首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthesis of a new class of heteroleptic samarium aryloxide complexes has been achieved by the use of homoleptic samarium(II) bis(aryloxide) Sm(OAr)(2)(THF)(3) (1, Ar = C(6)H(2)Bu(t)(2)-2,6-Me-4) as a starting material, which is easily obtained by reaction of Sm(N(SiMe(3))(2))(2)(THF)(2) with 2 equiv of ArOH in THF. 1 reacts with 1 equiv of SmI(2) in THF to give Sm(II) mixed aryloxide/iodide [(ArO)Sm(&mgr;-I)(THF)(3)](2) (2), which adopts a dimeric structure via very weak Sm.I (3.534(2) ?) interactions. Reaction of 2 with C(5)Me(5)K in THF/HMPA affords the corresponding Sm(II) aryloxide/cyclopentadienide (C(5)Me(5))Sm(OAr)(HMPA)(2) (3). Oxidation of 1 with 0.5 equiv of I(2) in THF gives monomeric samarium(III) aryloxide/iodide (ArO)(2)SmI(THF)(2) (4), while the similar reaction of 1 with ClCH(2)CH(2)Cl or (t)BuCl in THF affords dimeric samarium(III) aryloxide/chloride [(ArO)(2)Sm(&mgr;-Cl)(THF)](2) (5). Crystal data for 1: monoclinic, space group P2(1), a = 9.903(3) ?, b = 16.718(5) ?, c = 13.267(2) ?, beta = 95.17(2) degrees, V = 2187(2) ?(3), Z = 2, D(c) = 1.223 g cm(-)(3), R = 0.0634. Crystal data for 2.2THF: monoclinic, space group P2(1)/a, a = 18.330(6) ?, b = 14.320(4) ?, c = 13.949(3) ?, beta = 103.16(2) degrees, V = 3563(2) ?(3), Z = 2, D(c) = 1.46 g cm(-)(3), R = 0.0606. Crystal data for 3: triclinic, space group P&onemacr;, a = 10.528(1) ?, b = 12.335(2) ?, c = 19.260(2) ?, alpha = 101.33(1) degrees, beta = 95.230(9) degrees, gamma = 108.54(1) degrees, V = 2293.1(5) ?(3), Z = 2, D(c) = 1.25 g cm(-)(3), R = 0.0358. Crystal data for 4: monoclinic, space group C2/c, a = 17.191(7) ?, b = 10.737(6) ?, c = 21.773(7) ?, beta = 98.80(3) degrees, V = 3971(3) ?(3), Z = 4, D(c) = 1.44 g cm(-)(3), R = 0.0467. Crystal data for 5: monoclinic, space group P2(1)/n, a = 13.750(3) ?, b = 17.231(3) ?, c = 14.973(6) ?, beta = 95.81(2) degrees, V = 3529(2) ?(3), Z = 2, D(c) = 1.31 g cm(-)(3), R = 0.0557.  相似文献   

2.
Reaction of SnCl(2).dioxane with 2 equiv of Li(THF)(3)Si(SiMe(3))(3) in hexane afforded the cyclotetrastannane [(Me(3)Si)(3)SiSnCl](4) in reasonable yield. From pentane, the product crystallized as a red-orange disolvate in the P&onemacr; space group (triclinic) with a = 14.735(2) ?, b = 14.976(2) ?, c = 24.066(3) ?, alpha = 76.94 degrees, beta = 76.19 degrees, gamma = 62.11 degrees, V = 4517.5 ?(3), and Z = 2. The Sn(4) ring consisted of a slightly distorted, nonplanar (fold angle = 18.9 degrees ) rectangle with Sn-Sn distances of 2.8054(6), 2.8111(6), 2.9122(6), and 2.9146(6) ?. The pentane molecules were disordered. Selected mono- and dihalogermanes were treated with 1 equiv of Li(THF)(3)Si(SiMe(3))(3) or Li(THF)(2.5)Ge(SiMe(3))(3), affording (Me(3)Si)(3)EGe(CF(3))(3) (E = Si, Ge) and (Me(3)Si)(3)GeGeR(3) (R = Cl, CH(3), C(6)H(5)). Besides the monosubstitution product, the reaction of GeCl(4) with 1 equiv of Li(THF)(2.5)Ge(SiMe(3))(3) also gave a small amount of the linear tetragermane (Me(3)Si)(3)GeGeCl(2)GeCl(2)Ge(SiMe(3))(3). Good yields of the analogous phenyl derivative, (Me(3)Si)(3)GeGePh(2)GePh(2)Ge(SiMe(3))(3), were obtained by treating Ph(2)GeCl(2) with 2 equiv of the lithium-germyl reagent.  相似文献   

3.
To compare the ligand-based reduction chemistry of (EPh)(-) ligands in a metallocene environment to the sterically induced reduction chemistry of the (C(5)Me(5))(-) ligands in (C(5)Me(5))(3)Sm, (C(5)Me(5))(2)Sm(EPh) (E = S, Se, Te) complexes were synthesized and treated with substrates reduced by (C(5)Me(5))(3)Sm: cyclooctatetraene; azobenzene; phenazine. Reactions of PhEEPh with (C(5)Me(5))(2)Sm(THF)(2) and (C(5)Me(5))(2)Sm produced THF-solvated monometallic complexes, (C(5)Me(5))(2)Sm(EPh)(THF), and their unsolvated dimeric analogues, [(C(5)Me(5))(2)Sm(mu-EPh)](2), respectively. Both sets of the paramagnetic benzene chalcogenolate complexes were definitively identified by X-crystallography and form homologous series. Only the (TePh)(-) complexes show reduction reactivity and only upon heating to 65 degrees C.  相似文献   

4.
La(OSO(2)CF(3))(3) reacts with 4 equiv of LiP(t)Bu(2) in tetrahydrofuran to give dark red ((t)Bu(2)P)(2)La[(&mgr;-P(t)Bu(2))(2)Li(thf)] (1). Yb(OSO(2)CF(3))(3) reacts with LiP(t)Bu(2) in tetrahydrofuran in a 1:5 ratio to produce Yb[(&mgr;-P(t)Bu(2))(2)Li(thf)](2) (2) and 1/2 an equiv of (t)Bu(2)P-P(t)Bu(2). Both 1 and 2 crystallize in the monoclinic space group P2(1)/c. Crystal data for 1 at 214 K: a = 11.562 (1) ?, b = 15.914 (1) ?, c = 25.373 (3) ?, beta = 92.40 (1) degrees; V = 4664.5 ?(3); Z = 4; D(calcd) = 1.137 g cm(-)(3); R(F)() = 2.61%. Crystal data for 2 at 217 K: a = 21.641 (2) ?, b = 12.189 (1) ?, c = 20.485 (2) ?, beta = 109.01 (1) degrees; V = 5108.9 ?(3); Z = 4; D(calcd) = 1.185 g cm(-)(3); R(F)() = 2.80%. The molecular structures of 1 and 2 show the four-coordinate lanthanide atoms in distorted tetrahedral environments. These complexes are the first representatives of the lanthanide elements surrounded by four only-phosphorus-containing substituents. The main features of the crystal structure of 1 are the shortest La-P distances (2.857(1) and 2.861(1) ?) reported so far and a three-coordinate lithium cation. The molecular structure of 2 represents a divalent bis "ate" complex with two three-coordinate lithium cations. Complex 2 shows photoluminescent properties. VT NMR spectra ((7)Li and (31)P) are reported for 1and 2.  相似文献   

5.
The reaction of [(eta(5)-C(5)Me(5))ZrF(3)] and [(eta(5)-C(5)Me(5))HfF(3)] with Me(3)SiOCOCF(3) yields the dinuclear complexes [{(eta(5)-C(5)Me(5))ZrF(OCOCF(3))(2)}(2)] (1) and [{(eta(5)-C(5)Me(5))HfF(OCOCF(3))(2)}(2)] (2), regardless of the molar ratio employed. [(eta(5)-C(5)Me(5))(2)ZrF(2)] reacts with 1 and 2 equiv of Me(3)SiOCOCF(3) to form the mononuclear compounds [(eta(5)-C(5)Me(5))(2)Zr(OCOCF(3))(2)] (3) and [(eta(5)-C(5)Me(5))(2)ZrF(OCOCF(3))] (4), respectively. The molecular structures of 1 and 3 have been determined by single-crystal X-ray analysis: 1, triclinic, P&onemacr;, a = 9.508(3) ?, b = 11.002(4) ?, c = 17.528(3) ?, alpha = 78.55(4), beta = 76.80(2), gamma = 87.51(2) degrees, V = 1750(1) ?(3), Z = 2, R = 0.0378; 3, monoclinic, C2/c, a = 18.553(4) ?, b = 9.110(2) ?, c = 16.323(3) ?, beta = 114.88(3) degrees, V = 2503(1) ?(3), Z = 4, R = 0.0457. Compound 1 shows bridging bidentate and chelating carboxylate ligands as well as bridging fluorine atoms. The zirconium atoms are seven coordinated and have an 18-electron configuration. X-ray studies of 3 reveal two structural components where the carboxylate ligands coordinate in a monodentate (major component) and a chelating manner (minor component).  相似文献   

6.
Chen L  Cotton FA 《Inorganic chemistry》1996,35(25):7364-7369
Reaction of [Zr(6)Cl(18)H(5)](3)(-) (1) with 1 equiv of TiCl(4) yields a new cluster anion, [Zr(6)Cl(18)H(5)](2)(-) (2), which can be converted back into [Zr(6)Cl(18)H(5)](3)(-) (1) upon addition of 1 equiv of Na/Hg. Cluster 2 is paramagnetic and unstable in the presence of donor molecules. It undergoes a disproportionation reaction to form 1, some Zr(IV) compounds, and H(2). It also reacts with TiCl(4) to form [Zr(2)Cl(9)](-) (4) and a tetranuclear mixed-metal species, [Zr(2)Ti(2)Cl(16)](2)(-) (3). The oxidation reaction of 1 with TiCl(4) is unique. Oxidation of 1 with H(+) in CH(2)Cl(2) solution results in the formation of [ZrCl(6)](2)(-) (5) and H(2), while in py solution the oxidation product is [ZrCl(5)(py)](-) (6). There is no reaction between 1 and TiI(4), ZrCl(4), [TiCl(6)](2)(-), [ZrCl(6)](2)(-), or CrCl(3). Compounds [Ph(4)P](2)[Zr(6)Cl(18)H(5)] (2a), [Ph(4)P](2)[Zr(2)Ti(2)Cl(16)] (3a), [Ph(4)P](2)[Zr(2)Cl(9)] (4a), [Ph(4)P](2)[ZrCl(6)].4MeCN (5a.4MeCN), and [Ph(4)P][ZrCl(5)(py)] (6a) were characterized by X-ray crystallography. Compound 2a crystallized in the trigonal space group R&thremacr; with cell dimensions (20 degrees C) of a = 28.546(3) ?, b = 28.546(3) ?, c = 27.679(2) ?, V = 19533(3) ?(3), and Z = 12. Compound 3a crystallized in the triclinic space group P&onemacr; with cell dimensions (-60 degrees C) of a = 11.375(3) ?, b = 13.357(3) ?, c = 11.336(3) ?, alpha = 106.07(1) degrees, beta = 114.77(1) degrees, gamma = 88.50(1) degrees, V = 1494.8(7) ?(3), and Z = 1. Compound 4a crystallized in the triclinic space group P&onemacr; with cell dimensions (-60 degrees C) of a = 12.380(5) ?, b = 12.883(5) ?, c = 11.000(4) ?, alpha = 110.39(7) degrees, beta = 98.29(7) degrees, gamma = 73.12(4) degrees, V = 1572(1) ?(3), and Z = 2. Compound 5a.4MeCN crystallized in the monoclinic space group P2(1)/c with cell dimensions (-60 degrees C) of a = 9.595(1) ?, b = 19.566(3) ?, c = 15.049(1) ?, beta = 98.50(1) degrees, V = 2794.2(6) ?(3), and Z = 2. Compound 6a crystallized in the monoclinic space group P2(1)/c with cell dimensions (20 degrees C) of a = 10.3390(7) ?, b = 16.491(2) ?, c = 17.654(2) ?, beta = 91.542(6) degrees, V = 3026.4(5) ?(3), and Z = 4.  相似文献   

7.
The reactivity of KNHAr reagents (Ar = C(6)H(5), C(6)H(3)Me(2)-2,6, C(6)H(3)(i)Pr(2)-2,6) with lanthanide and yttrium trichlorides has been investigated. With the larger metals Nd and Sm and the smaller 2,6-dimethyl-substituted ligand, the bimetallic dianionic complexes [K(THF)(6)](2)[Ln(&mgr;-NHC(6)H(3)Me(2)-2,6)(NHC(6)H(3)Me(2)-2,6)(3)](2) (Ln: Sm, 1a; Nd, 1b) are isolated as the potassium salts. Under the same reaction conditions YCl(3) forms a bimetallic anion which retains chloride: [K(DME)(2)(THF)(3)][Y(2)(&mgr;-NHC(6)H(3)Me(2)-2,6)(2)(&mgr;-Cl)(NHC(6)H(3)Me(2)-2,6)(4)(THF)(2)], 2. With the larger 2,6-diisopropyl ligands, neutral complexes are isolated in both solvated monometallic and unsolvated bimetallic forms. With Nd, a distorted octahedral trisolvate, Nd(NHC(6)H(3)(i)Pr(2)-2,6)(3)(THF)(3), 3, was obtained, whereas with Yb and Y the trigonal bipyramidal disolvates, Ln(NHC(6)H(3)(i)Pr(2)-2,6)(3)(THF)(2) (Ln: Yb, 4a; Y, 4b), were isolated. THF-free complexes of the NHC(6)H(3)(i)Pr(2)-2,6 ligand are available by reacting the amine NH(2)C(6)H(3)(i)Pr(2)-2,6 with Ln[N(SiMe(3))(2)](3) complexes. By this route, the dimers [Ln(&mgr;-NHC(6)H(3)(i)Pr(2)-2,6)(NHC(6)H(3)(i)Pr(2)-2,6)(2)](2) (Ln: Yb, 5a; Y, 5b) were isolated. The reaction of the unsubstituted arylamido salt KNHC(6)H(5) with NdCl(3) produced an insoluble material which was characterized as [Nd(NHC(6)H(5))(3)(KCl)(3)], 6. 6 reacted with Al(2)Me(6) in hexanes and produced a heteroleptic mixed-metal complex {[Me(2)Al(&mgr;-Me(2))](2)Nd(&mgr;(3)-NC(6)H(5))(&mgr;-Me)AlMe}(2), 7, and the trimeric aluminum arylamido complex [Me(2)Al(&mgr;-NHC(6)H(5))](3), 8. The solvent of crystallization and relevant crystallographic data for the compounds identified by X-ray analysis follow: 1a,THF, 156 K, P2(1)/n, a = 12.985(2) ?, b = 27.122(5) ?, c = 17.935(3) ?, beta = 100.19(1) degrees, V = 6216(1) ?(3), Z = 2, 6148 reflections (I > 3sigma(I)), R(F)() = 7.1%; 1b,THF, 156 K, P2(1)/n, a = 12.998(2) ?, b = 27.058(3) ?, c = 17.962(2) ?, beta = 99.74(1) degrees, V = 6225(1) ?(3), Z = 2; 2,DME/hexanes, P2(1)/n, a = 23.335(2) ?, b = 12.649(1) ?, c = 27.175(3) ?, beta = 96.36(1) degrees, V = 7971(1) ?(3), Z = 4, 2788 reflections (I > 3sigma(I)), R(F)() = 9.5%; 3, THF, P2(1), a = 12.898(1) ?, b = 16.945(1) ?, c = 13.290(1) ?, beta = 118.64(2) degrees, V = 2549.3(3) ?(3), Z = 2, 3414 reflections (I > 3sigma(I)), R(F)() = 4.3%; 4a, hexanes, P2(1), a = 9.718(2) ?, b = 19.119(3) ?, c = 12.640(2) ?, beta = 112.08(1) degrees, V = 2176.3(6) ?(3), Z = 2, 2933 reflections (I > 3sigma(I)), R(F)() = 4.3%; 4b, hexanes, 158 K, a = 9.729(2) ?, b = 19.095(5) ?, c = 12.744(1) ?, beta = 112.11(1) degrees, V = 2193.4(6) ?(3); 5b, hot toluene, 158 K, P2(1), a =19.218(9) ?, b = 9.375(3) ?, c = 19.820(5) ?, beta = 110.25(2) degrees, V = 3350(2)?(3), Z = 2, 1718 reflections (I > 2sigma (I)), R1 = 9.7%; 7, hexanes, 156 K, P&onemacr;, a = 9.618(3) ?, b = 12.738(4) ?, c = 9.608(3) ?, alpha = 99.32(1) degrees, beta = 108.87(1) degrees, gamma = 94.23(1) degrees, V = 1089.1(6) ?(3), Z = 2, 2976 reflections (I > 3sigma(I)), R(F)() = 3.9%; 8, hexanes, 156 K, Pcab, a = 23.510(5) ?, b = 25.462(5) ?, c = 8.668(2) ?, V = 5188(1) ?(3), Z = 8, 1386 reflections (I > 3sigma(I)), R(F)() = 5.7%.  相似文献   

8.
The reactivity of the tetraphenylborate salts of the rare earth metallocene cations [(C(5)Me(5))(2)Ln][(μ-Ph)(2)BPh(2)] (Ln = Y, 1; Sm, 2) has been investigated with substrates that undergo reduction with f element complexes to probe metal-substrate interactions prior to reduction. Results with NaN(3), 1-adamantyl azide, acetone, benzophenone, phenanthroline, pyridine, azobenzene, and phenazine are described. Not only were coordination complexes isolated, but substrate reduction by (BPh(4))(-) was also observed. Complex 1 reacts with NaN(3) to form the azide [(C(5)Me(5))(2)YN(3)](x), 3, which crystallizes as [(C(5)Me(5))(2)Y(μ-N(3))](3), 4, when obtained from 1 and 1-adamantyl azide. The samarium analogue [(C(5)Me(5))(2)SmN(3)](x), 5, can be produced similarly from 2 and NaN(3) and crystallized from MeCN as [(C(5)Me(5))(2)Sm(NCMe)(μ-N(3))](3), 6, and {[(C(5)Me(5))(2)Sm(μ-N(3))][(C(5)Me(5))(2)Sm(NCMe)(μ-N(3))]}(n), 7. Complexes 1 and 2 react with stoichiometric amounts of acetone and benzophenone to form the ketone adducts [(C(5)Me(5))(2)Ln(OCMe(2))(2)][BPh(4)] (Ln = Y, 8; Sm, 9) and [(C(5)Me(5))(2)Ln(OCPh(2))(2)][BPh(4)] (Ln = Y, 10; Sm, 11), respectively. Phenanthroline (phen) coordinates to 1 to form [(C(5)Me(5))(2)Y(phen)][BPh(4)], 12. Complexes 1 and 2 react with pyridine (py) to form [(C(5)Me(5))(2)Ln(py)(2)][BPh(4)], (Ln = Y, 13; Sm, 14). Complexes 3, 8, 10, and 12 can also be made from the solvated cation [(C(5)Me(5))(2)Y(THF)(2)][BPh(4)]. The reaction of 1 with PhNNPh yields the diamagnetic adduct [(C(5)Me(5))(2)Y(PhNNPh)][BPh(4)], 15, which transforms in benzene to the radical anion complex (C(5)Me(5))(2)Y(PhNNPh), 16, via a one electron reduction by (BPh(4))(-). Complex 1 similarly reacts with phenazine (phz) to produce the first rare earth phenazine radical anion complex {[(C(5)Me(5))(2)Y](2)(phz)}{BPh(4)}, 17. Further reduction of phenazine by (BPh(4))(-) in 17 yields [(C(5)Me(5))(2)Y](2)(phz), 18, which contains the common (phz)(2-) dianion. The reduction of fluorenone by (BPh(4))(-) is also reported.  相似文献   

9.
The synthesis and structural characterization of the compounds MesAlCl(2)(THF) (1), MesAlCl(2) (2), MesAl(H)Cl(THF) (3a), MesAl(H)Cl (4a), and (MesAlH(2))(2) (5) (Mes = 2,4,6-t-Bu(3)C(6)H(2)(-)) are described as well as those for two compounds 3b and 4b that are analogs of 3a and 4a but have H:Cl ratios that are less than 1:1. All compounds were characterized by (1)H, (13)C NMR, and IR spectroscopy, and 1, 2, 3a, and 4b were additionally characterized by X-ray crystallography. Compound 1 is best synthesized by the reaction of [(THF)(2)LiH(3)AlMes](2) (6) with 6 equiv of Me(3)SiCl. A more conventional route involving the addition of (THF)(2)LiMes to 2 equiv of AlCl(3) in toluene usually affords a mixture of 1 and AlCl(3).THF. Recrystallization of 1 from n-hexane results in a species that has less than 1 equiv of THF per MesAlCl(2). The THF free complex 2 may be obtained in quantitative yield by heating 1 for 20 min at 90 degrees C under reduced pressure. Compound 3a may be obtained by treating a 1:1 mixture of MesLi(THF)(2) and LiAlH(4) with 2 equiv of Me(3)SiCl or by the addition of slightly less than 4 equiv of Me(3)SiCl to 6. The THF can be removed from 3a by sublimation to give 4a. The related compounds 3b and 4b, which display an aluminum-bound H:Cl ratio that is deficient in H, can be obtained by reactions with slightly more than 2 equiv of Me(3)SiCl. Crystal data at 130 K with Cu Kalpha (lambda = 1.541 78 ?) radiation: 1, C(22)H(37)AlCl(2)O, a = 11.889(3) ?, b = 9.992(3) ?, c = 19.704(5) ?, orthorhombic, space group Pca2(1), Z = 4, R = 0.068 for 1556 (I > 2sigma(I)) data; 2, C(18)H(29)AlCl(2), a = 12.147(5) ?, b = 18.042(6) ?, c = 17.771(7) ?, beta = 95.77(3) degrees, monoclinic, space group P2(1)/n,Z = 8, R = 0.032 for 4610 (I > 2sigma(I)) data; 3a, C(22)H(38)AlClO, a = 16.887(7) ?, b = 16.333(6) ?, c = 8.739(3) ?, beta = 101.41(3) degrees, monoclinic, space group P2(1)/c, Z = 4, R = 0.073 for 2752 (I > 2sigma(I)) data; 4b, C(18)H(29.64)AlCl(1.36), a = 12.077(3) ?, b = 17.920(3) ?, c = 17.634(5) ?; beta = 95.21(2) ?, monoclinic, space group P2(1)/n,Z = 8, R = 0.070 for 4261 (I > 2sigma(I)) data.  相似文献   

10.
The platinum(II) complexes trans-[PtCl(2)(RR'C=NOH)(2)], where R = R' = Me, RR' = (CH(2))(4) and (CH(2))(5), react with m-chloroperoxybenzoic acid in Me(2)CO to give the platinum(IV) complexes [PtCl(2)(OCMe(2)ON=CRR')(2)] in 50-60% yields. The complexes [PtCl(2)(OCMe(2)ON=CRR')(2)] were characterized by elemental analysis, EI-MS, and IR and Raman spectroscopies; X-ray structure analyses were performed for both trans-[PtCl(2)(OCMe(2)ON=CC(4)H(8))(2)] and trans-[PtCl(2)(OCMe(2)ON=CC(5)H(10))(2)]. The former compound crystallizes in the triclinic space group P&onemacr; with a = 8.088(2) ?, b = 8.327(2) ?, c = 8.475(2) ?, alpha = 103.54(3) degrees, beta = 102.15(3) degrees, gamma = 108.37(3) degrees, V = 501.0(2) ?(3), Z = 1, and rho(calcd) = 1.917 g cm(-)(3). The latter complex crystallizes in the monoclinic space group C2/c with a = 12.5260(10) ?, b = 9.3360(10) ?, c = 18.699(2) ?, beta = 98.320(10) degrees, V = 2163.7(4) ?(3), Z = 4, and rho(calcd) = 1.862 g cm(-)(3). The structures of [PtCl(2)(OCMe(2)ON=CC(4)H(8))(2)] and [PtCl(2)(OCMe(2)ON=CC(5)H(10))(2)] show an octahedron of Pt where two Cl atoms and two chelate ligands are mutually trans, respectively.  相似文献   

11.
Reaction of aryllithium reagents LiR (R = C(6)H(4)((R)-CH(Me)NMe(2))-2 (1a), C(6)H(3)(CH(2)NMe(2))(2)-2,6 (1b), C(6)H(4)(CH(2)N(Me)CH(2)CH(2)OMe)-2 (1c)) with 1 equiv of sulfur (1/8 S(8)) results in the quantitative formation of the corresponding lithium arenethiolates [Li{SC(6)H(4)((R)-CH(Me)NMe(2))-2}](6) (3), [Li{SC(6)H(3)(CH(2)NMe(2))(2)-2,6}](6) (4), and [Li{SC(6)H(4)(CH(2)N(Me)CH(2)CH(2)OMe)-2}](2) (5). Alternatively, 3 can be prepared by reacting the corresponding arenethiol HSC(6)H(4)((R)-CH(Me)NMe(2))-2 (2) with (n)BuLi. X-ray crystal structures of lithium arenethiolates 3 and 4, reported in abbreviated form, show them to have hexanuclear prismatic and hexanuclear planar structures, respectively, that are unprecedented in lithium thiolate chemistry. The lithium arenethiolate [Li{SC(6)H(4)(CH(2)N(Me)CH(2)CH(2)OMe)-2}](2) (5) is dimeric in the solid state and in solution, and crystals of 5 are monoclinic, space group P2(1)/c, with a = 17.7963(9) ?, b = 8.1281(7) ?, c = 17.1340(10) ?, beta = 108.288(5) degrees, Z = 4, and final R = 0.047 for 4051 reflections with F > 4sigma(F). Hexameric 4 reacts with 1 equiv of lithium iodide and 2 equiv of tetrahydrofuran to form the dinuclear adduct [Li(2)(SAr)(I)(THF)(2)] (6). Crystals of 6 are monoclinic, space group P2(1)/c, with a = 13.0346(10) ?, b = 11.523(3) ?, c = 16.127(3) ?, beta = 94.682(10) degrees, Z = 4, and final R = 0.059 for 3190 reflections with F > 4sigma(F).  相似文献   

12.
The coordination chemistry of the 2,3-dimethylindolide anion (DMI), (Me(2)C(8)H(4)N)(-), with potassium, yttrium, and samarium ions is described. In the potassium salt [K(DMI)(THF)](n), 1, prepared from Me(2)C(8)H(4)NH and KH in THF, the dimethylindole anion binds and bridges potassium ions in three different binding modes, namely eta(1), eta(3), and eta(5), to form a two-dimensional extended structure. In the dimethoxyethane (DME) adduct [K(DMI)(DME)(2)](2), 2, prepared by crystallizing a sample of 1 from DME, DMI exists as a mu-eta(1):eta(1) ligand. Compound 1 reacts with SmI(2)(THF)(4) in THF to form the distorted octahedral complex trans-(DMI)(2)Sm(THF)(4), 3, in which the dimethyindolide anions are bound in the eta(1) mode to samarium. Reaction of 2,3-dimethylindole with Y(CH(2)SiMe(3))(3)(THF)(2) afforded the amide complex (DMI)(3)Y(THF)(2), 4, in which the dimethylindolide anions are also bound in the eta(1) mode to yttrium. Compound 1 also reacts with (C(5)Me(5))(2)LnCl(2)K(THF)(2) (Ln = Sm, Y) to form unsolvated amide complexes (C(5)Me(5))(2)Ln(DMI) (Ln = Sm, 5; Y, 6), in which DMI attaches primarily through nitrogen, although the edge of the arene ring is oriented toward the metals at long distances.  相似文献   

13.
Wang ZX  Li YX 《Inorganic chemistry》2002,41(23):5934-5936
Reaction of MCl4 (M = Zr, Hf) with 2 equiv of 2-iminophosphorano-1-phosphaallyl lithium [Li[P(Ph)C(=CHPh)P(Me)2=NSiMe3](THF)1.5] (1) affords ligand coupling complexes 3 and 4, respectively, while similar treatment of ZrCl4 with [Li[P(Ph)C(=C(SiMe2Bu(t))Ph)P(Me)2=NSiMe3](THF)2] (2) yields ligand transfer complex 5.  相似文献   

14.
Lube MS  Wells RL  White PS 《Inorganic chemistry》1996,35(17):5007-5014
The 1:1 mole ratio reactions of boron trihalides (BX(3)) with tris(trimethylsilyl)phosphine [P(SiMe(3))(3)] produced 1:1 Lewis acid/base adducts [X(3)B.P(SiMe(3))(3), X = Cl (1), Br (2), I (5)]. Analogous 1:1 mole ratio reactions of these boron trihalides with lithium bis(trimethylsilyl)phosphide [LiP(SiMe(3))(2)] produced dimeric boron-phosphorus ring compounds {[X(2)BP(SiMe(3))(2)](2), X = Br (3), Cl (4)}. X-ray crystallographic studies were successfully conducted on compounds 1-4. Compound 1 crystallized in the orthorhombic space group Pbca, with a = 13.420(3) ?, b = 17.044(5) ?, c = 21.731(7) ?, V = 4970.6(25) ?(3), and D(calc) = 1.229 g cm(-3) for Z = 8; the B-P bond length was 2.022(9) ?, Compound 2 crystallized in the orthorhombic space group Pbca, with a = 13.581(6) ?, b = 17.106(7) ?, c = 22.021(9) ?, V = 5116(4) ?(3), and D(calc) = 1.540 g cm(-3) for Z = 8; the B-P bond length was 2.00(2) ?. Compound 3 crystallized in the monoclinic space group P2(1)/n, with a = 9.063(5) ?, b = 16.391(8) ?, c = 9.331(4) ?, V = 1379.2(12) ?(3), and D(calc) = 1.676 g cm(-3) for Z = 2; the B-P bond length was 2.023(10) ?. Compound 4 crystallized in the monoclinic space group P2(1)/n, with a = 9.143(5) ?, b = 16.021(8) ?, c = 9.170(4) ?, V = 1342.2(11) ?(3), and D(calc) = 1.282 g cm(-3) for Z = 2; the B-P bond length was 2.025(3) ?. Thermal decomposition studies were performed on compounds 1-4, yielding colored powders with boron:phosphorus ratios greater than 1:1 and significant C and H contamination indicated by elemental analyses.  相似文献   

15.
A new olefin-substituted tetrachlorocyclotri-lambda(5)-phosphazene (NPCl(2))(2)NP(i)Pr{C[OC(O)Me]=CH(2)} (4) and an unique bicyclo-lambda(5)-triphosphazene [(NPCl(2))(2)NP(i)Pr](2)C(OH)Me (5) have been prepared from the reaction of MeC(O)Cl and (NPCl(2))(2)NP(i)PrH in the presence of Et(3)N. Exclusive formation of 4 could be achieved by using an excess of both Et(3)N and MeC(O)Cl. The phosphazene rings in 5 are bridged by one carbon atom. The presence of this C(OH)Me bridge induces an asymmetric environment which renders the isopropyl ligands no longer equivalent under NMR conditions. Crystals of 4 are monoclinic, space group P2(1)/n, with a = 13.158(1) ?, b = 9.555(1) ?, c = 14.859(1) ?, beta = 115.502(6) degrees, V = 1686.1(3) ?(3), and Z = 4. Crystals of 5 are monoclinic, space group P2(1)/c, with a = 13.255(2) ?, b = 12.050(2) ?, c = 16.280(2) ?, beta = 98.91(1) degrees, V = 2568.8(7) ?(3), and Z = 4.  相似文献   

16.
Novel, coordinatively and electronically unsaturated tungsten tricarbonyl dianions of 2-aminophenol and 1,2-diaminobenzene have been synthesized from the reaction of photogenerated W(CO)(5)THF and [Et(4)N][OC(6)H(4)NH(2)] with subsequent deprotonation by [Et(4)N][OH] accompanied by facile CO dissociation, and the reaction of W(CO)(5)THF and 2 equiv of [Et(4)N][NHC(6)H(4)NH(2)], respectively. These air-sensitive derivatives have been fully characterized both in solution (nu(CO) and (13)C NMR) and in the solid-state (X-ray crystallography). These metal dianions which have formally 16e(-) configurations are stabilized by pi-donation from the amido groups of the chelating ligands, as evident from short W-N bond distances. Both solution (nu(CO) and (13)C NMR) and solid-state (W-N vs W-O bond distances) data on these derivatives indicate the amido ligand to be a better pi-donor than the oxo ligand. Complex 2 crystallized in the monoclinic space group P2(1)/n with a = 14.499(5) ?, b = 14.708(5) ?, c = 15.137(4) ?, beta = 114.13(2) degrees, V = 2946(2) ?(3), and d(calc) = 1.433 g/cm(3), for Z = 4. Complex 3 crystallized in the triclinic space group P&onemacr; with a = 11.479(6) ?, b = 11.786(8) ?, c = 13.148(7) ?, alpha = 102.41(5) degrees, beta = 91.27(4) degrees, gamma = 99.96(5) degrees, V = 1708(2) ?(3), and d(calc) = 1.444 g/cm(3), for Z = 2.  相似文献   

17.
The molecular structures of a number of 2,6-dimesitylphenyl-based (2,6-dimesitylphenyl = Dmp) complexes of the group 3 elements scandium and yttrium as well as of the lanthanide element ytterbium are reported. Reaction of 1 equiv of DmpLi with 1 equiv of MCl(3) (M = Sc, Yb, Y) in tetrahydrofuran at room temperature followed by crystallization from toluene/hexanes at -30 degrees C produces DmpMCl(2)(THF)(2) (M = Sc: 1; M = Yb: 2) and DmpMCl(2)(THF)(3) (M = Y: 3), respectively. The one-pot reaction of DmpLi with 1 equiv of YbCl(3) in tetrahydrofuran at room temperature followed by addition of 1 equiv of KO(t)Bu produces the heterobimetallic monoalkoxide complex DmpYb(THF)(O(t)Bu)(mu-Cl)(2)Li(THF)(2) (4), which was crystallized from toluene/tetrahydrofuran (20:1) at -30 degrees C. Crystal data for 1: monoclinic, P2(1)/n; T = 203 K; a = 10.178(3) A; b = 15.468(3) A; c = 20.132(5) A; beta = 101.85(3) degrees; V = 3102.0(17) A(3); Z' = 4; D(calcd) = 1.228 g cm(-3); R(1) = 5.89%. Crystal data for 2: monoclinic, P2(1)/n; T = 173 K; a = 10.2447(7) A; b = 15.5683(12) A; c = 20.0979(14) A; beta = 101.749(4) degrees; V = 3238.3(5) A(3); Z' = 4; D(calcd) = 1.485 g cm(-3); R(1) = 4.32%. Crystal data for 3: monoclinic, P2(1)/n; T = 203 K; a = 15.950(3) A; b = 11.865(2) A; c = 18.254(3) A; beta = 92.323(3) degrees; V = 3451.9(10) A(3); Z' = 4; D(calcd) = 1.327 g cm(-)(3); R(1) = 4.43%. Crystal data for 4: triclinic, P1; T = 193 K; a = 10.2252(2) A; b = 11.3497(2) A; c = 18.5814(2) A; alpha = 98.7353(6) degrees; beta = 102.8964(6) degrees; gamma = 94.8058(5) degrees; V = 2062.09(5) A(3); Z' = 2; D(calcd) = 1.375 g cm(-3); R(1) = 4.56%. The molecular structures of 1-3 feature monomeric complexes with distorted trigonal-bipyramidal (1 and 2) or octahedral (3) coordination geometry about the metal atom, with the two chlorine atoms occupying the axial positions. 4 represents the first example of an alkoxide derivative of a terphenyl lanthanide complex. The molecular structure of the ate complex 4 exhibits a heavily distorted trigonal-bipyramidal coordination polyhedron about the ytterbium atom, with one of the mu-chlorine atoms and the oxygen atom of the tetrahydrofuran ligand representing the axial positions of the trigonal-bipyramidal arrangement. A terminal alkoxide ligand is another main feature of the molecular structure of complex 4.  相似文献   

18.
Gamer MT  Roesky PW 《Inorganic chemistry》2004,43(16):4903-4906
Bis(diphosphanylamide) complexes of the lanthanides have been synthesized. Two approaches to obtain these compounds are shown. Reaction of YbCl3 with a slight excess of [K(THF)n][N(PPh2)2] gives [((Ph2P)2N)2 YbCl(THF)2], which can be further reacted with K(C5Me5) to give the corresponding pentamethylcyclopentadienyl complex [((Ph2P)2N)2Yb(C5Me5)]. In a second approach to bis(diphosphanylamide) complexes of the lanthanides, Na(C(5)H(5)) was treated with SmCl3 to generate [(C5H5)SmCl2(THF)3] in situ. Further reaction with 2 equiv of [K(THF)n][N(PPh2)2] gave the desired complex [((Ph2P)2N)2Sm(C5H5)(THF)].  相似文献   

19.
Imide transfer properties of ((THF)MgNPh)(6) (1) and the synthesis of the related species {(THF)MgN(1-naphthyl)}(6).2.25THF (2), via the reaction of dibutylmagnesium with H(2)N(1-naphthyl), in a THF/heptane mixture are described. Treatment of 1 with Ph(2)CO, 4-Me(2)NC(6)H(4)NO, t-BuNBr(2) (3), PCl(3), or MesPCl(2) (Mes = 2,4,6-Me(3)C(6)H(2)-) leads to the isolation of Ph(2)CNPh (4), 4-Me(2)NC(6)H(4)NNPh (5), t-BuNNPh (6), (PhNPCl)(2) (7), or (MesPNPh)(2) (8) in moderate yield. Reaction between 1 and GeCl(2).dioxane, SnCl(2), or PbCl(2) affords the M(4)N(4) (M = Ge, Sn, Pb) cubane imide derivative (GeNPh)(4) (9), [(SnNPh)(4).{MgCl(2)(THF)(4)}](infinity) (10), (SnNPh)(4).0.5PhMe (11), or (PbNPh)(4).0.5PhMe (12). Interaction of 1 with Ph(3)PO, (Me(2)N)(3)PO, or Ph(2)SO furnishes the complex (Ph(3)POMgNPh)(6) (13), {(Me(2)N)(3)POMgNPh}(6).2PhMe (14), or (Ph(2)SOMgNPh)(6) (15). The addition of 3 equiv of MgBr(2) to 1 gives 1.5 equiv of ((THF)Mg)(6)(NPh)(4)Br(4) (16) in quantitative yield, whereas treatment of 16 with 4 equiv of 1,4-dioxane is an alternative synthetic route to 1. Compounds 2, 3, 9, 10, and 14 were characterized by X-ray crystallography. The reactions demonstrate that 1 is a versatile and useful reagent for the synthesis of a variety of main group imides. Crystal data at 130 K with Mo Kalpha (lambda = 0.710 73 ?) radiation for 3 or Cu Kalpha (lambda = 1.541 78 ?) radiation for 2, 9, 10, and 14: 2, C(93)H(108)Mg(6)N(6)O(7.25), a = 28.101(7) ?, b = 35.851(7) ?, c = 36.816(7) ?, Z = 2, space group Fddd, R = 0.068 for 3500 (I > 2sigma(I)) data; 3, C(4)H(9)Br(2)N, a = 6.682(2) ?, b = 10.834(3) ?, c = 11.080(3) ?, alpha = 66.25(2) degrees, beta = 89.88(2) degrees, gamma = 82.53(2) degrees, Z = 4, space group P&onemacr;, R = 0.038 for 2043 (I > 2sigma(I)) data; 9, C(24)H(20)Ge(4)N(4), a = 10.749(2) ?, b = 12.358(3) ?, c = 35.818(7) ?, Z = 8, space group Pbca, R = 0.040 for 2981 (I > 2sigma(I)) data; 10, C(40)H(52)Cl(2)MgN(4)O(4)Sn(4), a = 12.770(3) ?, b = 13.554(3) ?, c = 25.839(5) ?, Z = 4, space group P2(1)2(1)2(1), R = 0.040 for (I > 2sigma(I)) data; 14, C(86)H(154)Mg(6)N(4)O(6)P(6), a = 22.478(4) ?, b = 16.339(3) ?, c = 29.387(6) ?, Z = 4, space group Pbcn, R = 0.081 for 4696 (I >2sigma(I)) data.  相似文献   

20.
The syntheses of macrocyclic species composed of carborane derivatives joined via their carbon vertices by electrophilic mercury atoms are described. The reaction of closo-1,2-Li(2)[C(2)B(10)H(10)(-)(x)()R(x)()] with HgI(2) gives Li(2)[(1,2-C(2)B(10)H(10)(-)(x)()R(x)()Hg)(4)I(2)] [R = Et, x = 2 (5.I(2)Li(2)); R = Me, x = 2 (6.I(2)Li(2)); R = Me, x = 4 (7.I(2)Li(2))]. 6.I(2)(K.[18]dibenzocrown-6)(2) crystallizes in the monoclinic space group C2/m [a = 28.99(2) ?, b = 18.19(1) ?, c = 13.61(1) ?, beta = 113.74(2) degrees, V = 6568 ?(3), Z = 4, R = 0.060, R(w) = 0.070]; 7.I(2)(NBu(4))(2) crystallizes in the monoclinic space group P2(1)/c [a = 12.77(1) ?, b = 21.12(2) ?, c = 20.96(2) ?, beta = 97.87(2) degrees, V = 5600 ?(3), Z = 2, R = 0.072, R(w) = 0.082]. The precursor to 7, closo-8,9,10,12-Me(4)-1,2-C(2)B(10)H(8) (4), is made in a single step by reaction of closo-1,2-C(2)B(10)H(12) with MeI in trifluoromethanesulfonic acid. The free hosts 5, 6, and 7 are obtained by reaction of the iodide complexes with stoichiometric quantities of AgOAc. A (199)Hg NMR study indicates that sequential removal of iodide from 5.I(2)Li(2) and 6.I(2)Li(2) with aliquots of AgOAc solution leads to formation of two intermediate host-guest complexes in solution, presumed to be 5(6)ILi and 5(2)(6)(2).ILi. Crystals grown from a solution of 6.I(2)Li(2) to which 1 equiv of AgOAc solution had been added proved to be an unusual stack structure with the formula 6(3).I(4)Li(4) [tetragonal, I4/m, a = 21.589(2) ?, c = 21.666(2) ?, V = 10098 ?(3), Z = 2, R = 0.058, R(w) = 0.084]. Addition of 2 equiv of NBu(4)Br ion to 5 or 6 gives 5.Br(2)(NBu(4))(2) and 6.Br(2)(NBu(4))(2), respectively, while addition of 1 equiv of KBr to 6 forms 6.BrK. 5.Br(2)(NBu(4))(2) crystallizes in the triclinic space group P&onemacr;, [a = 10.433(1) ?, b = 13.013(1) ?, c = 15.867(2) ?, alpha = 91.638(2) degrees, beta = 97.186(3) degrees, gamma = 114.202(2) degrees, V = 1492 ?(3), Z = 1, R = 0.078, R(w) = 0.104]. The hosts 5 and 6 form 1:1 supramolecular adducts with the polyhedral anions B(10)I(10)(2)(-) and B(12)I(12)(2)(-) in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号