首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The NMR spectra of a series of beta-substituted iron(III) tetraphenylporphyrin (2-X-TPP) complexes have been studied to elucidate the relationship between the electron donating/withdrawing properties of the 2-substituent and the (1)H NMR spectral pattern. The electronic nature of the substituent has been significantly varied and covered the -0.6 to 0.8 Hammett constant range. Both high-spin and low-spin complexes of the general formula (2-X-TPP)Fe(III)Cl and [(2-X-TPP)Fe(III)(CN)(2)](-) have been investigated. The (1)H NMR data for the following substituents (X) have been reported: py(+), NO(2), CN, CH(3), BzO (C(6)H(5)COO), H, D, Br, Cl, CH(3), NH(2), NH(3)(+), NHCH(3), OH, and O(-). The (1)H NMR resonances for low-spin dicyano complexes have been completely assigned by a combination of two-dimensional COSY and NOESY experiments. In the case of selected high-spin complexes, the 3-H resonance has been identified by the selective deuteration of all but the 3-H position. The pattern of unambiguously assigned seven pyrrole resonances reflects the asymmetry imposed by 2-substitution and has been used as an unique (1)H NMR spectroscopic probe to map the spin density distribution. The pyrrole isotropic shifts of [(2-X-TPP)Fe(III)(CN)(2)](-) are dominated by the contact term. In order to quantify the substituent effect, the dependence of isotropic shift of all low-spin pyrrole resonances and 3-H high-spin pyrrole resonance versus Hammett constants has been studied. The electronic effect is strongly localized at the beta-substituted pyrrole. The major change of the isotropic shift has also been noted for only one of two adjacent pyrrole rings, i.e., at 7-H and 8-H positions. These neighboring protons, located on a single pyrrole ring, experienced opposite shift changes when electron withdrawing/donating properties were modified. Two other pyrrole rings for all investigated derivatives revealed considerably smaller, substituent related, isotropic shift changes. A long-range secondary isotopic shift has been observed for [(2-D-TPP)Fe(III)(CN)(2)](-). The effect is consistent with a general spin density distribution mechanism due to beta-substitution. A fairly good correlation between the 3-H isotropic shift of (2-X-TPP)Fe(III)Cl and the Hammett constant has been found as well. The observed contact shift pattern of [(2-X-TPP)Fe(III)(CN)(2)](-) reflects spin pi delocalization into the highest filled MO equivalent to the unsubstituted porphyrin 3e(pi) orbital. To account for the substituent contribution, the semiquantitative Fenske-Hall LCAO method has been used to determine the molecular orbitals involved in the spin density delocalization. For low-spin complexes, (13)C pyrrole resonances of carbons bearing a proton have been identified by means of a (1)H-(13)C HMQC experiment. The reversed order of (13)C resonance patterns as compared to their (1)H NMR counterparts has been determined, e.g., the largest isotropic shift of 3-H has been accompanied by the smallest measured (13)C isotropic shift. Analysis of the isotropic shifts in (2-X-TPP)Fe(III)Cl and [(2-X-TPP)Fe(III)(CN)(2)](-) suggests that the observed regularities of the electronic structure modification due to the beta-substitution should apply to iron(III) natural porphyrin or geoporphyrin complexes.  相似文献   

2.
The reactions between Mn(Por)Cl and Bu(4)N(+)CN(-) have been examined in various solvents by UV-vis and (1)H NMR spectroscopy, where Por's are dianions of meso-tetraisopropylporphyrin (T(i)PrP), meso-tetraphenylporphyrin (TPP), meso-tetrakis(p-(trifluoromethyl)phenyl)porphyrin (p-CF(3)-TPP), meso-tetramesitylporphyrin (TMP), and meso-tetrakis(2,6-dichlorophenyl)porphyrin (2,6-Cl(2)-TPP). Population ratios of the reaction products, Mn(Por)(CN) and [Mn(Por)(CN)(2)](-), have been sensitively affected by the solvents used. In the case of Mn(T(i)PrP)Cl, the following results are obtained: (i) The bis-adduct is preferentially formed in dipolar aprotic solvents such as DMSO, DMF, and acetonitrile. (ii) Both the mono- and bis-adduct are formed in the less polar solvents such as CH(2)Cl(2) and benzene though the complete conversion to the bis-adduct is achieved with much smaller amount of the ligand in benzene solution. (iii) Only the mono-adduct is formed in CHCl(3) solution even in the presence of a large excess of cyanide. (iv) Neither the mono- nor the bis-adduct is obtained in methanol solution. The results mentioned above have been explained in terms of the C-H.N and O-H.N hydrogen bonding in chloroform and methanol solutions, respectively, between the solvent molecules and cyanide ligand; hydrogen bonding weakens the coordination ability of cyanide and reduces the population of the bis-adduct. The importance of the C-H.N weak hydrogen bonding is most explicitly shown in the following fact: while the starting complex is completely converted to the bis-adduct in CH(2)Cl(2) solution, the conversion from the mono- to the bis-adduct is not observed even in the presence of 7000 equiv of Bu(4)N(+)CN(-) in CHCl(3) solution. The effective magnetic moments of the bis-adduct has been determined by the Evans method to be 3.2 micro(B) at 25 degrees C, suggesting that the complex adopts the usual (d(xy))(2)(d(xz), d(yz))(2) electron configuration despite the highly ruffled porphyrin core expected for [Mn(T(i)PrP)(CN)(2)](-). The spin densities of [Mn(T(i)PrP)(CN)(2)](-) centered on the pi MO have been determined on the basis of the (1)H and (13)C NMR chemical shifts. Estimated spin densities are as follows: meso-carbon, -0.0014; alpha-pyrrole carbon, -0.0011; beta-pyrrole carbon, +0.0066; pyrrole nitrogen, -0.022. The spin densities at the pyrrole carbon and meso nitrogen atoms are much smaller than those of the corresponding [Mn(TPP)(CN)(2)](-), which is ascribed to the nonplanar porphyrin ring of [Mn(T(i)PrP)(CN)(2)](-). This study has revealed that the C-H.N weak hydrogen bonding is playing an important role in determining the stability of the manganese(III) complexes.  相似文献   

3.
Five-coordinate iron(III) 2,7,12,17-tetrapropylporphycene (TPrPc)Fe(III)X (X = C(6)H(5)O(-), Cl(-), Br(-), I(-), ClO(4)(-)) complexes have been investigated. The (1)H NMR spectra demonstrate downfield shifts for pyrrole resonances [(TPrPc)Fe(III)(C(6)H(5)O), 65.3 ppm; (TPrPc)Fe(III)Cl, 28.5 ppm] but large upfield ones for (TPrPc)Fe(III)Br (-7.8 ppm), (TPrPc)Fe(III)I (-49.4 ppm), and (TPrPc)Fe(III)ClO(4) (-77.1 ppm) (294 K, CD(2)Cl(2)). The pyrrole chemical shifts span the remarkable +70 to -80 ppm range. The variable-temperature (1)H NMR spectra of (TPrPc)Fe(III)X demonstrate anti-Curie behavior with a sign reversal for (TPrPc)Fe(III)Cl. These behaviors are consistent with the admixed S = 3/2, 5/2 ground electronic state with a dominating contribution of the S = 3/2 one. In terms of the chemical shift, (TPrPc)Fe(III)(ClO(4)) can be considered as an example of the purest S = 3/2 state in the investigated series. The extent of the S = 5/2 contribution in the admixed S = 3/2, 5/2 ground electronic state, as gradated solely the basis of the pyrrole proton paramagnetic shifts, is controlled by the strength of the axial ligand, following the magnetochemical series (Evans, D. R.; Reed, C. A. J. Am. Chem. Soc. 2000, 122, 4660). Significantly iron(III) 2,7,12,17-tetrapropylporphycene, soluble in typical organic solvents, can be considered as a universal framework to classify the ligand strength in a magnetochemical series, consistently using the beta-H pyrrole paramagnetic shifts as a fundamental criterion. The structure of (TPrPc)Fe(III)Cl has been determined by X-ray crystallography. The iron is five-coordinate with bonds of nearly equal length to the four pyrrole nitrogen atoms (Fe-N in the range 1.983(5)-2.006(6) A). The iron lies 0.583(1) A out of the mean plane of the macrocycle and 0.502(5) A out of the mean N(4) plane. In the solid, pairs of molecules are positioned about the center of symmetry so there is face-to-face pi-pi contact. The mean plane separation is 3.38 A, and the lateral shift of the porphycene center along the Fe-N bond is 4.490 A. The distance from one porphycene center to the other is 5.62 A, and the iron-iron separation is 6.304(2) A.  相似文献   

4.
An oxa-analogue of 5,10,15-triarylcorrole, i.e., 5,10,15-triaryl-21,23-dioxacorrole (21,23-O(2)Cor)H, where two pyrrole rings are replaced by furan moieties, has been produced by condensation of 2,5-bis(arylhydroxymethyl)furan, 2-phenylhydroxymethylfuran, and pyrrole. 2-Phenylhydroxymethylfuran serves as the suitable synthone to introduce a furan ring with the ability create a direct pyrrole-furan alpha-alpha bond. The replacement of 2-phenylhydroxymethylfuran by 3-phenylhydroxymethylfuran led to a nonaromatic isomer of (21,23-O(2)Cor)H, i.e., (iso-21,23-O(2)Cor)H, which accommodates two furan rings. The protruding furan is built into the macrocycle via beta and beta' carbon atoms with the oxygen atom pointing outward. Crystal structures of the [(21,23-O(2)Cor)H(2)](2)[ZnCl(4)] and [(iso-21,23-O(2)Cor)H(2)]Cl have been studied by X-ray crystallography. The complex ZnCl(4)(2-) anion is located in a clam-shell-like cavity formed by two 21,23-dioxacorrole cations of the [(21,23-O(2)Cor)H(2)](2)[ZnCl(4)] unit. The 21,23-dioxacorrole cation is only slightly distorted from planarity. In [(iso-21,23-O(2)Cor)H(2)]Cl, the macrocycle is strongly puckered as the internal ring is contracted by two carbon atoms when compared to regular porphyrin. The chloride anion is located over the center of the macrocycle and is involved in two intra (N)H...Cl and two intermolecular (C)H...Cl interactions to be classified as a tetrafurcate system. The (21,23-O(2)Cor)H molecule preserves aromaticity of the parental corrole with characteristic downfield positions of furan and pyrrole resonances in (1)H NMR accompanied the NH resonance at the upfield position (-2.53 ppm). The temperature-dependent features detected in (1)H NMR spectra of (21,23-O(2)Cor)H are consistent with the existence of a tautomeric equilibrium which involves two tautomers alternatively protonated on N(22) or N(24) nitrogen atoms. The density functional theory (DFT) has been applied to model the molecular and electronic structure of two tautomers of 21,23-dioxacorrole [22-N, 24-NH], [22-NH, 24-N]. The total energies calculated using the B3LYP/6-31G**//B3LYP/6-31G* approach demonstrate a very small energy difference (1.4 kcal/mol) between tautomers suggesting their simultaneous presence in equilibrium. Insertion of nickel(II) into (21,23-O(2)Cor)H yields five-coordinate (21,23-O(2)Cor)Ni(II)Cl--the first high-spin nickel(II) in a corrole-like macrocyclic environment.  相似文献   

5.
A layered mixed-valence manganese complex, [Mn(II)(2)(bispicen)(2)(mu(3)-Cl)(2)Mn(III)(Cl(4)Cat)(2)Mn(III)(Cl(4)Cat)(2)(H(2)O)(2)](infinity), is synthesized and characterized structurally. It displays a slow magnetic relaxation and hysteresis effect.  相似文献   

6.
The series of compounds [Mn(bpia)(mu-OAc)](2)(ClO(4))(2) (1), [Mn(2)(bpia)(2)(muO)(mu-OAc)](ClO(4))(3).CH(3)CN (2), [Mn(bpia)(mu-O)](2)(ClO(4))(2)(PF(6)).2CH(3)CN (3), [Mn(bpia)(Cl)(2)](ClO)(4) (4), and [(Mn(bpia)(Cl))(2)(mu-O)](ClO(4))(2).2CH(3)CN (5) (bpia = bis(picolyl)(N-methylimidazol-2-yl)amine) represents a structural, spectroscopic, and functional model system for manganese catalases. Compounds 3 and 5 have been synthesized from 2 via bulk electrolysis and ligand exchange, respectively. All complexes have been structurally characterized by X-ray crystallography and by UV-vis and EPR spectroscopies. The different bridging ligands including the rare mono-mu-oxo and mono-mu-oxo-mono-mu-carboxylato motifs lead to a variation of the Mn-Mn separation across the four binuclear compounds of 1.50 A (Mn(2)(II,II) = 4.128 A, Mn(2)(III,III) = 3.5326 and 3.2533 A, Mn(2)(III,IV) = 2.624 A). Complexes 1, 2, and 3 are mimics for the Mn(2)(II,II), the Mn(2)(III,III), and the Mn(2)(III,IV) oxidation states of the native enzyme. UV-vis spectra of these compounds show similarities to those of the corresponding oxidation states of manganese catalase from Thermus thermophilus and Lactobacillus plantarum. Compound 2 exhibits a rare example of a Jahn-Teller compression. While complexes 1 and 3 are efficient catalysts for the disproportionation of hydrogen peroxide and contain an N(4)O(2) donor set, 4 and 5 show no catalase activity. These complexes have an N(4)Cl(2) and N(4)OCl donor set, respectively, and serve as mimics for halide inhibited manganese catalases. Cyclovoltammetric data show that the substitution of oxygen donor atoms with chloride causes a shift of redox potentials to more positive values. To our knowledge, complex 1 is the most efficient binuclear functional manganese catalase mimic exhibiting saturation kinetics to date.  相似文献   

7.
A novel monomeric tetravalent manganese complex with the cross-bridged cyclam ligand 4,11-dimethyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane (Me2EBC), [Mn(IV)(Me2EBC)(OH)2](PF6)2, was synthesized by oxidation of Mn(II)(Me2EBC)Cl2 with H2O2 in the presence of NH4PF6)in aqueous solution. The X-ray crystal structure determination of this manganese(IV) compound revealed that it contains two rare terminal hydroxo ligands. EPR studies in dry acetonitrile at 77 K show two broad resonances at g = 1.96 and 3.41, indicating that the manganese(IV) exists as a high-spin d3 species. Resonance Raman (rR) spectra of this manganese(IV) species reveal that the dihydroxy moiety, Mn(IV)(OH)2, is also the dominant species in aqueous solution (pH < 7). pH titration provides two pK(a) values, 6.86(4) and 10.0(1), associated with stepwise removal of the last two oxygen-bound protons from [Mn(IV)(Me2EBC)(OH)2](2+). The cyclic voltammetry of this manganese(IV) complex in dry acetonitrile at 298 K demonstrates two reversible redox processes at +0.756 and -0.696 V (versus SHE) for the Mn4+/Mn3+ and Mn3+/Mn2+ couples, respectively. This manganese(IV) complex is relatively stable in weak acidic aqueous solution but easily degrades in basic solution to manganese(III) derivatives with an 88 +/- 1% yield.  相似文献   

8.
The complexes [Pd(phen)(aa)]Cl.3H2O, where phen is 1,10-phenanthroline and aa is the anion of glycine (gly), .DL-alanine (ala), DL-serine (ser) or DL-asparagine (asn), were synthesized and characterized by spectroscopies. The NMR signals were assigned completely on the basis of the double irradiation, 1H-1H COSY and 1H-13C COSY techniques. In the 1H NMR spectra of phen in the complexes, the signals of 2-H and 9-H show upfield shifts 0.8-1 ppm, while the signals of 4-H and 3-H show downfield shifts or almost no shift, as compared to the free phen ligand, and the signal of 4-H appears in the lowest field. The signals of ring B which is trans to the carboxyl group show significant upfield shifts as compared to those of ring A. The probable structures were described on the basis of a metal-non-bonded hydrogen interaction, trons effect and ligand-ligand interaction. There may exist three conformation isomers in the [Pd(phen)(asn)]Cl.3H2O complex at room temperature. The preferred conformation isomer is about  相似文献   

9.
Reaction of MnCl(2).4H(2)O with H(3)L (H(3)L = tris(6-hydroxymethyl-2-pyridylmethyl)amine) in methanol gives hepta-coordinated [Mn(H(3)L)]Cl(2) involving attachment of Mn(II) to all four nitrogens and three hydroxymethyl arms. Reaction of H(3)L with Fe(ClO(4))(2).6H(2)O in CH(3)CN in the presence of NaO(2)CC(6)H(5) in an attempt to make [Fe(III)OH(H(3)L)(O(2)CC(6)H(5))](ClO(4)), a putative model for soybean lipoxygenase-1, instead gave rise to the linear triiron(III) complex [Fe(3)L(2)](ClO(4))(3) with all three hydroxymethyl arms deprotonated and forming three alkoxide bridges between each Fe(III) centre. The central Fe(III) is hexa-coordinated to only the alkoxide bridges and flanked by two hepta-coordinated iron(III) centres analogous to the Mn(ii) complex. [Fe(3)L(2)](ClO(4))(3) exhibits two reversible 1e(-) reductions to mixed-valence [Fe(3)L(2)](2+) and [Fe(3)L(2)](+) forms. Structure data and magnetochemistry on [Fe(3)L(2)](ClO(4))(3) reveals the tightest Fe-O-Fe angle (87.4 degrees ) and shortest Fe...Fe distance (2.834 A) yet found for any weakly antiferromagnetically-coupled high spin alkoxide-bridged di- or triiron(iii) system and challenges current theories involved in correlating the extent/nature of magnetic interactions in such systems based on Fe-O(bridge) distances and Fe-O-Fe angles. The central hexa-alkoxide coordinated Fe(III) is novel and shows a remarkable resistance towards reduction to Fe(II).  相似文献   

10.
The enantiopure amine macrocycle H(3)L, as well as the parent macrocyclic Schiff base H(3)L1, the 3 + 3 condensation product of (1R,2R)-1,2-diaminocyclohexane and 2,6-diformyl-4-methylphenol, are able to form mononuclear complexes with lanthanide(III) ions. The lanthanide(III) complexes of H(3)L have been studied in solution using NMR spectroscopy and electrospray mass spectrometry. The NMR spectra indicate the presence of complexes of low C(1) and C(2) symmetry. The (1)H and (13)C NMR signals of the Lu(III) complex obtained from H(3)L have been assigned on the basis of COSY, TOCSY, NOESY, ROESY and HMQC spectra. The NMR data reveal unsymmetrical binding of lanthanide(III) ion and the presence of a dynamic process corresponding to rotation of Lu(III) within the macrocycle. The [Ln(H(4)L)(NO(3))(2)](NO(3))(2)(Ln = Sm(III), Eu(III), Dy(III), Yb(III) and Lu(III)) complexes of the cationic ligand H(4)L(+) have been isolated in pure form. The X-ray analysis of the [Eu(H(4)L)(NO(3))(2)](NO(3))(2) complex confirms the coordination mode of the macrocycle determined on the basis of NMR results. In this complex the europium(III) ion is bound to three phenolate oxygen atoms and two amine nitrogen atoms of the monoprotonated macrocycle H(4)L(+), as well as to two axial bidendate nitrate anions. In the presence of a base, mononuclear La(III), Ce(III) and Pr(III) complexes of the deprotonated form of the ligand L(3-) can be obtained. When 2 equivalents of Pr(III) are used in this synthesis Na(3)[Pr(2)L(NO(3))(2)(OH)(2)](2)NO(3).5H(2)O is obtained. The NMR, ES MS and an X-ray crystal model of this complex show coordination of two Pr(III) ions by the macrocycle L. The X-ray crystal structure of the free macrocycle H(3)L1 has also been determined. In contrast to macrocyclic amine H(3)L, the Schiff base H(3)L1 adopts a cone-type conformation resembling calixarenes.  相似文献   

11.
The dinuclear Mn(II) complexes of bis(2-pyridylmethyl)amine (dpa) reacted with H(2)O(2) producing a fluorescent dioxodimanganese(III,IV) intermediate [(dpa)Mn(2)Cl(2)(μ-O(2))(OHdpa)](3+), which was characterized by IR, UV, ESR, ES-MS and fluorescence spectra. ES-MS data show that this intermediate could bind an acetone molecule forming dioxodimanganese(III,IV)-acetone adduct [(dpa)Mn(2)Cl(2)(μ-O)(CH(3)COCH(3))(OHdpa)](3+). The emission of dioxodimanganese(III,IV)-acetone at 378 nm was stronger than that of dioxodimanganese(III,IV) complex. Excess acetone molecules promoted the intramolecular C-H oxidation and the formation of one dimensional chain Mn(II) complex [(2-picolinic-acid)Mn(H(2)O)(2)Cl(O)](n) through possible intramolecular oxygen transfer reaction.  相似文献   

12.
Studies of the reaction of 5-oxaporphyrin iron complexes (verdohemes) with methoxide ion or hydroxide ion have been undertaken to understand the initial step of ring opening of verdohemes. High-spin [ClFe(III)(OEOP)] undergoes a complex series of reactions upon treatment with hydroxide ion in chloroform, and similar species are also detected in dichloromethane, acetonitrile, and dimethyl sulfoxide. Three distinct paramagnetic intermediates have been identified by (1)H NMR spectroscopy. These reactive species are formed by addition of hydroxide to the macrocycle and to the iron as an axial ligand. Treatment of low-spin [(py)(2)Fe(II)(OEOP)]Cl (OEOP is the monoanion of octaethyl-5-oxaporphyrin) with excess methoxide ion in pyridine solution produces [(py)(n)()Fe(II)(OEBOMe)] (n = 1 or 2) ((OEBOMe), dianion of octaethylmethoxybiliverdin), whose (1)H NMR spectrum undergoes marked alteration upon addition of further amounts of methoxide ion. An identical (1)H NMR spectrum, which is characterized by methylene resonances with both upfield and downfield paramagnetic shifts, is formed upon treatment of [Fe(II)(OEBOMe)](2) with methoxide in pyridine solution and results from the formation of [(MeO)Fe(II)(OEBOMe)](-).  相似文献   

13.
[Reaction: see text]. A condensation of 2,4-bis(phenylhydroxymethyl)furan with pyrrole and p-toluylaldehyde in the presence of ethanol formed 5,20-diphenyl-10,15-di(p-tolyl)-2-oxa-3-ethoxy-3-hydro-21-carbaporphyrin [(H,EtO)OCPH]H2. The new carbaporphyrinoid has 1H NMR features of an aromatic molecule, including the upfield shift of the inner H(21) atom (-5.48 ppm). Addition of acid removes the ethoxy substituent and converts [(H,EtO)OCPH]H2 into the dication of "true" O-confused oxaporphyrin {[(H)OCPH]H3}2+ via an exocyclic C(3)-O bond cleavage followed by an elimination of the ethoxy group as determined by 1H NMR. Addition of ethanol, water, or pyrrole converts {[(H)OCPH]H3]2+ into [(H,EtO)OCPH]H2, [(H,OH)OCPH]H2, or pyrrole appended O-confused porphyrin [(H,pyrrole)OCPH]H2, respectively. The reaction of [(H,OEt)OCPH]H2 with silver(I) acetate yields a stable Ag(III) complex [(H,OEt)OCP]AgIII substituted at the C(3) position by the ethoxy group and hydrogen. Coordination through the nitrogen donors is reflected by the presence of 107/109Ag scalar splitting seen for the selected -H pyrrolic signals. Addition of TFA to [(H,OEt)OCP]AgIII produces a weakly aromatic O-confused porphyrin complex {[(H)OCP]AgIII}+. In the course of this reversible process the tetrahedral-trigonal rearrangements originate at the C(3) atom but extend its consequences on the whole structure. Insertion of silver into the hydroxy analogue of [(H,OEt)OCPH]H2, i.e., [(H,OH)OCPH]H2, was accompanied by ligand oxidation, yielding carbaporpholactone which contains the lactone functionality instead of the regular furan moiety embedded in the carbaporphyrin ligand of [(O)OCP]AgIII. The structure was determined by X-ray crystallography. The macrocycle is only slightly distorted from planarity, and silver(III) is located in the NNNC plane.  相似文献   

14.
Two new terpyridine dimanganese oxo complexes [Mn(2)(III,IV)(mu-O)(2)(terpy)(2)(CF(3)CO(2))(2)](+) (3) and [Mn(2)(III,III)(mu-O)(terpy)(2)(CF(3)CO(2))(4)] (4) (terpy = 2,2':6,2' '-terpyridine) have been synthesized and their X-ray structures determined. In contrast to the corresponding mixed-valent aqua complex [Mn(2)(III,IV)(mu-O)(2)(terpy)(2)(H(2)O)(2)](3+) (1), the two Mn atoms in 3 are not crystallographically equivalent. The neutral binuclear monooxo manganese(III,III) complex 4 exhibits two crystallographic forms having cis and trans configurations. In the cis complex, the two CF(3)CO(2)(-) ligands on each manganese adopt a cis geometry to each other; one CF(3)CO(2)(-) is trans to the oxygen of the oxo bridge while the second is cis. In the trans complex, the two coordinated CF(3)CO(2)(-) have a trans geometry to each other and are cis to the oxo bridge. The electrochemical behavior of 3 in organic medium (CH(3)CN) shows that this complex could be oxidized into its corresponding stable manganese(IV,IV) species while its reduced form manganese(III,III) is very unstable and leads by a disproportionation process to Mn(II) and Mn(IV) complexes. Complex 4 is only stable in the solid state, and it disproportionates spontaneously in CH(3)CN solution into the mixed-valent complex 3 and the mononuclear complex [Mn(II)(terpy)(2)](2+) (2), thereby preventing the observation of its electrochemical behavior.  相似文献   

15.
Condensation of 2,4-bis(phenylhydroxymethyl)furan with pyrrole and p-toluylaldehyde formed, instead of the expected 5,20-diphenyl-10,15-di(p-tolyl)-2-oxa-21-carbaporphyrin, a pyrrole addition product [(H,pyr)OCPH]H(2); this product can formally be considered as an effect of hydrogenation of 3-(2'-pyrrolyl)-5,20-diphenyl-10,15-di(p-tolyl)-2-oxa-21-carbaporphyrin ([(pyr)OCPH]H). The new oxacarbaporphyrinoid presents the (1)H NMR spectroscopy features of an aromatic molecule, including the upfield shift of the inner H21 atom. Insertion of NiCl(2) or PdCl(2) into [(H,pyr)OCPH]H(2) gave two structurally related organometallic complexes, [(pyr)OCP]Ni(II)] and [(pyr)OCP]Pd(II)], in which the metal ions are bound by three pyrrolic nitrogens and the trigonally hybridized C21 atom of the inverted furan. The reaction of [(H,pyr)OCPH]H(2) with silver(I) acetate yields a stable Ag(III) complex [(C(2)H(5)O,pyr)OCP]Ag(III)] substituted at the C3 position by the ethoxy and pyrrole moieties. The macrocyclic frame of [(H,pyr)OCPH]H(2) is conserved. Addition of trifluoroacetic acid to [(C(2)H(5)O,pyr)OCP]Ag(III)] yielded a new aromatic complex [(pyr)OCP]Ag(III)](+). The structures of [(pyr)OCP]Ni(II)] and [(C(2)H(5)O,pyr)OCP]Ag(III)] have been determined by X-ray crystallography. In both molecules the macrocycles are only slightly distorted from planarity and the nickel(II) and silver(III) are located in the NNNC plane. The dihedral angle between the macrocyclic and appended-pyrrole planes of [(pyr)OCP]Ni(II)] reflects the biphenyl-like arrangement with the NH group pointing out toward the adjacent phenyl ring on the C5 position. Tetrahedral geometry around the C3 atom was detected for [(C(2)H(5)O,pyr)OCP]Ag(III)]. The Ni[bond]C and Ag[bond]C bond lengths are similar to other nickel(II) or silver(III) carbaporphyrinoids where the trigonal carbon atom coordinates the metal ion. The trend detected in the (13)C chemical shifts for the appended-pyrrole resonances has been rationalized by the extent of effective conjugation between the macrocycle and the appended pyrrole moiety controlled by the hybridization of the C3 atom and the metal ion oxidation state. The dianionic or trianionic macrocyclic core of the pyrrole-appended derivatives is favored to match the oxidation state of nickel(II), palladium(II), or silver(III), respectively.  相似文献   

16.
The encapsulation of cisplatin by cucurbit[7]uril (Q[7]) and multinuclear platinum complexes linked via a 4,4'-dipyrazolylmethane (dpzm) ligand by Q[7] and cucurbit[8]uril (Q[8]) has been studied by NMR spectroscopy and molecular modelling. The NMR studies suggest that some cisplatin binds in the cucurbituril cavity, while cis-[PtCl(NH3)2(H2O)]+ only binds at the portals. Alternatively, the dpzm-linked multinuclear platinum complexes are quantitatively encapsulated within the cavities of both Q[7] and Q[8]. Upon encapsulation, the non-exchangeable proton resonances of the multinuclear platinum complexes show significant upfield shifts in 1H NMR spectra. The H3/H3* resonances shift upfield by 0.08 to 0.55 ppm, the H5/H5* shift by 0.9 to 1.6 ppm, while the methylene resonances shift by 0.74 to 0.88 ppm. The size of the resonance shift is dependent on the cavity size of the encapsulating cucurbituril, with Q[7] encapsulation producing larger shifts than Q[8]. The upfield shifts of the dpzm resonances observed upon cucurbituril encapsulation indicate that the Q[7] or Q[8] is positioned directly over the dpzm linking ligand. The terminal platinum groups of trans-[{PtCl(NH3)2}2 mu-dpzm]2+ (di-Pt) and trans-[trans-{PtCl(NH3)2}2-trans-{Pt(dpzm)2(NH3)2}]4+ (tri-Pt) provide a barrier to the on and off movement of cucurbituril, resulting in binding kinetics that are slow on the NMR timescale for the metal complex. Although the dpzm ligand has relatively few rotamers, encapsulation by the larger Q[8] resulted in a more compact di-Pt conformation with each platinum centre retracted further into each Q[8] portal. Encapsulation of the hydrolysed forms of di-Pt and tri-Pt is considerably slower than for the corresponding Cl forms, presumably due to the high-energy cost of passing the +2 platinum centres through the cucurbituril portals. The results of this study suggest that cucurbiturils could be suitable hosts for the pharmacological delivery of multinuclear platinum complexes.  相似文献   

17.
Amination of [ClP(micro-NtBu)](2) (1) using NH(3) in THF gives the cyclophospha(III)zane dimer [H(2)NP(micro-NtBu)](2) (2), in good yield. (31)P NMR spectroscopic studies of the reaction of 1 with 2 in THF/Et(3)N show that almost quantitative formation of the cyclic tetramer [[P(micro-NtBu)](2)(micro-NH)](4) (3) occurs. The remarkable selectivity of this reaction can (in part) be attributed to pre-organisation of 1 and 2, which prefer cis arrangements in the solid state and solution. The macrocycle 3 can be isolated in yields of 58-67 % using various reaction scales. The isolation of the major by-product of the reaction (ca. 0.5-1 % of samples of 3), the pentameric, host-guest complex [[P(micro-NtBu)(2)](2)(micro-NH)](5)(HCl).2 THF] (4.2 THF), gives a strong indication of the mechanism involved. In situ (31)P NMR spectroscopic studies support a stepwise condensation mechanism in which Cl(-) ions play an important role in templating and selection of 3 and 4. Amplification of the pentameric arrangement occurs in the presence of excess LiX (X=Cl, Br, I). In addition, the cyclisation reaction is solvent- and anion-dependent. The X-ray structures of 2 and 4.2 THF are reported.  相似文献   

18.
The exploration in two hydro(solvo)thermal reaction systems As/S/Mn(2+)/phen/methylamine aqueous solution and As/S/Mn(2+)/2,2'-bipy/H(2)O affords five new manganese thioarsenates with diverse structures, namely, (CH(3)NH(3)){[Mn(phen)(2)](As(V)S(4))}·phen (1 and 1'), (CH(3)NH(3))(2){[Mn(phen)](2)(As(V)S(4))(2)} (2), {[Mn(phen)(2)](As(III)(2)S(4))}(n) (3), {[Mn(phen)](3)(As(III)S(3))(2)}·H(2)O (4), and {[Mn(2,2'-bipy)(2)](2)(As(V)S(4))}[As(III)S(S(5))] (5). Compound 1 comprises a {[Mn(phen)(2)](As(V)S(4))}(-) complex anion, a monoprotonated methylamine cation and a phen molecule. Compound 2 contains a butterfly like {[Mn(phen)](2)(As(V)S(4))(2)}(2-) anion charge compensated by two monoprotonated methylamine cations. Compound 3 is a neutral chain formed by a helical (1)(∞)(As(III)S(2)(-)) vierer chain covalently bonds to [Mn(II)(phen)](2+) complexes via all its terminal S atoms. Compound 4 features a neutral chain showing the stabilization of noncondensed (As(III)S(3))(3-) anions in the coordination of [Mn(II)(phen)](2+) complex cations. Compound 5 features a mixed-valent As(III)/As(V) character and an interesting chalcogenidometalates structure, where a polycation formed by the connection of two [Mn(2,2'-bipy)(2)](2+) complex cation and a (As(V)S(4))(3-) anion acts as a countercation for a polythioarsenate anion, [As(III)S(S(5))](-). The title compounds exhibit optical gaps in the range 1.58-2.48 eV and blue photoluminescence. Interestingly, compound 1 displays a weak second harmonic generation (SHG) response being about 1/21 times of KTP (KTiOPO(4)). Magnetic measurements show paramagnetic behavior for 1 and dominant antiferromagnetic behavior for 2-5. Of particular interest is 4, which is the first manganese chalcogenide showing spin-canting characteristic.  相似文献   

19.
Solutions of the complexes of hypervalent manganese, [Mn(III)(C(2)O(4))(3)](3)(-) (in oxalate buffers), [Mn(IV)(bigH)(3)](4+) (in biguanide buffers), and [(bipy)(2)Mn(III)(O)(2)Mn(IV)(bipy)(2)](3+) (in bipyridyl buffers) may be reduced by s(2) center reductants In(I), Sn(II), and Ge(II), yielding Mn(II) quantitatively. In all cases, rates are determined by the initial act of electron transfer, giving an s(1) transient (In(II), Sn(III), or Ge(III)); subsequent steps are rapid and kinetically silent. The In(I)-Mn(III) and Ge(II)-Mn(III) reactions are inhibited by added oxalate, whereas the Sn(II)-(Mn(III)Mn(IV)) reaction is strongly accelerated by Cl(-). The In(I)-Mn(IV) reaction is complicated by formation of a 1:1 addition compound In(I).Mn(IV). We find no evidence for two-unit steps in any of these systems.  相似文献   

20.
Lipoxygenases are mononuclear non-heme metalloenzymes that regio- and stereospecifically convert 1,4-pentadiene subunit-containing fatty acids into alkyl peroxides. The rate-determining step is generally accepted to be hydrogen atom abstraction from the pentadiene subunit of the substrate by an active metal(III)-hydroxide species to give a metal(II)-water species and an organic radical. All known plant and animal lipoxygenases contain iron as the active metal; recently, however, manganese was found to be the active metal in a fungal lipoxygenase. Reported here are the synthesis and characterization of a mononuclear Mn(III) complex, [Mn(III)(PY5)(OH)](CF(3)SO(3))(2) (PY5 = 2,6-bis(bis(2-pyridyl)methoxymethane)pyridine), that reacts with hydrocarbon substrates in a manner most consistent with hydrogen atom abstraction and provides chemical precedence for the proposed reaction mechanism. The neutral penta-pyridyl ligation of PY5 endows a strong Lewis acidic character to the metal center allowing the Mn(III) compound to perform this oxidation chemistry. Thermodynamic analysis of [Mn(III)(PY5)(OH)](2+) and the reduced product, [Mn(II)(PY5)(H(2)O)](2+), estimates the strength of the O-H bond in the metal-bound water in the Mn(II) complex to be 82 (+/-2) kcal mol(-)(1), slightly less than that of the O-H bond in the related reduced iron complex, [Fe(II)(PY5)(MeOH)](2+). [Mn(III)(PY5)(OH)](2+) reacts with hydrocarbon substrates at rates comparable to those of the analogous [Fe(III)(PY5)(OMe)](2+) at 323 K. The crystal structure of [Mn(III)(PY5)(OH)](2+) displays Jahn-Teller distortions that are absent in [Mn(II)(PY5)(H(2)O)](2+), notably a compression along the Mn(III)-OH axis. Consequently, a large internal structural reorganization is anticipated for hydrogen atom transfer, which may be correlated to the lessened dependence of the rate of substrate oxidation on the substrate bond dissociation energy as compared to other metal complexes. The results presented here suggest that manganese is a viable metal for lipoxygenase activity and that, with similar coordination spheres, iron and manganese can oxidize substrates through a similar mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号