首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In aqueous solutions under mild conditions, [Ru(H(2)O)(6)](2+) was reacted with various water-soluble tertiary phosphines. As determined by multinuclear NMR spectroscopy, reactions with the sulfonated arylphosphines L =mtppms, ptppms and mtppts yielded only the mono- and bisphosphine complexes, [Ru(H(2)O)(5)L](2+), cis-[Ru(H(2)O)(4)L(2)](2+), and trans-[Ru(H(2)O)(4)L(2)](2+) even in a high ligand excess. With the small aliphatic phosphine L = 1,3,5-triaza-7-phosphatricyclo-[3.3.1.1(3,7)]decane (pta) at [L]:[Ru]= 12:1, the tris- and tetrakisphosphino species, [Ru(H(2)O)(3)(pta)(3)](2+), [Ru(H(2)O)(2)(pta)(4)](2+), [Ru(H(2)O)(OH)(pta)(4)](+), and [Ru(OH)(2)(pta)(4)] were also detected, albeit in minor quantities. These results have significance for the in situ preparation of Ru(II)-tertiary phosphine catalysts. The structures of the complexes trans-[Ru(H(2)O)(4)(ptaMe)(2)](tos)(4)x2H(2)O, trans-[Ru(H(2)O)(4)(ptaH)(2)](tos)(4)[middle dot]2H(2)O, and trans-mer-[RuI(2)(H(2)O)(ptaMe)(3)]I(3)x2H(2)O, containing protonated or methylated pta ligands (ptaH and ptaMe, respectively) were determined by single crystal X-ray diffraction.  相似文献   

2.
The mechanisms for the exchange of water between [UO(2)(H(2)O)(5)](2+), [UO(2)(oxalate)(2)(H(2)O)](2)(-)(,) and water solvent along dissociative (D), associative (A) and interchange (I) pathways have been investigated with quantum chemical methods. The choice of exchange mechanism is based on the computed activation energy and the geometry of the identified transition states and intermediates. These quantities were calculated both in the gas phase and with a polarizable continuum model for the solvent. There is a significant and predictable difference between the activation energy of the gas phase and solvent models: the energy barrier for the D-mechanism increases in the solvent as compared to the gas phase, while it decreases for the A- and I-mechanisms. The calculated activation energy, Delta U(++), for the water exchange in [UO(2)(H(2)O)(5)](2+) is 74, 19, and 21 kJ/mol, respectively, for the D-, A-, and I-mechanisms in the solvent, as compared to the experimental value Delta H(++) = 26 +/- 1 kJ/mol. This indicates that the D-mechanism for this system can be ruled out. The energy barrier between the intermediates and the transition states is small, indicating a lifetime for the intermediate approximately 10(-10) s, making it very difficult to distinguish between the A- and I-mechanisms experimentally. There is no direct experimental information on the rate and mechanism of water exchange in [UO(2)(oxalate)(2)(H(2)O)](2-) containing two bidentate oxalate ions. The activation energy and the geometry of transition states and intermediates along the D-, A-, and I-pathways were calculated both in the gas phase and in a water solvent model, using a single-point MP2 calculation with the gas phase geometry. The activation energy, Delta U(++), in the solvent for the D-, A-, and I-mechanisms is 56, 12, and 53 kJ/mol, respectively. This indicates that the water exchange follows an associative reaction mechanism. The geometry of the A- and I-transition states for both [UO(2)(H(2)O)(5)](2+) and [UO(2)(oxalate)(2)(H(2)O)](2-) indicates that the entering/leaving water molecules are located outside the plane formed by the spectator ligands.  相似文献   

3.
Substitution reactions of the complexes [Pt(terpy)(H(2)O)](2+), [Pt(terpy)(cyst-S)](2+) and [Pt(terpy)(guo-N(7))](2+), where terpy = 2,2':6',2"-terpyridine, cyst = L-cysteine and guo = guanosine, with some biologically relevant ligands such as inosine (INO), inosine-5'-monophosphate (5'-IMP), guanosine-5'-monophosphate (5'-GMP), l-cysteine, glutathione, thiourea, thiosulfate and diethyldithiocarbamate (DEDTC), were studied in aqueous 0.10 M NaClO(4) at pH 2.5 and 6.0 using variable-temperature and -pressure stopped-flow spectrophotometry. The reactions of [Pt(terpy)(H(2)O)](2+) with INO, 5'-IMP and 5'-GMP showed that these ligands are very good nucleophiles. The second order rate constants varied between 4 x 10(2) and 6 x 10(2) M(-1) s(-1) at 25 degree C. The [Pt(terpy)(cyst-S)](2+) complex is unreactive towards nitrogen donor nucleophiles, and cysteine cannot be replaced by N(7) from INO, 5'-IMP and 5'-GMP. However, sulfur donor nucleophiles such as thiourea, thiosulfate and diethyldithiocarbamate could displace the Pt-cysteine bond. Diethyldithiocarbamate is the best nucleophile and the order of reactivity is: thiourea < thiosulfate < DEDTC with rate constants of 0.936 +/- 0.002, 5.99 +/- 0.02 and 8.88 +/- 0.07 M(-1) s(-1) at 25 degree C, respectively. The reactions of [Pt(terpy)(guo-N(7))](2+) with sulfur donor ligands showed that these nucleophiles could substitute guanosine from the Pt(ii) complex, of which diethyldithiocarbamate and thiosulfate are the strongest nucleophiles. The tripeptide glutathione is also a very efficient nucleophile. Activation parameters (Delta H(++), Delta S(++) and Delta V(++)) were determined for all reactions. The crystal structures of [Pt(terpy)(cyst-S)](ClO(4))(2).0.5H(2)O and [Pt(terpy)(guo-N(7))](ClO(4))(2).0.5guo.1.5H(2)O were determined by X-ray diffraction. Crystals of [Pt(terpy)(cyst-S)](ClO(4))(2).0.5H(2)O are orthorhombic with the space group P2(1)2(1)2(1), whereas [Pt(terpy)(guo-N(7))](ClO(4))(2).0.5guo.1.5H(2)O crystallizes in the orthorhombic space group P2(1)2(1)2. A typical feature of terpyridine complexes can be found in both molecular structures: the Pt-N (central) bond distance, 1.982(7) and 1.92(2) A, respectively, is shorter than the other two Pt-N distances, being 2.043(7) and 2.034(7) A in [Pt(terpy)(cyst-S)](ClO(4))(2).0.5H(2)O and 2.03(2) and 2.04(2) A in [Pt(terpy)(guo-N(7))](ClO(4))(2).0.5guo.1.5H(2)O, respectively. In both crystal structures two symmetrically independent cations representing different conformers are present in the asymmetric unit. The results are analysed in reference to the antitumour activity of Pt(II) complexes, and the importance of the rescue agents are discussed.  相似文献   

4.
An experimental gas-phase study of the intensities and fragmentation patterns of [Mn.(H(2)O)(n)](2+) and [Mn.(ROH)(n)](2+) complexes shows the combinations [Mn.(H(2)O)(4)](2+) and [Mn.(ROH)(4)](2+) to be stable. Evidence in complexes involving the alcohols methanol, ethanol, 1-propanol, and 2-propanol favors preferential fragmentation to [Mn.(ROH)(4)](2+), whereas the fragmentation data for water is less clear. Supporting density functional calculations show that both [Mn.(H(2)O)(4)](2+) and [Mn.(MeOH)(4)](2+) adopt stable tetrahedral configurations, similar to those proposed for biochemical systems where solvent availability and coordination is restricted. Calculated incremental binding energies show a gradual decline on going from one to six solvent molecules, with a step occurring between four and five molecules. The addition of further solvent molecules to the stable [Mn.(MeOH)(4)](2+) unit shows a preference for [Mn.(MeOH)(4)(MeOH)(1,2)](2+) structures, where the extra molecules occupy hydrogen-bonded sites in the form of a secondary solvation shell. Very similar behavior is seen on the part of water. As part of an analysis of the experimental data, the calculations have explored the influence different spins states of Mn(2+) have on solvent geometry. It is concluded that the experimental observations are best reproduced when the central Mn(2+) ion is in the high-spin (6)S ground state. The results are also considered in terms of the biochemical activity of Mn(2+) where the ion is capable of isomorphous substitution with Zn(2+), which itself exhibits a preference for tetrahedral coordination.  相似文献   

5.
A detailed analysis of the (35)Cl/(37)Cl isotope shifts induced in the 128.8 MHz (195)Pt NMR resonances of [PtCl(n)(H(2)O)(6 - n)](4 - n) complexes (n = 6,5,4) in acidic solution at 293 K, shows that the unique isotopologue and isotopomer distribution displayed by the resolved (195)Pt resonances, serve as a fingerprint for the unambiguous identification and assignment of the isotopic stereoisomers of [PtCl(5)(H(2)O)](-) and cis/trans-[PtCl(4)(H(2)O)(2)].  相似文献   

6.
The new, monometal substituted silicotungstates [Mn(H(2)O)(2)(gamma-SiW(10)O(35))(2)](10-) (1), [Co(H(2)O)(2)(gamma-SiW(10)O(35))(2)](10-) (2) and [Ni(H(2)O)(2)(gamma-SiW(10)O(35))(2)](10-) (3) have been synthesized and isolated as the potassium salts K(10)[Mn(H(2)O)(2)(gamma-SiW(10)O(35))(2)] x 8.25 H(2)O (K-1), K(10)[Co(H(2)O0(2)(gamma-SiW(10)O(35))(2)] x 8.25 H(2)O (K-2) and K(10)[Ni(H(2)O)(2)(gamma-SiW(10)O(35))(2)] x 13.5 H(2)O (K-3), which have been characterized by IR spectroscopy, single crystal X-ray diffraction, elemental analysis and cyclic voltammetry. Polyanions 1-3 are composed of two (gamma-SiW(10)O(36)) units fused on one side via two W-O-W' bridges and on the other side by an octahedrally coordinated trans-MO(4)(OH(2))(2) transition metal fragment, resulting in a structure with C(2v) point group symmetry. Anions 1-3 were synthesized by reaction of the dilacunary precursor [gamma-SiW(10)O(36)](8-) with Mn(2+), Co(2+) and Ni(2+) ions, respectively, in 1 M KCl solution at pH 4.5. The electrochemical properties of 1-3 were studied by cyclic voltammetry and controlled potential coulometry in a pH 5 buffer medium. The waves associated with the W-centers are compared with each other and with those of the parent lacunary precursor [gamma-SiW(10)O(36)](8-) in the same medium. They appear to be dominated by the acid-base properties of the intermediate reduced species. A facile merging of the waves for 3 is observed while those for 1 and 2 remain split. Controlled potential coulometry of the single wave of 3 or the combined waves of 1 and 2 is accompanied by catalysis of the hydrogen evolution reaction. No redox activity was detected for the Ni(2+) center in 3, whereas the Co(2+) center in 2 shows a one-electron redox process. The two-electron, chemically reversible process of the Mn(2+) center in 1 is accompanied by a film deposition on the electrode surface.  相似文献   

7.
Comparisons (25 degrees C) are made of substitution reactions, X replacing H(2)O, at the tetrahedral Ni of the heterometallic sulfido cuboidal cluster [Mo(3)NiS(4)(H(2)O)(10)](4+), I = 2.00 M (LiClO(4)). Stopped-flow formation rate constants (k(f)/M(-)(1) s(-)(1)) for six X reagents, including two water soluble air-stable phosphines, 1,3,5-triaza-7-phosphaadamantane PTA (119) and tris(3-sulfonatophenyl)phosphine TPPTS(3)(-) (58), and CO (0.66), Br(-) (14.6), I(-) (32.3), and NCS(-) (44) are reported alongside the previous value for Cl(-) (9.4). A dependence on [H(+)] is observed with PTA, which gives an unreactive form confirmed by NMR as N-protonated PTA (acid dissociation constant K(a) = 0.61 M), but in no other cases with [H(+)] in the range 0.30-2.00 M. The narrow spread of rate constants for all but the CO reaction is consistent with an I(d) dissociative interchange mechanism. In addition NMR studies with H(2)(17)O enriched solvent are too slow for direct determination of the water-exchange rate constant indicating a value <10(3) s(-)(1). Equilibrium constants/M(-)(1) for 1:1 complexing with the different X groups at the Ni are obtained for PTA (2040) and TPPTS(3)(-) (8900) by direct spectrophotometry and from kinetic studies (k(f)/k(b)) for Cl(-) (97), Br(-) (150), NCS(-) (690), and CO (5150). No NCS(-) substitution at the Ni is observed in the case of the heterometallic cube [Mo(3)Ni(L)S(4)(H(2)O)(9)](4+), with tridentate 1,4,7-triazacyclononane(L) coordinated to the Ni. Substitution of NCS(-) for H(2)O, at the Mo's of [Mo(3)NiS(4)(H(2)O)(10)](4+) and [Mo(3)(NiL)S(4)(H(2)O)(9)](4+) are much slower secondary processes, with k(f) = 2.7 x 10(-)(4) M(-)(1) s(-)(1) and 0.94 x 10(-)(4) M(-)(1) s(-)(1) respectively. No substitution of H(2)O by TPPTS(3)(-) or CO is observed over approximately 1h at either metal on [Mo(3)FeS(4)(H(2)O)(10)](4+), on [Mo(4)S(4)(H(2)O)(12)](5+) or [Mo(3)S(4)(H(2)O)(9)](4+).  相似文献   

8.
Interaction of the lacunary [alpha-XW(9)O(33)](9-) (X = As(III), Sb(III)) with Fe(3+) ions in acidic, aqueous medium leads to the formation of dimeric polyoxoanions, [Fe(4)(H(2)O)(10)(beta-XW(9)O(33))(2)](6-) (X = As(III), Sb(III)) in high yield. X-ray single-crystal analyses were carried out on Na(6)[Fe(4)(H(2)O)(10)(beta-AsW(9)O(33))(2)] x 32H(2)O, which crystallizes in the monoclinic system, space group C2/m, with a = 20.2493(18) A, b = 15.2678(13) A, c = 16.0689(14) A, beta = 95.766(2) degrees, and Z = 2; Na(6)[Fe(4)(H(2)O)(10)(beta-SbW(9)O(33))(2)] x 32H(2)O is isomorphous with a = 20.1542(18) A, b = 15.2204(13) A, c = 16.1469(14) A, and beta = 95.795(2) degrees. The selenium and tellurium analogues are also reported, [Fe(4)(H(2)O)(10)(beta-XW(9)O(33))(2)](4-) (X = Se(IV), Te(IV)). They are synthesized from sodium tungstate and a source of the heteroatom as precursors. X-ray single-crystal analysis was carried out on Cs(4)[Fe(4)(H(2)O)(10)(beta-SeW(9)O(33))(2)] x 21H(2)O, which crystallizes in the triclinic system, space group P macro 1, with a = 12.6648(10) A, b = 12.8247(10) A, c = 16.1588(13) A, alpha = 75.6540(10) degrees, beta = 87.9550(10) degrees, gamma = 64.3610(10) gamma, and Z = 1. All title polyanions consist of two (beta-XW(9)O(33)) units joined by a central pair and a peripheral pair of Fe(3+) ions leading to a structure with idealized C(2h) symmetry. It was also possible to synthesize the Cr(III) derivatives [Cr(4)(H(2)O)(10)(beta-XW(9)O(33))(2)](6-) (X = As(III), Sb(III)), the tungstoselenates(IV) [M(4)(H(2)O)(10)(beta-SeW(9)O(33))(2)]((16)(-)(4n)-) (M(n+) = Cr(3+), Mn(2+), Co(2+), Ni(2+), Zn(2+), Cd(2+), and Hg(2+)), and the tungstotellurates(IV) [M(4)(H(2)O)(10)(beta-TeW(9)O(33))(2)]((16-4n)-) (M(n+) = Cr(3+), Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), and Hg(2+)), as determined by FTIR. The electrochemical properties of the iron-containing species were also studied. Cyclic voltammetry and controlled potential coulometry aided in distinguishing between Fe(3+) and W(6+) waves. By variation of pH and scan rate, it was possible to observe the stepwise reduction of the Fe(3+) centers.  相似文献   

9.
The reaction of [Mo(3)S(4)(H(2)O)(9)](4+) with Bi(III) in the presence of BH(4)(-) (rapid), or with Bi metal shot (3-4 days), gives a heterometallic cluster product. The latter has been characterized as the corner-shared double cube [Mo(6)BiS(8)(H(2)O)(18)](8+) by the following procedures. Analyses by ICP-AES confirm the Mo:Bi:S ratio as 6:1:8. Elution from a cation-exchange column by 4 M Hpts (Hpts = p-toluenesulfonic acid), but not 2 M Hpts (or 4 M HClO(4)), is consistent with a high charge. The latter is confirmed as 8+ from the 3:1 stoichiometries observed for the oxidations with [Co(dipic)(2)](-) or [Fe(H(2)O)(6)](3+) yielding [Mo(3)S(4)(H(2)O)(9)](4+) and Bi(III) as products. Heterometallic clusters [Mo(6)MS(8)(H(2)O)(18)](8+) are now known for M = Hg, In, Tl, Sn, Pb, Sb, and Bi and are a feature of the P-block main group metals. The color of [Mo(6)BiS(8)(H(2)O)(18)](8+) in 2.0 M Hpts (turquoise) is different from that in 2.0 M HCl (green-blue). Kinetic studies (25 degrees C) for uptake of a single chloride k(f) = 0.80 M(-)(1) s(-)(1), I = 2.0 M (Hpts), and the high affinity for Cl(-) (K > 40 M(-)(1)) exceeds that observed for complexing at Mo. A specific heterometal interaction of the Cl(-) not observed in the case of other double cubes is indicated. The Cl(-) can be removed by cation-exchange chromatography with retention of the double-cube structure. Kinetic studies with [Co(dipic)(2)](-) and hexaaqua-Fe(III) as oxidants form part of a survey of redox properties of this and other clusters. The Cl(-) adduct is more readily oxidized by [Co(dipic)(2)](-) (factor of approximately 10) and is also more air sensitive.  相似文献   

10.
Kinetic studies of cyanide exchange on [M(CN)(4)](2-) square-planar complexes (M = Pt, Pd, and Ni) were performed as a function of pH by (13)C NMR. The [Pt(CN)(4)](2-) complex has a purely second-order rate law, with CN(-) as acting as the nucleophile, with the following kinetic parameters: (k(2)(Pt,CN))(298) = 11 +/- 1 s(-1) mol(-1) kg, DeltaH(2) (Pt,CN) = 25.1 +/- 1 kJ mol(-1), DeltaS(2) (Pt,CN) = -142 +/- 4 J mol(-1) K(-1), and DeltaV(2) (Pt,CN) = -27 +/- 2 cm(3) mol(-1). The Pd(II) metal center has the same behavior down to pH 6. The kinetic parameters are as follows: (k(2)(Pd,CN))(298) = 82 +/- 2 s(-1) mol(-1) kg, DeltaH(2) (Pd,CN) = 23.5 +/- 1 kJ mol(-1), DeltaS(2) (Pd,CN) = -129 +/- 5 J mol(-1) K(-1), and DeltaV(2) (Pd,CN) = -22 +/- 2 cm(3) mol(-1). At low pH, the tetracyanopalladate is protonated (pK(a)(Pd(4,H)) = 3.0 +/- 0.3) to form [Pd(CN)(3)HCN](-). The rate law of the cyanide exchange on the protonated complex is also purely second order, with (k(2)(PdH,CN))(298) = (4.5 +/- 1.3) x 10(3) s(-1) mol(-1) kg. [Ni(CN)(4)](2-) is involved in various equilibrium reactions, such as the formation of [Ni(CN)(5)](3-), [Ni(CN)(3)HCN](-), and [Ni(CN)(2)(HCN)(2)] complexes. Our (13)C NMR measurements have allowed us to determine that the rate constant leading to the formation of [Ni(CN)(5)](3-) is k(2)(Ni(4),CN) = (2.3 +/- 0.1) x 10(6) s(-1) mol(-1) kg when the following activation parameters are used: DeltaH(2)() (Ni,CN) = 21.6 +/- 1 kJ mol(-1), DeltaS(2) (Ni,CN) = -51 +/- 7 J mol(-1) K(-1), and DeltaV(2) (Ni,CN) = -19 +/- 2 cm(3) mol(-1). The rate constant of the back reaction is k(-2)(Ni(4),CN) = 14 x 10(6) s(-1). The rate law pertaining to [Ni(CN)(2)(HCN)(2)] was found to be second order at pH 3.8, and the value of the rate constant is (k(2)(Ni(4,2H),CN))(298) = (63 +/- 15) x10(6) s(-1) mol(-1) kg when DeltaH(2) (Ni(4,2H),CN) = 47.3 +/- 1 kJ mol(-1), DeltaS(2) (Ni(4,2H),CN) = 63 +/- 3 J mol(-1) K(-1), and DeltaV(2) (Ni(4,2H),CN) = - 6 +/- 1 cm(3) mol(-1). The cyanide-exchange rate constant on [M(CN)(4)](2-) for Pt, Pd, and Ni increases in a 1:7:200 000 ratio. This trend is modified at low pH, and the palladium becomes 400 times more reactive than the platinum because of the formation of [Pd(CN)(3)HCN](-). For all cyanide exchanges on tetracyano complexes (A mechanism) and on their protonated forms (I/I(a) mechanisms), we have always observed a pure second-order rate law: first order for the complex and first order for CN(-). The nucleophilic attack by HCN or solvation by H(2)O is at least nine or six orders of magnitude slower, respectively than is nucleophilic attack by CN(-) for Pt(II), Pd(II), and Ni(II), respectively.  相似文献   

11.
The Mo(3)SnS(4)(6+) single cube is obtained by direct addition of Sn(2+) to [Mo(3)S(4)(H(2)O)(9)](4+). UV-vis spectra of the product (0.13 mM) in 2.00 M HClO(4), Hpts, and HCl indicate a marked affinity of the Sn for Cl(-), with formation of the more strongly yellow [Mo(3)(SnCl(3))S(4)(H(2)O)(9)](3+) complex complete in as little as 0.050 M Cl(-). The X-ray crystal structure of (Me(2)NH(2))(6)[Mo(3)(SnCl(3))S(4)(NCS)(9)].0.5H(2)O has been determined and gives Mo-Mo (mean 2.730 ?) and Mo-Sn (mean 3.732 ?) distances, with a difference close to 1 ?. The red-purple double cube cation [Mo(6)SnS(8)(H(2)O)(18)](8+) is obtained by reacting Sn metal with [Mo(3)S(4)(H(2)O)(9)](4+). The double cube is also obtained in approximately 50% yield by BH(4)(-) reduction of a 1:1 mixture of [Mo(3)SnS(4)(H(2)O)(10)](6+) and [Mo(3)S(4)(H(2)O)(9)](4+). Conversely two-electron oxidation of [Mo(6)SnS(8)(H(2)O)(18)](8+) with [Co(dipic)(2)](-) or [Fe(H(2)O(6)](3+) gives the single cube [Mo(3)SnS(4)(H(2)O)(12)](6+) and [Mo(3)S(4)(H(2)O)(9)](4+) (up to 70% yield), followed by further two-electron oxidation to [Mo(3)S(4)(H(2)O)(9)](4+) and Sn(IV). The kinetics of the first stages have been studied using the stopped-flow method and give rate laws first order in [Mo(6)SnS(8)(H(2)O)(18)](8+) and the Co(III) or Fe(III) oxidant. The oxidation with [Co(dipic)(2)](-) has no [H(+)] dependence, [H(+)] = 0.50-2.00 M. With Fe(III) as oxidant, reaction steps involving [Fe(H(2)O)(6)](3+) and [Fe(H(2)O)(5)OH](2+) are implicated. At 25 degrees C and I = 2.00 M (Li(pts)) k(Co) is 14.9 M(-)(1) s(-)(1) and k(a) for the reaction of [Fe(H(2)O)(6)](3+) is 0.68 M(-)(1) s(-)(1) (both outer-sphere reactions). Reaction of Cu(2+) with the double but not the single cube is observed, yielding [Mo(3)CuS(4)(H(2)O)(10)](5+). A redox-controlled mechanism involving intermediate formation of Cu(+) and [Mo(3)S(4)(H(2)O)(9)](4+) accounts for the changes observed.  相似文献   

12.
Complex cis-[Pt(en)(H(2)O)(2)](2+) promotes selective hydrolytic cleavage of two proteins, horse cytochrome c and bovine beta-casein. The cleavage is completed in 24 h under relatively mild conditions, at about pH 2.5, and a temperature as low as 40 degrees C. The results of HPLC and TSDS PAGE separations, MALDI mass spectrometry, and Edman sequencing showed that cleavage occurred exclusively at the peptide bond involving the C-terminus of each methionine residue, both such residues in cytochrome c and all six such residues in beta-casein. While having the same selectivity as cyanogen bromide (CNBr), the most common chemical protease, cis-[Pt(en)(H(2)O)(2)](2+) has several advantages. It is nonvolatile, easy to handle, and recyclable. Its cleavage is residue-selective, the rest of the polypeptide backbone remains intact, and the other side chains remain unmodified. It is applied in approximately equimolar amounts with respect to methionine residues, creates free amino and carboxylic groups, and cleaves even the Met-Pro bond, which is resistant to CNBr and most proteolytic enzymes. Finally the complex also works in the presence of the denaturing reagent sodium dodecyl sulfate. Experiments with the synthetic peptides, AcAla-Lys-Tyr-Gly-Gly-Met-Ala-Ala-Arg-Ala (termed Met-peptide) and AcVal-Lys-Gly-Gly-His-Ala-Lys-Tyr-Gly-Gly-Met-Ala-Ala-Arg-Ala (termed HisMet-peptide) as substrates, revealed structural and mechanistic features of the proteolytic reactions. We explain why two similar complexes with similar metal ions, cis-[Pt(en)(H(2)O)(2)](2+) and cis-[Pd(en)(H(2)O)(2)](2+), differ in selectivity as proteolytic reagents. The selectivity of cleavage is governed by the selectivity of the cis-[Pt(en)(H(2)O)(2)](2+) binding to the methionine side chain. The proteolytic activity is governed by the modes of coordination, which control the approach of the anchored Pt(II) ion to the scissile peptide bond. The cleavage occurs with a small, but significant, catalytic turnover of more than 18 after 7 days. The ability of cis-[Pt(en)(H(2)O)(2)](2+) to cleave proteins at relatively few sites, with explicable selectivity and catalytic turnover, bodes well for its use in biochemical practice.  相似文献   

13.
A series of linear-type Co(III)Pt(II)Co(III) trinuclear complexes composed of C(2)-cis(S)-[Co(aet)(2)(en)](+) (aet = 2-aminoethanethiolate) and/or Lambda(D)-trans(N)-[Co(D-pen-N,O,S)(2)](-) (D-pen = D-penicillaminate) were newly prepared, and their chiral behavior, which is markedly different from that of the corresponding Co(III)Pd(II)Co(III) complexes, is reported. The 1:1 reaction of an S-bridged Co(III)Ni(II)Co(III) trinuclear complex, [Ni[Co(aet)(2)(en)](2)]Cl(4), with K(2)[PtCl(4)] in water gave an S-bridged Co(III)Pt(II)Co(III) trinuclear complex, [Pt[Co(aet)(2)(en)](2)]Cl(4) ([1]Cl(4)), while the corresponding 1:2 reaction produced an S-bridged Co(III)Pt(II) dinuclear complex, [PtCl(2)[Co(aet)(2)(en)]]Cl ([2]Cl). Complex [1](4+) formed both racemic (DeltaDelta/LambdaLambda) and meso (DeltaLambda) forms, which were separated and optically resolved by cation-exchange column chromatography. An optically active S-bridged Co(III)Pt(II)Co(III) trinuclear complex having the pseudo LambdaLambda configuration, Lambda(D)Lambda(D)-[Pt[Co(D-pen-N,O,S)(2)](2)](0) (Lambda(D)Lambda(D)-[3]), was also prepared by reacting Lambda(D)-trans(N)-K[Co(D-pen-N,O,S)(2)] with K(2)[PtCl(4)] in a ratio of 2:1 in water. Treatment of the racemic Delta/Lambda-[2]Cl with Lambda(D)-trans(N)-K[Co(D-pen-N,O,S)(2)] in a ratio of 1:1 in water led to the formation of LambdaLambda(D)- and DeltaLambda(D)-[Pt[Co(aet)(2)(en)][Co(D-pen-N,O,S)(2)]](2+) (LambdaLambda(D)- and DeltaLambda(D)-[4](2+)) and DeltaDelta(D)-[Pt[Co(aet)(2)(en)][Co(D-pen-N,S)(2)(H(2)O)(2)]](2+) (DeltaDelta(D)-[4'](2+)), besides trace amounts of Lambda(D)Lambda(D)-[3] and DeltaDelta- and DeltaLambda-[1](4+). These Co(III)Pt(II)Co(III) complexes were characterized on the basis of electronic absorption, CD, and NMR spectra, along with single-crystal X-ray analyses for DeltaDelta/LambdaLambda-[1]Cl(4), DeltaLambda-[1]Cl(4), and DeltaLambda(D)-[4]Cl(2). Crystal data: DeltaDelta/LambdaLambda-[1]Cl(4).6H(2)O, monoclinic, space group C2/c with a = 14.983(3) A, b = 19.857(4) A, c = 12.949(3) A, beta = 113.51(2) degrees, V = 3532(1) A(3), Z = 4; DeltaLambda-[1]Cl(4).3H(2)O, orthorhombic, space group Pbca with a = 14.872(3) A, b = 14.533(3) A, c = 14.347(2) A, V = 3100(1) A(3), Z = 4; DeltaLambda(D)-[4]Cl(2).6H(2)O, monoclinic, space group P2(1) with a = 7.3836(2) A, b = 20.214(1) A, c = 10.622(2) A, beta = 91.45(1) degrees V = 1682.0(4) A(3), Z = 2.  相似文献   

14.
Substitution reactions of the complexes [Pd(bpma)(H2O)]2+ and [Pt(bpma)(H2O)]2+, where bpma = bis(2-pyridylmethyl)amine, with TU, DMTU and TMTU for both complexes and Cl-, Br-, I- and SCN- for the platinum complex, were studied in aqueous 0.10 M NaClO4 at pH 2.5 using a variable-temperature stopped-flow spectrophotometer. The pKa value for the coordinated water molecule in [Pd(bpma)(H2O)]2+ (6.67) is a unit higher than that of [Pt(bpma)(H2O)]2+. The observed pseudo-first-order rate constants k(obs) (s(-1)) obeyed the equation k(obs) = k2[Nu] (Nu = nucleophile). The second-order rate constants indicate that the Pd(II) complex is a factor of 10(3) more reactive than Pt(II) complex. The nucleophile reactivity attributed to the steric hindrance in case of TMTU and the inductive effect for DMTU was found to be DMTU > TU > TMTU for [Pt(bpma)(H2O)]2+ and DMTU approximately TU > TMTU for [Pd(bpma)(H2O)]2+. The trend for ionic nucleophile was I- > SCN- > Br- > Cl-, an order linked to their polarizability and the softness or hardness of the metal. Activation parameters were determined for all reactions and the negative entropies of activation (Delta S++) support an associative ligand substitution mechanism. The X-ray crystal structure of [Pd(bpma)(py)](ClO4)2 was determined; it belongs to the triclinic space group P1 and has one formula unit in the unit cell. The unit cell dimensions are a = 8.522(2), b = 8.627(2), c = 16.730(4) A; alpha = 89.20(2), beta = 81.03(2), gamma = 60.61(2) degrees ; V = 1055.7(5) A3. The structure was solved using direct methods in WinGX's implementation of SHELXS-97 and refined to R = 0.054. The coordination geometry of [Pd(bpma)(py)]2+ is distorted square-planar. The Pd-N(central) bond distance, 1.996(3) A, is shorter than the other two Pd-N distances, 2.017(3) and 2.019(3) A. The Pd-N(pyridine) distance is 2.037(3) A.  相似文献   

15.
The reaction of fac(S)-[Co(aet)(3)](aet = aminoethanethiolate) with [PdCl(4)](2-) in a 2:1 ratio in water gave an S-bridged Co(III)Pd(II)Co(III) trinuclear complex composed of two mer(S)-[Co(aet)(3)] units, [Pd[Co(aet)(3)](2)](2+)([1](2+)). In [1](2+), each of the two mer(S)-[Co(aet)(3)] units is bound to a square-planar Pd(II) ion through two of three thiolato groups, leaving two non-bridging thiolato groups at the terminal. Of two geometrical forms, syn and anti, possible for [Pd[Co(aet)(3)](2)](2+), which arise from the difference in arrangement of two terminal non-bridging thiolato groups, [1](2+) afforded only the syn form. A similar reaction of fac(S)-[Co(aet)(3)] with [PtCl(4)](2-) or trans-[PtCl(2)(NH(3))(2)] produced an analogous Co(III)Pt(II)Co(III) trinuclear complex, [Pt[Co(aet)(3)](2)](2+)([2](2+)), but both the syn and anti forms were formed for [2](2+). Complexes [1](2+) and syn- and anti-[2](2+), which exclusively exist as a racemic(DeltaDelta/LambdaLambda) form, were successfully optically resolved with use of [Sb(2)(R,R-tartrato)(2)](2-) as the resolving agent. The reaction of syn-[2](2+) with [AuCl[S(CH(2)CH(2)OH)(2)]] led to the formation of an S-bridged Co(III)(4)Pt(II)(2)Au(I)(2) octanuclear metallacycle, [Au(2)[Pt[Co(aet)(3)](2)](2)](6+)([3](6+)), while the corresponding reaction of anti-[2](2+) afforded a different product ([[4](3+)](n)) that is assumed to have a polymeric structure in [[Au[Pt[Co(aet)(3)](2)]](3+)](n).  相似文献   

16.
The electronic structure and metal-metal bonding in the classic d(7)d(7) tetra-bridged lantern dimer [Pt(2)(O(2)CCH(3))(4)(H(2)O)(2)](2+) has been investigated by performing quasi-relativistic Xalpha-SW molecular orbital calculations on the analogous formate-bridged complex. From the calculations, the highest occupied and lowest unoccupied metal-based levels are delta(Pt(2)) and sigma(Pt(2)), respectively, indicating a metal-metal single bond analogous to the isoelectronic Rh(II) complex. The energetic ordering of the main metal-metal bonding levels is, however, quite different from that found for the Rh(II) complex, and the upper metal-metal bonding and antibonding levels have significantly more ligand character. As found for the related complex [W(2)(O(2)CH)(4)], the inclusion of relativistic effects leads to a further strengthening of the metal-metal sigma bond as a result of the increased involvement of the higher-lying platinum 6s orbital. The low-temperature absorption spectrum of [Pt(2)(O(2)CCH(3))(4)(H(2)O)(2)](2+) is assigned on the basis of Xalpha-SW calculated transition energies and oscillator strengths. Unlike the analogous Rh(II) spectrum, the visible and near-UV absorption spectrum is dominated by charge transfer (CT) transitions. The weak, visible bands at 27 500 and 31 500 cm(-)(1) are assigned to Ow --> sigma(Pt(2)) and OAc --> sigma(Pt(2)) CT transitions, respectively, although the donor orbital in the latter transition has around 25% pi(Pt(2)) character. The intense near-UV band around 37 500 cm(-)(1) displays the typical lower energy shift as the axial substituents are changed from H(2)O to Cl and Br, indicative of significant charge transfer character. From the calculated oscillator strengths, a number of transitions, mostly OAc --> sigma(Pt-O) CT in nature, are predicted to contribute to this band, including the metal-based sigma(Pt(2)) --> sigma(Pt(2)) transition. The close similarity in the absorption spectra of the CH(3)COO(-), SO(4)(2)(-), and HPO(4)(2)(-) bridged Pt(III) complexes suggests that analogous spectral assignments should apply to [Pt(2)(SO(4))(4)(H(2)O)(2)](2)(-) and [Pt(2)(HPO(4))(4)(H(2)O)(2)](2)(-). Consequently, the anomalous MCD spectra reported recently for the intense near-UV band in the SO(4)(2)(-) and HPO(4)(2)(-) bridged Pt(III) complexes can be rationalized on the basis of contributions from either SO(4) --> sigma(Pt-O) or HPO(4) --> sigma(Pt-O) CT transitions. The electronic absorption spectrum of [Rh(2)(O(2)CCH(3))(4)(H(2)O)(2)] has been re-examined on the basis of Xalpha-SW calculated transition energies and oscillator strengths. The intense UV band at approximately 45 000 cm(-)(1) is predicted to arise from several excitations, both metal-centered and CT in origin. The lower energy shoulder at approximately 40 000 cm(-)(1) is largely attributed to the metal-based sigma(Rh(2)) --> sigma(Rh(2)) transition.  相似文献   

17.
The [3 + 1] reaction of [W(3)S(4)(H(2)O)(9)](4+) with [W(CO)(6)] in 2 M HCl under hydrothermal conditions (130 degrees C) gives the [W(4)S(4)(H(2)O)(12)](6+) cuboidal cluster, reduction potential 35 mV vs NHE (6+/5+ couple). The reduced form is obtained by controlled potential electrolysis. X-ray crystal structure was determined for (Me(2)NH(2))(6)[W(4)S(4)(NCS)(12)].0.5H(2)O. The W-W and W-S bond lengths are 2.840 and 2.379 A, respectively.  相似文献   

18.
X-ray crystal structures are reported for the following complexes: [Ru(2)Cl(3)(tacn)(2)](PF(6))(2).4H(2)O (tacn = 1,4,7-triazacyclononane), monoclinic P2(1)/n, Z = 4, a = 14.418(8) ?, b = 11.577(3) ?, c = 18.471(1) ?, beta = 91.08(5) degrees, V = 3082 ?(3), R(R(w)) = 0.039 (0.043) using 4067 unique data with I > 2.5sigma(I) at 293 K; [Ru(2)Br(3)(tacn)(2)](PF(6))(2).2H(2)O, monoclinic P2(1)/a, Z = 4, a = 13.638(4) ?, b = 12.283(4) ?, c = 18.679(6) ?, beta = 109.19(2) degrees, V = 3069.5 ?(3), R(R(w)) = 0.052 (0.054) using 3668 unique data with I > 2.5sigma(I) at 293 K; [Ru(2)I(3)(tacn)(2)](PF(6))(2), cubic P2(1)/3, Z = 3, a = 14.03(4) ?, beta = 90.0 degrees, V = 2763.1(1) ?(3), R (R(w)) = 0.022 (0.025) using 896 unique data with I > 2.5sigma(I) at 293 K. All of the cations have cofacial bioctahedral geometries, although [Ru(2)Cl(3)(tacn)(2)](PF(6))(2).4H(2)O, [Ru(2)Br(3)(tacn)(2)](PF(6))(2).2H(2)O, and [Ru(2)I(3)(tacn)(2)](PF(6))(2) are not isomorphous. Average bond lengths and angles for the cofacial bioctahedral cores, [N(3)Ru(&mgr;-X)(3)RuN(3)](2+), are compared to those for the analogous ammine complexes [Ru(2)Cl(3)(NH(3))(6)](BPh(4))(2) and [Ru(2)Br(3)(NH(3))(6)](ZnBr(4)). The Ru-Ru distances in the tacn complexes are longer than those in the equivalent ammine complexes, probably as a result of steric interactions.  相似文献   

19.
We have used multinuclear NMR and IR spectroscopy to study the interaction of a number of metal cations with monovacant heteropolyanion [P(2)W(20)O(7)(0)(H(2)O)(2)](10)(-) (P(2)W(20)) in aqueous solutions starting from its K salt. We have also prepared and studied P(2)W(20) in an Na-only medium. The observed differences in the NMR spectra of NaP(2)W(20)and KP(2)W(20)solutions and the importance of K(+) and Na(+) for the formation of P(2)W(20) suggest that this polyanion exists only as a complex with the alkaline cations. When both cations were simultaneously present in solution, we observed the broadening of the NMR signals of P(2)W(20)due to the Na-K exchange. Li(+) does not replace K(+) or Na(+) in such complexes, and in an Li-only medium P(2)W(20) does not form. Of all the M(n)(+) cations studied (Pd(2+), Bi(3+), Sn(4+), Zr(4+), Ce(4+), Ti(4+), V(5+), and Mo(6+)) only Bi(3+), Sn(4+), and Ce(4+) form complexes with P(2)W(20) in strongly acidic solutions. The (183)W and (119)Sn NMR data suggest that Sn(4+) forms in solution two mutually interconvertable P(2)W(20)Sn complexes of the composition P(2)W(20)O(70)(H(2)O)(3)SnOH(7)(-) and (P(2)W(20)O(70)(H(2)O)(3)Sn)(2)O(14)(-) while Bi(3+) forms one complex of the proposed composition P(2)W(20)O(70)(H(2)O)(2)Bi.(7)(-) We obtained complexes with Bi and Sn as free heteropoly acids and studied their thermostability in the solid state.  相似文献   

20.
The reaction of [Ni[Co(aet)(2)(pyt)](2)](2+) (aet = 2-aminoethanethiolate, pyt = 2-pyridinethiolate) with [PtCl(4)](2)(-) gave an S-bridged Co(III)Pt(II)Co(III) trinuclear complex composed of two [Co(aet)(2)(pyt)] units, [Pt[Co(aet)(2)(pyt)](2)](2+) ([1](2+)). When a 1:1 mixture of [Ni[Co(aet)(2)(pyt)](2)](2+) and [Ni[Co(aet)(2)(en)](2)](4+) was reacted with [PtCl(4)](2)(-), a mixed-type S-bridged Co(III)Pt(II)Co(III) complex composed of one [Co(aet)(2)(pyt)] and one [Co(aet)(2)(en)](+) units, [Pt[Co(aet)(2)(en)][Co(aet)(2)(pyt)]](3+) ([2](3+)), was produced, together with [1](2+) and [Pt[Co(aet)(2)(en)](2)](4+). The corresponding Co(III)Pt(II)Co(III) trinuclear complexes containing pymt (2-pyrimidinethiolate), [Pt[Co(aet)(2)(pymt)](2)](2+) ([3](2+)) and [Pt[Co(aet)(2)(en)][Co(aet)(2)(pymt)]](3+) ([4](3+)), were also obtained by similar reactions, using [Ni[Co(aet)(2)(pymt)](2)](2+) instead of [Ni[Co(aet)(2)(pyt)](2)](2+). While [Pt[Co(aet)(2)(en)](2)](4+) formed both the deltalambda (meso) and deltadelta/lambdalambda (racemic) forms in a ratio of ca. 1:1, the preferential formation of the deltadelta/lambdalambda form was observed for [1](2+) (ca. deltalambda:deltadelta/lambdalambda = 1:3) and [2](3+) (ca. delta(en)lambda(pyt)/lambda(en)delta(pyt):deltadelta/lambdalambda = 1:2). Furthermore, [3](2+) and [4](3+) predominantly formed the deltadelta/lambdalambda form. These results indicate that the homochiral selectivity for the S-bridged Co(III)Pt(II)Co(III) trinuclear complexes composed of two octahedral [Co(aet)(2)(L)](0 or +) units is enhanced in the order L = en < pyt < pymt. The isomers produced were separated and optically resolved, and the crystal structures of the meso-type deltalambda-[1]Cl(2).4H(2)O and the spontaneously resolved deltadelta-[4](ClO(4))(3).H(2)O were determined by X-ray analyses. In deltalambda-[1](2+), the delta and Lambda configurational mer(S).trans(N(aet))-[Co(aet)(2)(pyt)] units are linked by a square-planar Pt(II) ion through four aet S atoms to form a linear-type S-bridged trinuclear structure. In deltadelta-[4](3+), a similar linear-type trinuclear structure is constructed from the delta-mer(S).trans(N(aet))-[Co(aet)(2)(pymt)] and delta-C(2)-cis(S)-[Co(aet)(2)(en)](+) units that are bound by a Pt(II) ion with a slightly distorted square-planar geometry through four aet S atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号