-sphere relaxivity and 2) the anisotropy of the complex prevents water molecules from having complete access to both Gd(III) cages; this decreases the outer-sphere relaxivity. Moreover, EPR measurements for the Gd(III) and for the mixed Gd(III)/Y(III) binuclear complexes have clearly shown that the two Gd(III) centres interact intramolecularly; this enhances the electronic relaxation of the Gd(III) electron spins.  相似文献   

7.
Kinetic studies show that the reaction of [TpIr(CO)2] (1, Tp = hydrotris(pyrazolyl)borate) with water to give [TpIr(CO2H)(CO)H] (2) is second order (k = 1.65 x 10(-4) dm(3) mol(-1) s(-1), 25 degrees C, MeCN) with activation parameters DeltaH++= 46+/-2 kJ mol(-1) and DeltaS++ = -162+/-5 J K(-1) mol(-1). A kinetic isotope effect of k(H2O)/k(D2O) = 1.40 at 20 degrees C indicates that O-H/D bond cleavage is involved in the rate-determining step. Despite being more electron rich than 1, [Tp*Ir(CO)2] (1*, Tp* = hydrotris(3,5-dimethylpyrazolyl)borate) reacts rapidly with adventitious water to give [Tp*Ir(CO2H)(CO)H] (2*). A proposed mechanism consistent with the relative reactivity of 1 and 1* involves initial protonation of Ir(I) followed by nucleophilic attack on a carbonyl ligand. An X-ray crystal structure of 2* shows dimer formation via pairwise H-bonding interactions of hydroxycarbonyl ligands (r(O...O) 2.65 A). Complex 2* is thermally stable but (like 2) is amphoteric, undergoing dehydroxylation with acid to give [Tp*Ir(CO)2H]+ (3*) and decarboxylation with OH- to give [TpIr(CO)H2] (4*). Complex 2 undergoes thermal decarboxylation above ca. 50 degrees C to give [TpIr(CO)H2] (4) in a first-order process with activation parameters DeltaH++ = 115+/-4 kJ mol(-1) and DeltaS++ = 60+/-10 J K(-1) mol(-1).  相似文献   

8.
Proton exchange from the bound to the bulk waters on the oxo-centered rhodium(III) trimer, [Rh(3)(micro(3)-O)(micro-O(2)CCH(3))(6)(OH(2))(3)](+)(abbreviated as Rh(3)(+)), was investigated over the temperature range of 219.1-313.9 K using a (1)H NMR line-broadening technique. By solving the modified Bloch equations for a two-site chemical exchange, lifetimes (tau) for proton transfer at pH = 2.7, 3.6, and 7.0 ([Rh(3)(+)]= 26 mM, T= 298 K) were determined to be 0.3 (+/-.08) ms, 2 (+/-0.3) ms, and 0.2 (+/-0.2) ms, respectively. From the temperature dependence of the rate, the activation parameters were determined to be DeltaH(++)= 16.2 (+/-0.5) kJ mol(-1) and DeltaS(++)=- 123 (+/-2) J mol(-1) K(-1), DeltaH(++)= 14.9 (+/-0.5) kJ mol(-1) and DeltaS(++)=- 141 (+/-2) J mol(-1) K(-1), and DeltaH(++)= 45 (+/-2) kJ mol(-1) and DeltaS(++)=- 22 (+/-5) J mol(-1) K(-1) for pH = 2.7, 3.6 and 7.0, respectively. All results are reported for a mixed solvent system [acetone : 250 mM NaClO(4)(aq)(3:1)], which was necessary to depress the freezing point of the solution so that the (1)H NMR signal due to bound water could be observed. The pK(a) of Rh(3)(+) was measured to be 8.9 (+/-0.2) in the mixed solvent, which is near the pK(a) for an aqueous solution (8.3 (+/-0.2)). Surprisingly, the lifetimes for protons on Rh(3)(+) are close to those observed for the Rh(OH(2))(6)(3+) ion, in spite of the considerable difference in structure, Br?nsted acidity of the bound waters and average charge on the metal ion.  相似文献   

9.
10.
The reduction of ClO(2) to ClO(2)(-) by aqueous iron(II) in 0.5 M HClO(4) proceeds by both outer-sphere (86%) and inner-sphere (14%) electron-transfer pathways. The second-order rate constant for the outer-sphere reaction is 1.3 x 10(6) M(-1) s(-1). The inner-sphere electron-transfer reaction takes place via the formation of FeClO(2)(2+) that is observed as an intermediate. The rate constant for the inner-sphere path (2.0 x 10(5) M(-1) s(-1)) is controlled by ClO(2) substitution of a coordinated water to give an inner-sphere complex between ClO(2) and Fe(II) that very rapidly transfers an electron to give (Fe(III)(ClO(2)(-))(H(2)O)(5)(2+))(IS). The composite activation parameters for the ClO(2)/Fe(aq)(2+) reaction (inner-sphere + outer-sphere) are the following: DeltaH(r)++ = 40 kJ mol(-1); DeltaS(r)++ = 1.7 J mol(-1) K(-1). The Fe(III)ClO(2)(2+) inner-sphere complex dissociates to give Fe(aq)(3+) and ClO(2)(-) (39.3 s(-1)). The activation parameters for the dissociation of this complex are the following: DeltaH(d)++= 76 kJ mol(-1); DeltaS(d)++= 32 J K(-1) mol(-1). The reaction of Fe(aq)(2+) with ClO(2)(-) is first order in each species with a second-order rate constant of k(ClO2)- = 2.0 x 10(3) M(-1) s(-1) that is five times larger than the rate constant for the Fe(aq)(2+) reaction with HClO(2) in H(2)SO(4) medium ([H(+)] = 0.01-0.13 M). The composite activation parameters for the Fe(aq)(2+)/Cl(III) reaction in H(2)SO(4) are DeltaH(Cl(III))++ = 41 kJ mol(-1) and DeltaS(Cl(III))++ = 48 J mol(-1) K(-1).  相似文献   

11.
The kinetics of the equilibrium reaction between [Ni(SC(6)H(4)R-4)(2)(dppe)] (R= MeO, Me, H, Cl, or NO(2); dppe = Ph(2)PCH(2)CH(2)PPh(2)) and mixtures of [lutH](+) and lut (lut = 2,6-dimethylpyridine) in MeCN to form [Ni(SHC(6)H(4)R-4)(SC(6)H(4)R-4)(dppe)](+) have been studied using stopped-flow spectrophotometry. The kinetics for the reactions with R = MeO, Me, H, or Cl are consistent with a single-step equilibrium reaction. Investigation of the temperature dependence of the reactions shows that DeltaG = 13.6 +/- 0.3 kcal mol(-)(1) for all the derivatives but the values of DeltaH and DeltaS vary with R (R = MeO, DeltaH() = 8.5 kcal mol(-)(1), DeltaS = -16 cal K(-)(1) mol(-)(1); R = Me, DeltaH() = 10.8 kcal mol(-)(1), DeltaS = -9.5 cal K(-)(1) mol(-)(1); R = Cl, DeltaH = 23.7 kcal mol(-)(1), DeltaS = +33 cal K(-)(1) mol(-)(1)). With [Ni(SC(6)H(4)NO(2)-4)(2)(dppe)] a more complicated rate law is observed consistent with a mechanism in which initial hydrogen-bonding of [lutH](+) to the complex precedes intramolecular proton transfer. It seems likely that all the derivatives operate by this mechanism, but only with R = NO(2) (the most electron-withdrawing substituent) does the intramolecular proton transfer step become sufficiently slow to result in the change in kinetics. Studies with [lutD](+) show that the rates of proton transfer to [Ni(SC(6)H(4)R-4)(2)(dppe)] (R = Me or Cl) are associated with negligible kinetic isotope effect. The possible reasons for this are discussed. The rates of proton transfer to [Ni(SC(6)H(4)R-4)(2)(dppe)] vary with the 4-R-substituent, and the Hammett plot is markedly nonlinear. This unusual behavior is attributable to the electronic influence of R which affects the electron density at the sulfur.  相似文献   

12.
The dicopper(I) complex [Cu2(MeL66)]2+ (where MeL66 is the hexadentate ligand 3,5-bis-{bis-[2-(1-methyl-1H-benzimidazol-2-yl)-ethyl]-amino}-meth ylbenzene) reacts reversibly with dioxygen at low temperature to form a mu-peroxo adduct. Kinetic studies of O2 binding carried out in acetone in the temperature range from -80 to -55 degrees C yielded the activation parameters DeltaH1(not equal) = 40.4 +/- 2.2 kJ mol(-1), DeltaS1)(not equal) = -41.4 +/- 10.8 J K(-1) mol(-1) and DeltaH(-1)(not equal) = 72.5 +/- 2.4 kJ mol(-1), DeltaS(-1)(not equal) = 46.7 +/- 11.1 J K(-1) mol(-1) for the forward and reverse reaction, respectively, and the binding parameters of O2 DeltaH degrees = -32.2 +/- 2.2 kJ mol(-1) and DeltaS degrees = -88.1 +/- 10.7 J K(-1) mol(-1). The hydroxylation of a series of p-substituted phenolate salts by [Cu2(MeL66)O2]2+ studied in acetone at -55 degrees C indicates that the reaction occurs with an electrophilic aromatic substitution mechanism, with a Hammett constant rho = -1.84. The temperature dependence of the phenol hydroxylation was studied between -84 and -70 degrees C for a range of sodium p-cyanophenolate concentrations. The rate plots were hyperbolic and enabled to derive the activation parameters for the monophenolase reaction DeltaH(not equal)ox = 29.1 +/- 3.0 kJ mol(-1), DeltaS(not equal)ox = -115 +/- 15 J K(-1) mol(-1), and the binding parameters of the phenolate to the mu-peroxo species DeltaH degrees(b) = -8.1 +/- 1.2 kJ mol(-1) and DeltaS degrees(b) = -8.9 +/- 6.2 J K(-1) mol(-1). Thus, the complete set of kinetic and thermodynamic parameters for the two separate steps of O2 binding and phenol hydroxylation have been obtained for [Cu2(MeL66)]2+.  相似文献   

13.
The observation and fast time-scale kinetic determination of a primary dioxygen-copper interaction have been studied. The ability to photorelease carbon monoxide from [Cu(I)(tmpa)(CO)](+) in mixtures of CO and O(2) in tetrahydrofuran (THF) between 188 and 218 K results in the observable formation of a copper-superoxide species, [Cu(II)(tmpa)(O(2)(-))](+) lambda(max) = 425 nm. Via this "flash-and-trap" technique, temperature-dependent kinetic studies on the forward reaction between dioxygen and [Cu(I)(tmpa)(thf)](+) afford activation parameters DeltaH = 7.62 kJ/mol and DeltaS = -45.1 J/mol K. The corresponding reverse reaction proceeds with DeltaH = 58.0 kJ/mol and DeltaS = 105 J/mol K. Overall thermodynamic parameters are DeltaH degrees = -48.5 kJ/mol and DeltaS degrees = -140 J/mol K. The temperature-dependent data allowed us to determine the room-temperature second-order rate constant, k(O2) = 1.3 x 10(9) M(-1) s(-1). Comparisons to copper and heme proteins and synthetic complexes are discussed.  相似文献   

14.
Kinetic studies of cyanide exchange on [M(CN)(4)](2-) square-planar complexes (M = Pt, Pd, and Ni) were performed as a function of pH by (13)C NMR. The [Pt(CN)(4)](2-) complex has a purely second-order rate law, with CN(-) as acting as the nucleophile, with the following kinetic parameters: (k(2)(Pt,CN))(298) = 11 +/- 1 s(-1) mol(-1) kg, DeltaH(2) (Pt,CN) = 25.1 +/- 1 kJ mol(-1), DeltaS(2) (Pt,CN) = -142 +/- 4 J mol(-1) K(-1), and DeltaV(2) (Pt,CN) = -27 +/- 2 cm(3) mol(-1). The Pd(II) metal center has the same behavior down to pH 6. The kinetic parameters are as follows: (k(2)(Pd,CN))(298) = 82 +/- 2 s(-1) mol(-1) kg, DeltaH(2) (Pd,CN) = 23.5 +/- 1 kJ mol(-1), DeltaS(2) (Pd,CN) = -129 +/- 5 J mol(-1) K(-1), and DeltaV(2) (Pd,CN) = -22 +/- 2 cm(3) mol(-1). At low pH, the tetracyanopalladate is protonated (pK(a)(Pd(4,H)) = 3.0 +/- 0.3) to form [Pd(CN)(3)HCN](-). The rate law of the cyanide exchange on the protonated complex is also purely second order, with (k(2)(PdH,CN))(298) = (4.5 +/- 1.3) x 10(3) s(-1) mol(-1) kg. [Ni(CN)(4)](2-) is involved in various equilibrium reactions, such as the formation of [Ni(CN)(5)](3-), [Ni(CN)(3)HCN](-), and [Ni(CN)(2)(HCN)(2)] complexes. Our (13)C NMR measurements have allowed us to determine that the rate constant leading to the formation of [Ni(CN)(5)](3-) is k(2)(Ni(4),CN) = (2.3 +/- 0.1) x 10(6) s(-1) mol(-1) kg when the following activation parameters are used: DeltaH(2)() (Ni,CN) = 21.6 +/- 1 kJ mol(-1), DeltaS(2) (Ni,CN) = -51 +/- 7 J mol(-1) K(-1), and DeltaV(2) (Ni,CN) = -19 +/- 2 cm(3) mol(-1). The rate constant of the back reaction is k(-2)(Ni(4),CN) = 14 x 10(6) s(-1). The rate law pertaining to [Ni(CN)(2)(HCN)(2)] was found to be second order at pH 3.8, and the value of the rate constant is (k(2)(Ni(4,2H),CN))(298) = (63 +/- 15) x10(6) s(-1) mol(-1) kg when DeltaH(2) (Ni(4,2H),CN) = 47.3 +/- 1 kJ mol(-1), DeltaS(2) (Ni(4,2H),CN) = 63 +/- 3 J mol(-1) K(-1), and DeltaV(2) (Ni(4,2H),CN) = - 6 +/- 1 cm(3) mol(-1). The cyanide-exchange rate constant on [M(CN)(4)](2-) for Pt, Pd, and Ni increases in a 1:7:200 000 ratio. This trend is modified at low pH, and the palladium becomes 400 times more reactive than the platinum because of the formation of [Pd(CN)(3)HCN](-). For all cyanide exchanges on tetracyano complexes (A mechanism) and on their protonated forms (I/I(a) mechanisms), we have always observed a pure second-order rate law: first order for the complex and first order for CN(-). The nucleophilic attack by HCN or solvation by H(2)O is at least nine or six orders of magnitude slower, respectively than is nucleophilic attack by CN(-) for Pt(II), Pd(II), and Ni(II), respectively.  相似文献   

15.
Conventional and stopped-flow spectrophotometry was used to to study the kinetics of ligand substitution in a number of bis(N-alkylsalicylaldiminato)oxovanadium(IV) complexes (=VO(R-X-sal)(2)) by 1,1,1- trifluoropentane-2,4-dione (=Htfpd) in acetone, according to the following reaction: VO(R-X-sal)(2) + 2Htfpd --> VO(tfpd)(2) + 2R-X-salH. The acronym R-X-salH refers to N-alkylsalicylaldimines with substituents X = H, Cl, Br, CH(3), and NO(2) in the 5-position of the salicylaldehyde ring and N-alkyl groups R = n-propyl, isopropyl, phenyl, and neopentyl. Under excess conditions ([Htfpd](0) > [VO(R-X-sal)(2)](0)), substitution by Htfpd occurs in two observable steps, as characterized by pseudo-first-order rate constants k(obsd(1)) and k(obsd(2)). Both rate constants increase linearly with [Htfpd](0) according to k(obsd(1)) = k(s(1)) + k(1)[Htfpd](0) and k(obsd(2)) = k(s(2)) + k(2)[Htfpd](0), with k(s(1)) and k(s(2)) describing small contributions of solvent-initiated pathways. Depending on the nature of R and X, second-order rate constants k(1) and k(2) lie in the range 0.098-0.87 M(-1) s(-1) (k(1)) and 0.022-0.41 M(-1) s(-1) (k(2)) at 298 K. For ligand substitution in the system VO(n-propyl-sal)(2)/Htfpd, the activation parameters DeltaH++ = 35.8 +/- 2.8 kJ mol(-1) and DeltaS++ = -146 +/- 23 J K(-1) mol(-1) (k(1)) and DeltaH++ = 40.2 +/- 1.3 kJ mol(-1) and DeltaS++ = -142 +/- 11 J K(-1) mol(-1) (k(2)) were obtained. The Lewis acidity of the complexes VO(n-propyl-X-sal)(2) with X = H, Cl, Br, CH(3), and NO(2) was quantified spectrophotometrically by determination of equilibrium constant K(py), describing the formation of the adduct VO(n-propyl-X-sal)(2).pyridine. The adduct VO(tfpd)(2).n-propyl-salH, formed as product in the system VO(n-propyl-sal)(2)/Htfpd, was characterized by its dissociation constant, K(D) = (3.30 +/- 0.10) x 10(-3) M. The mechanism suggested for the two-step substitution process is based on initial formation of the adducts VO(R-X-sal)(2).Htfpd (step 1) and VO(R-X-sal)(tfpd).Htfpd (step 2).  相似文献   

16.
A detailed mechanistic study of the substitution behavior of a 3d metal heptacoordinate complex, with a rare pentagonal-bipyramidal structure, was undertaken to resolve the solution chemistry of this system. The kinetics of the complex-formation reaction of [Fe(dapsox)(H(2)O)(2)]ClO(4) (H(2)dapsox = 2,6-diacetylpyridine-bis(semioxamazide)) with thiocyanate was studied as a function of thiocyanate concentration, pH, temperature, and pressure. The reaction proceeds in two steps, which are both base-catalyzed due to the formation of an aqua-hydroxo complex (pK(a1) = 5.78 +/- 0.04 and pK(a2) = 9.45 +/- 0.06 at 25 degrees C). Thiocyanate ions displace the first coordinated water molecule in a fast step, followed by a slower reaction in which the second thiocyanate ion coordinates trans to the N-bonded thiocyanate. At 25 degrees C and pH <4.5, only the first reaction step can be observed, and the kinetic parameters (pH 2.5: k(f(I)) = 2.6 +/- 0.1 M(-1) s(-1), DeltaH(#)(f(I)) = 62 +/- 3 kJ mol(-1), DeltaS(#)(f(I)) = -30 +/- 10 J K(-1) mol(-1), and DeltaV(#)(f(I)) = -2.5 +/- 0.2 cm(3) mol(-1)) suggest the operation of an I(a) mechanism. In the pH range 2.5 to 5.2 this reaction step involves the participation of both the diaqua and aqua-hydroxo complexes, for which the complex-formation rate constants were found to be 2.19 +/- 0.06 and 1172 +/- 22 M(-1) s(-1) at 25 degrees C, respectively. The more labile aqua-hydroxo complex is suggested to follow an I(d) or D substitution mechanism on the basis of the reported kinetic data. At pH > or =4.5, the second substitution step also can be monitored (pH 5.5 and 25 degrees C: k(f(II)) = 21.1 +/- 0.5 M(-1) s(-1), DeltaH(#)(f(II)) = 60 +/- 2 kJ mol(-1), DeltaS(#)(f(II)) = -19 +/- 6 J K(-1) mol(-1), and DeltaV(#)(f(II)) = +8.8 +/- 0.3 cm(3) mol(-1)), for which an I(d) or D mechanism is suggested. The results are discussed in terms of known structural parameters and in comparison to relevant structural and kinetic data from the literature.  相似文献   

17.
Two novel ligands containing pyridine units and phosphonate pendant arms, with ethane-1,2-diamine (L2) or cyclohexane-1,2-diamine (L3) backbones, have been synthesized for Ln complexation. The hydration numbers obtained from luminescence lifetime measurements in aqueous solutions of the Eu(III) and Tb(III) complexes are q = 0.6 (EuL2), 0.7 (TbL2), 0.8 (EuL3), and 0.4 (TbL3). To further assess the hydration equilibrium, we have performed a variable-temperature and -pressure UV-vis spectrophotometric study on the Eu(III) complexes. The reaction enthalpy, entropy, and volume for the hydration equilibrium EuL <--> EuL(H2O) were calculated to be DeltaH degrees = -(11.6 +/- 2) kJ mol(-1), DeltaS degrees = -(34.2 +/- 5) J mol(-1) K(-1), and = 1.8 +/- 0.3 for EuL2 and DeltaH degrees = -(13.5 +/- 1) kJ mol(-1), DeltaS degrees = -(41 +/- 4) J mol(-1) K(-1), and = 1.7 +/- 0.3 for EuL3, respectively. We have carried out variable-temperature 17O NMR and nuclear magnetic relaxation dispersion (NMRD) measurements on the GdL2(H2O)q and GdL3(H2O)q systems. Given the presence of phosphonate groups in the ligand backbone, a second-sphere relaxation mechanism has been included for the analysis of the longitudinal (17)O and (1)H NMR relaxation rates. The water exchange rate on GdL2(H2O)q, = (7.0 +/- 0.8) x 10(8) s(-1), is extremely high and comparable to that on the Gd(III) aqua ion, while it is slightly reduced for GdL3(H2O)q, = (1.5 +/- 0.1) x 10(8) s(-1). This fast exchange can be rationalized in terms of a very flexible inner coordination sphere, which is slightly rigidified for L3 by the introduction of the cyclohexyl group on the amine backbone. The water exchange proceeds via a dissociative interchange mechanism, evidenced by the positive activation volumes obtained from variable-pressure 17O NMR for both GdL2(H2O)q and GdL3(H2O)q (DeltaV = +8.3 +/- 1.0 and 8.7 +/- 1.0 cm(3) mol(-1), respectively).  相似文献   

18.
Interactions between the seven-coordinate tweezerlike [Fe(dapsox)(H2O)2]ClO4 complex (H2dapsox = 2,6-diacetylpyridine-bis(semioxamazide)) with different lithium salts (LiOTf, LiClO4, LiBF4, and LiPF6) in CH3CN have been investigated by electrochemical, spectrophotometric, 7Li and 19F NMR, kinetic, and DFT methods. It has been demonstrated that this complex acts as ditopic receptor, showing spectral and electrochemical ion-pair-sensing capability for different lithium salts. In general, the apparent binding constants for lithium salts increase in the order LiOTf < LiClO4 < LiBF4. From the electrochemical measurements, the apparent lithium salt binding constants for the Fe(III) and Fe(II) forms of the complex have been obtained, suggesting a stronger host-guest interaction with the reduced form of the complex. In the presence of LiPF6, the solution chemistry is more complex because of the hydrolysis of PF6-. The kinetics of the complexation of [Fe(dapsox)(CH3CN)2]+ by thiocyanate at -15 degrees C in acetonitrile in the presence of 0.2 M NBu4OTf shows two steps with the following rate constants and activation parameters: k(1) = 411 +/- 14 M(-1) s(-1); DeltaH(1) not equal = 9 +/- 2 kJ mol(-1); DeltaS1 not equal = -159 +/- 6 J K(-1) mol(-1); k(2) = 52 +/- 1 M(-1) s(-1); DeltaH(2) not equal = 4 +/- 1 kJ mol(-1); DeltaS(2) not equal = -195 +/- 3 J K(-1) mol(-1). The very negative DeltaS not equal values are consistent with an associative (A) mechanism. Under the same conditions but with 0.2 M LiOTf, k1Li and k2Li are 1605 +/- 51 and 106 +/- 2 M(-1) s(-1), respectively. The increased rate constants for the {[Fe(dapsox)(CH3CN)2] x LiOTf}+ adduct are in agreement with an associative mechanism. Kinetic and spectrophotometric titration measurements show stronger interaction between the lithium salt and the anion-substituted forms, [Fe(dapsox)(CH3CN)(NCS)] and [Fe(dapsox)(NCS)2]-, of the complex. These experiments demonstrate that in nonaqueous media lithium salts cannot be simply used as supporting electrolytes, since they can affect the kinetic behavior of the studied complex. DFT calculations revealed that the negatively charged alpha-oxyazine oxygen atoms are responsible for cation binding (electrostatic interactions), whereas the two terminal amide groups bind the anion via hydrogen bonding.  相似文献   

19.
20.
The reaction of Ru(5)(CO)(12)(eta(6)-C(6)H(6))(mu(5)-C), 7, with Pt(PBu(t)(3))(2) yielded two products Ru(5)(CO)(12)(eta(6)-C(6)H(6))(mu(6)-C)[Pt(PBu(t)(3))], 8, and Ru(5)(CO)(12)(eta(6)-C(6)H(6))(mu(6)-C)[Pt(PBu(t)(3))](2), 9. Compound 8 contains a Ru(5)Pt metal core in an open octahedral structure. In solution, 8 exists as a mixture of two isomers that interconvert rapidly on the NMR time scale at 20 degrees C, DeltaH() = 7.1(1) kcal mol(-1), DeltaS() = -5.1(6) cal mol(-)(1) K(-)(1), and DeltaG(298)(#) = 8.6(3) kcal mol(-1). Compound 9 is structurally similar to 8, but has an additional Pt(PBu(t)(3)) group bridging an Ru-Ru edge of the cluster. The two Pt(PBu(t)(3)) groups in 9 rapidly exchange on the NMR time scale at 70 degrees C, DeltaH(#) = 9.2(3) kcal mol(-)(1), DeltaS(#) = -5(1) cal mol(-)(1) K(-)(1), and DeltaG(298)(#) = 10.7(7) kcal mol(-1). Compound 8 reacts with hydrogen to give the dihydrido complex Ru(5)(CO)(11)(eta(6)-C(6)H(6))(mu(6)-C)[Pt(PBu(t)(3))](mu-H)(2), 10, in 59% yield. This compound consists of a closed Ru(5)Pt octahedron with two hydride ligands bridging two of the four Pt-Ru bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号