首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
1,3-Dimethyluracil (1,3-DimeU) reacts with trans-[(CH(3)NH(2))(2)Pt(H(2)O)(2)](+) to give trans-[(CH(3)NH(2))(2)Pt(1,3-DimeU-C5)(H(2)O)]X (X = NO(3)(-), 1a, ClO(4)(-), 1b) and subsequently with NaCl to give trans-(CH(3)NH(2))(2)Pt(1,3-DimeU-C5)Cl (2) or with NH(3) to yield trans-[(CH(3)NH(2))(2)Pt(1,3-DimeU-C5)(NH(3))]ClO(4) (3). In a similar way, (dien)Pt(II) forms [dienPt(1,3-DimeU-C5)](+) (4). Reactions leading to formation of 1 and 4 are slow, taking days. In contrast, Hg(CH(3)COO)(2) reacts fast with 1,3-DimeU to give (1,3-DimeU-C5)Hg(CH(3)COO) (5). Both 1-methyluracil (1-MeUH) and uridine (urdH) react with (dien)Pt(II) initially at N(3) and subsequently with either (dien)Pt(II) or Hg(CH(3)COO)(2) also at C(5) to give the diplatinated species 7 and 9 or the mixed PtHg complex 8. C(5) binding of either Pt(II) or Hg(II) is evident from coupling of uracil-H(6) with either (195)Pt or (199)Hg nuclei and (3)J values of 47-74 Hz (for Pt compounds) and 185-197 Hz (for Hg compounds). J values of Pt compounds are influenced both by the ligands trans to the uracil C(5) position and by the number of metal entities bound to a uracil ring. Both 2 and 5 were X-ray structurally characterized. 2: monoclinic system, space group P2(1)/c, a = 15.736(6) ?, b = 11.481(6) ?, c = 25.655 (10) ?, beta = 145.55(3) degrees, V = 2621.9(28) ?(3), Z = 4. 5: monoclinic system, space group P2(1)/c, a = 4.905(2) ?, b = 18.451(6) ?, c = 11.801(5) ?, beta = 94.47(3) degrees, V = 1064.77(72) ?(3), Z = 4.  相似文献   

2.
cis-[PtCl2(NH3)(2-picoline)] (AMD473) is a sterically-hindered anticancer complex with a profile of chemical and biological activity that differs significantly from that of cisplatin. Adducts of AMD473 with neutral 9-ethylguanine (9-EtGH) and anionic (N1-deprotonated) 9-ethylguanine (9-EtG) as perchlorate and nitrate salts, and also a nitrate salt of the trans isomer (AMD443), were prepared and their structures determined by X-ray crystallography: cis-[Pt(NH3)(2-pic)(9-EtGH)2](ClO4)2 (1).2H(2)OMe(2)CO, cis-[Pt(NH3)(2-pic)(9-EtGH)2](NO3)2 (2).2H2O, cis-[Pt(NH3)(2-pic)(9-EtGH)(9-EtG)]NO3 (3),3.5 H2O, trans-[Pt(NH3)(2-pic)(9-EtGH)(9-EtG)]NO3 (4).8H2O. In all cases, platinum coordination is through N7 of neutral (1, 2) and anionic (3, 4) guanine. In each complex, the guanine bases are arranged in the head-to-tail conformation. In complex 1, there is an infinite array of six-molecule cycles, based on both hydrogen bonding and pi-pi stacking of the 2-picoline and guanine rings. Platinum(II) coordinated at N7 acidifies the N1 proton of neutral 9-ethylguanine (pKa = 9.57) to give pKa1 = 8.40 and pKa2 = 8.75 for complex 2, and pKa1 = 7.77 and pKa2 = 9.00 for complex 4. In complexes 3 and 4, three intermolecular hydrogen bonds are formed between neutral and deprotonated guanine ligands involving O6, N1 and N2 sites. Unusually, both of the platinated guanine bases of complexes 3 and 4 participate in this triple G triple bond G hydrogen bonding. This is the first report of X-ray crystal structures of nucleobase adducts of the promising anticancer drug AMD473.  相似文献   

3.
The N7/O6 equatorial binding interactions of the antitumor active complex Rh(2)(OAc)(4)(H(2)O)(2) (OAc(-) = CH(3)CO(2)(-)) with the DNA fragment d(GpG) have been unambiguously determined by NMR spectroscopy. Previous X-ray crystallographic determinations of the head-to-head (HH) and head-to-tail (HT) adducts of dirhodium tetraacetate with 9-ethylguanine (9-EtGH) revealed unprecedented bridging N7/O6 guanine nucleobases that span the Rh-Rh bond. The absence of N7 protonation at low pH and the notable increase in the acidity of N1-H (pK(a) approximately 5.7 as compared to 8.5 for N7 only bound platinum adducts), suggested by the pH dependence titrations of the purine H8 (1)H NMR resonances for Rh(2)(OAc)(2)(9-EtG)(2) and Rh(2)(OAc)(2-)[d(GpG)],are consistent with bidentate N7/O6 binding of the guanine nucleobases. The pK(a) values estimated for N1-H (de)protonation, from the pH dependence studies of the C6 and C2 (13)C NMR resonances for the Rh(2)(OAc)(2)(9-EtG)(2) isomers, concur with those derived from the H8 (1)H NMR resonance titrations. Comparison of the (13)C NMR resonances of C6 and C2 for the dirhodium adducts Rh(2)(OAc)(2)(9-EtG)(2) and Rh(2)(OAc)(2)[d(GpG)] with the corresponding resonances of the unbound ligands [at pH 7.0 for 9-EtGH and pH 8.0 for d(GpG)], shows substantial downfield shifts of Deltadelta approximately 11.0 and 6.0 ppm for C6 and C2, respectively; the latter shifts reflect the effect of O6 binding to the dirhodium centers and the ensuing enhancement in the acidity of N1-H. Intense H8/H8 ROE cross-peaks in the 2D ROESY NMR spectrum of Rh(2)(OAc)(2)[d(GpG)] indicate head-to-head arrangement of the guanine bases. The Rh(2)(OAc)(2)[d(GpG)] adduct exhibits two major right-handed conformers, HH1 R and HH2 R, with HH1 R being three times more abundant than the unusual HH2 R. Complete characterization of both adducts revealed repuckering of the 5'-G sugar rings to C3'-endo (N-type), retention of C2'-endo (S-type) conformation for the 3'-G sugar rings, and anti orientation with respect to the glycosyl bonds. The structural features obtained for Rh(2)(OAc)(2))[d(GpG)] by means of NMR spectroscopy are very similar to those for cis-[Pt(NH(3))(2))[d(GpG)]] and corroborate molecular modeling studies.  相似文献   

4.
Zamora F  Sabat M 《Inorganic chemistry》2002,41(20):4976-4977
The reaction of ZnCl(2) with 9-ethylguanine (9-EtGH) produced a novel dinuclear Zn(II) complex, [Zn(2)Cl(4)(H(2)O)(mu-9-EtGH-N7,O6)(9-EtGH-N7), 1. The X-ray structure analysis (monoclinic, P2(1) (No. 4), a = 11.0636(6) A, b = 6.6546(4) A, c = 15.9630(9) A, beta = 101.069(1) degrees, V = 1153.4(1) A(3), Z = 2) revealed that one of the tetrahedrally coordinated Zn(II) atoms binds to the N7 site of 9-EtGH and to the exocyclic O6 atom of another 9-EtGH molecule. The remaining Zn(II) atom binds to the N7 site of the second 9-EtGH moiety.  相似文献   

5.
Reaction of 1,3-dicyanotetrafluorobenzene with 2 equiv of (trimethylsilyl)iminophosphoranes gave the disubstituted derivatives 4,6-(CN)(2)C(6)F(2)-1,3-AB: 1, A = B = (N=PPh(3)); 2, A = B = (N=PPh(2)Me); and 3, A = (N=PPh(3)), B = (N=PPh(2)Me). Monosubstituted compounds of the type 2,4-(CN)(2)C(6)F(3)-1-A; notably 4, A = (N=PPh(3)), and 5, A = (N=PPh(2)Me), were readily obtained by reaction of 1 molar equiv of the silylated iminophosphorane with the cyanofluoro aromatic. Substitution of the fluorine para to the CN group(s) occurs in all cases. Reactions of 1,2- and 1,4-dicyanotetrafluorobenzene with (trimethylsilyl)iminophosphoranes gave only monosubstituted derivatives 3,4-(CN)(2)C(6)F(3)-1-A (6, A = (N=PPh(3)), and 7, A = (N=PPh(2)Me)) and 2,5-(CN)(2)C(6)F(3)-1-A (8, A = (N=PPh(3)), and 9, A = (N=PPh(2)Me)), respectively, as the result of electronic deactivation of the second substitutional point. 1, 4,6-(CN)(2)C(6)F(2)-1,3-(N=PPh(3)), 2, 4,6-(CN)(2)C(6)F(2)-1,3-(N=PPh(2)Me)(2), and 3, 4,6-(CN)(2)C(6)F(2)-1-(N=PPh(3))-3-(N=PPh(2)Me) have been structurally characterized. For 1 (at 21 degrees C), monoclinic, C2/(c) (No. 15), a = 15.289(2) ?, b = 10.196(1) ?, c = 23.491(6) ?, beta = 91.63(2) degrees, V = 3660(2) ?(3), and Z = 4. The P=N bond length is 1.579(2) ? and the P(V)-N-C(phenyl) angle is 134.0(2) degrees. For 2, (at 21 degrees C) monoclinic, C2/(c) (No. 15), a = 18.694(2) ?, b = 8.576(1) ?, c = 40.084(4) ?, beta = 94.00(1) degrees, V = 6411(2) ?(3), and Z = 8. The P(1)=N(1) bond length is 1.570(4) ?, the P(2)=N(2) bond length is 1.589(3) ?, the P(1)-N(1)-C(14) angle is 131.6(3) degrees, and the P(2)-N(2)-C(16) angle is 131.3(3) degrees. For 3, (at -80 degrees C) monoclinic, P2(1)/c (No. 14), a = 9.210(1) ?, b = 18.113(2) ?, c = 20.015(2) ?, beta = 100.07(1) degrees, V = 3287(2) ?(3), and Z = 4. The P(1)=N(1) bond length (PPh(3) group) is 1.567(4) ?, the P(2)=N(2) bond length (PPh(2)Me group) is 1.581(5) ?, the P(1)-N(1)-C(1) angle is 140.4(4) degrees, and the P(2)-N(2)-C(3) angle is 129.4(4) degrees. These new multifunctional chelating ligands readily react with [Rh(cod)Cl](2) and AgClO(4) to give cationic Rh(I) complexes in which the imine and/or the nitrile groups are coordinated to the Rh center.  相似文献   

6.
Crosslinking of three different model nucleobases (9-ethyladenine, 9-EtA; 9-ethylguanine, 9-EtGH; 1-methyluracil, 1-MeU) by two linear trans-aPtII (a = NH3 or CH3NH2) entities leads to a flat metal-modified base triplet, trans,trans-[(NH3)2Pt(1-MeU-N3)(mu-9-EtA-N7,N1)Pt(CH3NH2)2(9-EtGH-N7)]3+ (4b). Upon hemideprotonation of the 9-ethylguanine base at the N1 position. 4b spontaneously dimerizes to the metalated nucleobase sextet 5, [(4b)(triple bond)(4b-H)]5+. In this dimeric structure a neutral and an anionic guanine ligand, which are complementary to each other, are joined through three H bonds and additionally by two H bonds between guanine and uracil nucleobases. Four additional interbase H bonds maintain the approximate coplanarity of all six bases. The two base triplets form an exceedingly stable entity (KD = 500 +/- 150 M(-1) in DMSO), which is unprecedented in nucleobase chemistry. The precursor of 4b and several related complexes are described and their structures and solution properties are reported.  相似文献   

7.
The synthesis, structural characterization, spectroscopic, and electrochemical properties of N(2)S(2)-ligated Ni(II) complexes, (N,N'-bis(2-mercaptoethyl)-1,5-diazacyclooctane)nickel(II), (bme-daco)Ni(II), and (N,N'-bis(2-mercapto-2-methylpropane)1,5-diazacyclooctane)nickel(II), (bme-daco)Ni(II), derivatized at S with alcohol-containing alkyl functionalities, are described. Reaction of (bme-daco)Ni(II) with 2-iodoethanol afforded isomers, (N,N'-bis(5-hydroxy-3-thiapentyl)-1,5-diazacyclooctane-O,N,N',S,S')halonickel(II) iodide (halo = chloro or iodo), 1, and (N,N'-bis(5-hydroxy-3-thiapentyl)-1,5-diazacyclooctane-N,N',S,S')nickel(II) iodide, 2, which differ in the utilization of binding sites in a potentially hexadentate N(2)S(2)O(2) ligand. Blue complex 1 contains nickel in an octahedral environment of N(2)S(2)OX donors; X is best modeled as Cl. It crystallizes in the monoclinic space group P2(1)/n with a = 12.580(6) ?, b = 12.291(6) ?, c = 13.090(7) ?, beta = 97.36(4) degrees, and Z = 4. In contrast, red complex 2 binds only the N(2)S(2) donor set forming a square planar nickel complex, leaving both -CH(2)CH(2)OH arms dangling; the iodide ions serve strictly as counterions. 2 crystallizes in the orthorhombic space group Pca2(1) with a = 15.822(2) ?, b = 13.171(2) ?, c = 10.0390(10) ?, and Z = 4. Reaction of (bme-daco)Ni(II) with 1,3-dibromo-2-propanol affords another octahedral Ni species with a N(2)S(2)OBr donor set, ((5-hydroxy-3,7-dithianonadiyl)-1,5-diazacyclooctane-O,N,N',S,S')bromonickel(II) bromide, 3. Complex 3 crystallizes in the orthorhombic space group Pca2(1) with a = 15.202(5) ?, b = 7.735(2) ?, c = 15.443(4) ?, and Z = 4. Complex 4.2CH(3)CN was synthesized from the reaction of (bme-daco)Ni(II) with 1,3-dibromo-2-propanol. It crystallizes in the monoclinic space group P2/c with a = 20.348(5) ?, b = 6.5120(1) ?, c = 20.548(5) ?, and Z = 4.  相似文献   

8.
A model compound of the second most abundant DNA adduct of the antitumor agent cisplatin has been synthesized and structurally and spectroscopically characterized and its conformational behavior examined: cis-[(NH(3))(2)Pt(9-MeA-N7)(9-EtGH-N7)](NO(3))(2).2H(2)O (9-MeA = 9-methyladenine; 9-EtGH = 9-ethylguanine) crystallizes in the monoclinic system, space group P2(1)/n (No. 14) with a = 7.931(2), b = 11.035(3), c = 26.757(6) ?, beta = 94.94(2) degrees, and Z = 4. The two purine bases adopt a head-to-head orientation, with NH(2) of 9-MeA and CO of 9-EtGH being at the same side of the Pt coordination plane. A theoretical conformational analysis of the complex cis-[(NH(3))(2)Pt(Ade)(Gua)](2+) (Ade = adenine; Gua = guanine) based on molecular mechanics calculations of the nonbonded energy has revealed four minimum-energy zones similar to those derived previously for cis-[(NH(3))(2)Pt(Gua)(2)](2+) (Kozelka; et al. Eur. J. Biochem. 1992, 205, 895). This conformational analysis has allowed, together with the calculation of chemical shifts due to ring effects, the attribution of the two conformers observed for cis-[(NH(3))(2)Pt{d(ApG)}](+) by Dijt et al. (Eur. J. Biochem. 1989, 179, 344) to the two head-to-head conformational zones. The orientation of the two nucleobases in the crystal structure of cis-[(NH(3))(2)Pt(9-MeA)(9-EtGH)](2+) corresponds, according to our analysis, roughly to that preferentially assumed by the minor rotamer of cis-[(NH(3))(2)Pt{d(ApG)}](+).  相似文献   

9.
Replacing the N,N-chelating ligand 2,2'-bipyridine (bpy) in the Ir(III) pentamethylcyclopentadienyl (Cp*) complex [(η(5)-C(5)Me(5))Ir(bpy)Cl](+) (1) with the C,N-chelating ligand 2-phenylpyridine (phpy) to give [(η(5)-C(5)Me(5))Ir(phpy)Cl] (2) switches on cytotoxicity toward A2780 human ovarian cancer cells (IC(50) values of >100 μM for 1 and 10.8 μM for 2). Ir-Cl hydrolysis is rapid for both complexes (hydrolysis equilibrium reached in <5 min at 278 K). Complex 2 forms adducts with both 9-ethylguanine (9-EtG) and 9-methyladenine (9-MeA), but preferentially with 9-EtG when in competition (ca. 85% of total Ir after 24 h). The X-ray crystal structure of [(η(5)-C(5)Me(5))Ir(phpy)(9-EtG-N7)]NO(3)·1.5CH(2)Cl(2) confirms N7 binding to guanine. Two-dimensional NMR spectra show that complex 2 binds to adenine mainly through N1, consistent with density functional theory (DFT) calculations. DFT calculations indicate an interaction between the nitrogen of the NH(2) group (9-MeA) and carbons from phpy in the adenine adduct of complex 2. Calculations show that the most stable geometry of the adduct [(η(5)-C(5)Me(5))Ir(phpy)(9-EtG-N7)](+) (3b) has the C6O of 9-EtG orientated toward the pyridine ring of phpy, and for [(η(5)-C(5)Me(5))Ir(phpy)(9-MeA-N1)](+) (4(N1)a), the NH(2) group of 9-EtA is adjacent to the phenyl ring side of phpy. Complex 2 is more hydrophobic than complex 1, with log P values of 1.57 and -0.95, respectively. The strong nucleobase binding and high hydrophobicity of complex 2 probably contribute to its promising anticancer activity.  相似文献   

10.
The synthesis and characterization of the complexes [(eta(5)-C(5)H(4)SiMe(3))(2)Ti(C&tbd1;CSiMe(3))(2)]MX (M = Cu, X = OTf (2), SC(6)H(5) (4), SC(6)H(4)NMe(2)-2 (5), SC(6)H(4)CH(2)NMe(2)-2 (6), S-1-C(10)H(6)NMe(2)-8 (7), Cl (8), (N&tbd1;CMe)PF(6) (9); M = Ag, X = OTf (3)) are described. These complexes contain monomeric MX entities, which are eta(2)-bonded by both alkyne functionalities of the organometallic bis(alkyne) ligand [(eta(5)-C(5)H(4)SiMe(3))(2)Ti(C&tbd1;CSiMe(3))(2)] (1). The reactions of 2 with the Lewis bases N&tbd1;CPh and N&tbd1;CC(H)=C(H)C&tbd1;N afford the cationic complexes {[(eta(5)-C(5)H(4)SiMe(3))(2)Ti(C&tbd1;CSiMe(3))(2)]Cu(N&tbd1;CPh)}OTf (10) and {[(eta(5)-C(5)H(4)SiMe(3))(2)Ti(C&tbd1;CSiMe(3))(2)]Cu}(2)(N&tbd1;CC(H)=C(H)C&tbd1;N)(OTf)(2) (11), respectively. The X-ray structures of 2, 3, and 6 have been determined. Crystals of 2 are monoclinic, space group P2(1)/c, with a = 12.8547(7) ?, b = 21.340(2) ?, c = 18.279(1) ?, beta = 133.623(5) degrees, V= 3629.7(5) ?(3), Z = 4, and final R = 0.047 for 5531 reflections with I >/= 2.5sigma(I) and 400 variables. The silver triflate complex 3 is isostructural, but not isomorphous, with the corresponding copper complex 2, and crystals of 3 are monoclinic, space group P2(1)/c, with a = 13.384(3) ?, b = 24.55(1) ?, c = 13.506(3) ?, beta = 119.21(2) degrees, V = 3873(2) ?(3), Z = 4, and final R = 0.038 for 3578 reflections with F >/= 4sigma(F) and 403 variables. Crystals of the copper arenethiolate complex 6 are triclinic, space group P&onemacr;, with a = 11.277(3) ?, b = 12.991(6) ?, c = 15.390(6) ?, alpha = 65.17(4) degrees, beta = 78.91(3) degrees, gamma = 84.78(3) degrees, V = 2008(2) ?(3), Z = 2, and final R = 0.079 for 6022 reflections and 388 variables. Complexes 2-11 all contain a monomeric bis(eta(2)-alkyne)M(eta(1)-X) unit (M = Cu, Ag) in which the group 11 metal atom is trigonally coordinated by the chelating bis(eta(2)-alkyne) entity Ti(C&tbd1;CSiMe(3))(2) and an eta(1)-bonded monoanionic ligand X. The copper arenethiolate complexes 4-7 are fluxional in solution.  相似文献   

11.
The coordination behavior prior to C-M bond formation of the chelating aromatic PCP substrate DPPMH (3; DPPMH = 1,3-bis((diphenylphosphino)methylene)mesitylene) has been studied in order to determine the factors which control the complex formation of such ligands. Reacting 3 with (RCN)(2)MCl(2) (R = Me, Ph; M = Pd, Pt) and (COD)PtX(2) (X = Cl, Me; COD = 1,5-cyclooctadiene) resulted in the formation of several 8- and 16-membered mono- and binuclear palladium(II) and platinum(II) macrocycles: trans-[(DPPMH)PdCl(2)](2) (5), trans-[(DPPMH)PtCl(2)](2) (6), cis-(DPPMH)PtCl(2) (7), cis-(DPPMH)PtMe(2) (8), and cis-[(DPPMH)PtMe(2)](2) (9). Compounds 5-9 were fully characterized using NMR, FAB-MS, FD-MS, elemental analysis, and X-ray crystallography. Thermolysis of the bimetallic trans-[(DPPMH)PtCl(2)](2) (6) results in the formation of the monomeric cis-(DPPMH)PtCl(2) (7). The product formation depends on the neutral- (nitriles or COD) and anionic ligands (Cl and CH(3)) of the metal precursor. The molecular structures of trans-[(DPPMH)PdCl(2)](2) (5) and cis-[(DPPMH)PtMe(2)](2) (9) have been determined by complete single-crystal diffraction studies. Crystal data for 5: monoclinic, space group P2(1)/n with a = 14.547(3) ?, b = 17.431(4) ?, c = 27.839 (5) ?, beta = 99.56(2) degrees, V = 6961(3) ?(3), and Z = 4. The structure converged to R = 0.048 and R(w) = 0.049. Crystal data for 9: monoclinic, space group P2(1)/n with a = 19.187(4) ?, b = 19.189(4) ? c = 20.705(2) ?, beta = 103.41(3) degrees, V = 7415(3) ?(3), and Z = 4. The structure refinement converged to R = 0.0977 and R(w) = 0.2212.  相似文献   

12.
Lube MS  Wells RL  White PS 《Inorganic chemistry》1996,35(17):5007-5014
The 1:1 mole ratio reactions of boron trihalides (BX(3)) with tris(trimethylsilyl)phosphine [P(SiMe(3))(3)] produced 1:1 Lewis acid/base adducts [X(3)B.P(SiMe(3))(3), X = Cl (1), Br (2), I (5)]. Analogous 1:1 mole ratio reactions of these boron trihalides with lithium bis(trimethylsilyl)phosphide [LiP(SiMe(3))(2)] produced dimeric boron-phosphorus ring compounds {[X(2)BP(SiMe(3))(2)](2), X = Br (3), Cl (4)}. X-ray crystallographic studies were successfully conducted on compounds 1-4. Compound 1 crystallized in the orthorhombic space group Pbca, with a = 13.420(3) ?, b = 17.044(5) ?, c = 21.731(7) ?, V = 4970.6(25) ?(3), and D(calc) = 1.229 g cm(-3) for Z = 8; the B-P bond length was 2.022(9) ?, Compound 2 crystallized in the orthorhombic space group Pbca, with a = 13.581(6) ?, b = 17.106(7) ?, c = 22.021(9) ?, V = 5116(4) ?(3), and D(calc) = 1.540 g cm(-3) for Z = 8; the B-P bond length was 2.00(2) ?. Compound 3 crystallized in the monoclinic space group P2(1)/n, with a = 9.063(5) ?, b = 16.391(8) ?, c = 9.331(4) ?, V = 1379.2(12) ?(3), and D(calc) = 1.676 g cm(-3) for Z = 2; the B-P bond length was 2.023(10) ?. Compound 4 crystallized in the monoclinic space group P2(1)/n, with a = 9.143(5) ?, b = 16.021(8) ?, c = 9.170(4) ?, V = 1342.2(11) ?(3), and D(calc) = 1.282 g cm(-3) for Z = 2; the B-P bond length was 2.025(3) ?. Thermal decomposition studies were performed on compounds 1-4, yielding colored powders with boron:phosphorus ratios greater than 1:1 and significant C and H contamination indicated by elemental analyses.  相似文献   

13.
Three protonated forms of 7-methylguanine (7-MeGH, 1) with different counter ions, [7-MeGH(2)]X (X = NO(3), 1a; ClO(4), 1b; BF(4), 1c) and two Pt(II) complexes, trans-[Pt(NH(3))(2)(7-MeGH-N9)(2)](ClO(4))(2) (4) and trans-[Pt(NH(3))(2)(7-MeGH-N9)(7-MeGH-N3)](ClO(4))(2)·3H(2)O (5) are described and their X-ray crystal structures are reported. 1a-1c form infinite ribbons via pairs of intermolecular hydrogen bonds between N1H···O6 and N3···N2H(2) sites, with anions connecting individual ribbons, thereby generating extended sheets. 4 and 5 do not display unusual features, except that 5 represents a rare case of a bis(nucleobase) complex of Pt(II) in which linkage isomers occur. Unlike in a previously reported compound, [Pt(dien)(7-MeGH-N9)](NO(3))(ClO(4)), the Pt coordination planes and the 7-MeGH planes are not coplanar in 4 and 5. The hydrogen bonding behaviour of 7-MeGH, free and when platinated at N9 (complex 4), was studied in Me(2)SO-d(6). It revealed the following: (i) there is no detectable self-association of 1 in Me(2)SO solution. (ii) 1 and 1-methylcytosine (1-MeC) form Watson-Crick pairs. (iii) 4 does not self-associate. (iv) 4 associates with 1-MeC in the Watson-Crick fashion. (v) 4 and 1 interact in solution, but no model can be proposed at present. (vi) Remarkable interaction shifts between 4 and 1 occur when NH(3) is liberated from trans-(NH(3))(2)Pt(II) to give NH(4)(+) in Me(2)SO-d(6). Feasible models, which imply the presence of deprotonated 7-MeG(-) species are proposed. Finally, DFT calculations were carried out to qualitatively estimate the effect of 7-MeGH acidity in [Pt(dien)(7-MeGH-N9)](2+) in dependence of the dihedral angle between the Pt coordination plane and the nucleobase.  相似文献   

14.
Triarylphosphanes 1 (Ar(3)P; Ar = Ph, 4-MeC(6)H(4)), triphenylarsane (2), and triarylstibanes 3 (Ar(3)Sb; Ar = 2-MeC(6)H(4), 2-MeOC(6)H(4)) reacted with trifluoromethanesulfonamide (7a) in the presence of equimolar diethyl azodicarboxylate to afford the corresponding triaryl(sulfonylimino)pnictoranes [Ar(3)M=NSO(2)CF(3); 8 (M = P), 9 (M = As), 10 (M = Sb)]. The Kirsanov-type reaction of triarylantimony dichlorides 5 (Ar(3)SbCl(2); Ar = 2-MeC(6)H(4), 2-MeOC(6)H(4)) and triarylbismuth dichlorides 6 (Ar(3)BiCl(2); Ar = 2-MeC(6)H(4), 2-MeOC(6)H(4), 2,4,6-Me(3)C(6)H(2)) with sulfonamides 7 (H(2)NSO(2)R; R = CF(3), 4-MeC(6)H(4), Me) in the presence of 2 equiv of potassium tert-butoxide yielded triaryl(sulfonylimino)-lambda(5)-stibanes 10 and -bismuthanes 11, respectively. The ortho-substitution in aryl ligands of 10 and 11 has been found to bring about considerable kinetic stabilization of the reactive Sb=N and Bi=N bonds. A structural comparison was made for a series of triaryl(sulfonylimino)pnictoranes 8-11 by IR spectroscopy and X-ray crystallography. In the IR spectra of 9-11, SO(2) asymmetric stretching absorptions (nu(SO2)) were observed at lower wavenumbers as compared to those of phosphorus counterparts 8. The difference in frequency (Deltanu(SO2)) from 8 increased progressively as the pnictogen element being utilized moved down the group 15 column on the periodic table. X-ray crystallographic analyses of eight of the triaryl(sulfonylimino)pnictoranes prepared confirmed the increasing single-bond character of the M=N bond, with the contribution from the canonical structure M(+)-N=S(O)-O(-) increasing in importance in the order P < As < Sb < Bi. Among all triaryl(sulfonylimino)pnictoranes examined, only imino-lambda(5)-bismuthanes 11 oxidized alcohols to carbonyl compounds.  相似文献   

15.
The reactivity of KNHAr reagents (Ar = C(6)H(5), C(6)H(3)Me(2)-2,6, C(6)H(3)(i)Pr(2)-2,6) with lanthanide and yttrium trichlorides has been investigated. With the larger metals Nd and Sm and the smaller 2,6-dimethyl-substituted ligand, the bimetallic dianionic complexes [K(THF)(6)](2)[Ln(&mgr;-NHC(6)H(3)Me(2)-2,6)(NHC(6)H(3)Me(2)-2,6)(3)](2) (Ln: Sm, 1a; Nd, 1b) are isolated as the potassium salts. Under the same reaction conditions YCl(3) forms a bimetallic anion which retains chloride: [K(DME)(2)(THF)(3)][Y(2)(&mgr;-NHC(6)H(3)Me(2)-2,6)(2)(&mgr;-Cl)(NHC(6)H(3)Me(2)-2,6)(4)(THF)(2)], 2. With the larger 2,6-diisopropyl ligands, neutral complexes are isolated in both solvated monometallic and unsolvated bimetallic forms. With Nd, a distorted octahedral trisolvate, Nd(NHC(6)H(3)(i)Pr(2)-2,6)(3)(THF)(3), 3, was obtained, whereas with Yb and Y the trigonal bipyramidal disolvates, Ln(NHC(6)H(3)(i)Pr(2)-2,6)(3)(THF)(2) (Ln: Yb, 4a; Y, 4b), were isolated. THF-free complexes of the NHC(6)H(3)(i)Pr(2)-2,6 ligand are available by reacting the amine NH(2)C(6)H(3)(i)Pr(2)-2,6 with Ln[N(SiMe(3))(2)](3) complexes. By this route, the dimers [Ln(&mgr;-NHC(6)H(3)(i)Pr(2)-2,6)(NHC(6)H(3)(i)Pr(2)-2,6)(2)](2) (Ln: Yb, 5a; Y, 5b) were isolated. The reaction of the unsubstituted arylamido salt KNHC(6)H(5) with NdCl(3) produced an insoluble material which was characterized as [Nd(NHC(6)H(5))(3)(KCl)(3)], 6. 6 reacted with Al(2)Me(6) in hexanes and produced a heteroleptic mixed-metal complex {[Me(2)Al(&mgr;-Me(2))](2)Nd(&mgr;(3)-NC(6)H(5))(&mgr;-Me)AlMe}(2), 7, and the trimeric aluminum arylamido complex [Me(2)Al(&mgr;-NHC(6)H(5))](3), 8. The solvent of crystallization and relevant crystallographic data for the compounds identified by X-ray analysis follow: 1a,THF, 156 K, P2(1)/n, a = 12.985(2) ?, b = 27.122(5) ?, c = 17.935(3) ?, beta = 100.19(1) degrees, V = 6216(1) ?(3), Z = 2, 6148 reflections (I > 3sigma(I)), R(F)() = 7.1%; 1b,THF, 156 K, P2(1)/n, a = 12.998(2) ?, b = 27.058(3) ?, c = 17.962(2) ?, beta = 99.74(1) degrees, V = 6225(1) ?(3), Z = 2; 2,DME/hexanes, P2(1)/n, a = 23.335(2) ?, b = 12.649(1) ?, c = 27.175(3) ?, beta = 96.36(1) degrees, V = 7971(1) ?(3), Z = 4, 2788 reflections (I > 3sigma(I)), R(F)() = 9.5%; 3, THF, P2(1), a = 12.898(1) ?, b = 16.945(1) ?, c = 13.290(1) ?, beta = 118.64(2) degrees, V = 2549.3(3) ?(3), Z = 2, 3414 reflections (I > 3sigma(I)), R(F)() = 4.3%; 4a, hexanes, P2(1), a = 9.718(2) ?, b = 19.119(3) ?, c = 12.640(2) ?, beta = 112.08(1) degrees, V = 2176.3(6) ?(3), Z = 2, 2933 reflections (I > 3sigma(I)), R(F)() = 4.3%; 4b, hexanes, 158 K, a = 9.729(2) ?, b = 19.095(5) ?, c = 12.744(1) ?, beta = 112.11(1) degrees, V = 2193.4(6) ?(3); 5b, hot toluene, 158 K, P2(1), a =19.218(9) ?, b = 9.375(3) ?, c = 19.820(5) ?, beta = 110.25(2) degrees, V = 3350(2)?(3), Z = 2, 1718 reflections (I > 2sigma (I)), R1 = 9.7%; 7, hexanes, 156 K, P&onemacr;, a = 9.618(3) ?, b = 12.738(4) ?, c = 9.608(3) ?, alpha = 99.32(1) degrees, beta = 108.87(1) degrees, gamma = 94.23(1) degrees, V = 1089.1(6) ?(3), Z = 2, 2976 reflections (I > 3sigma(I)), R(F)() = 3.9%; 8, hexanes, 156 K, Pcab, a = 23.510(5) ?, b = 25.462(5) ?, c = 8.668(2) ?, V = 5188(1) ?(3), Z = 8, 1386 reflections (I > 3sigma(I)), R(F)() = 5.7%.  相似文献   

16.
Reactions of [Ni(tren)(H(2)O)(2)]X(2) (tren = tris(2-aminoethyl)amine; X = Cl (1a), Br (1b); X(2) = SO(4) (1c)) with mannose-type aldoses, having a 2,3-cis configuration (D-mannose and L-rhamnose), afforded {bis(N-aldosyl-2-aminoethyl)(2-aminoethyl)amine}nickel(II) complexes, [Ni(N,N'-(aldosyl)(2)-tren)]X(2) (aldosyl = D-mannosyl, X = Cl (2a), Br (2b), X(2) = SO(4) (2c); aldosyl = L-rhamnosyl, X(2) = SO(4) (3c)). The structure of 1c was confirmed by X-ray crystallography to be a mononuclear [Ni(II)N(4)O(2)] complex with the tren acting as a tetradentate ligand (1c.2H(2)O: orthorhombic, Pbca, a = 15.988(2) ?, b = 18.826(4) ?, c = 10.359(4) ?, V = 3118 ?(3), Z = 8, R = 0.047, and R(w) = 0.042). Complexes 2a,c and 3c were characterized by X-ray analyses to have a mononuclear octahedral Ni(II) structure ligated by a hexadentate N-glycoside ligand, bis(N-aldosyl-2-aminoethyl)(2-aminoethyl)amine (2a.CH(3)OH: orthorhombic, P2(1)2(1)2(1), a = 16.005(3) ?, b = 20.095(4) ?, c = 8.361(1) ?, V = 2689 ?(3), Z = 4, R = 0.040, and R(w) = 0.027. 2c.3CH(3)OH: orthorhombic, P2(1)2(1)2(1), a = 14.93(2) ?, b = 21.823(8) ?, c = 9.746(2) ?, V = 3176 ?(3), Z = 4, R = 0.075, and R(w) = 0.080. 3c.3CH(3)OH: orthorhombic, P2(1)2(1)2(1), a = 14.560(4) ?, b = 21.694(5) ?, c = 9.786(2) ?, V = 3091 ?(3), Z = 4, R = 0.072, and R(w) = 0.079). The sugar part of the complex involves novel intramolecular sugar-sugar hydrogen bondings around the metal center. The similar reaction with D-glucose, D-glucosamine, and D-galactosamine, having a 2,3-trans configuration, resulted in the formation of a mono(sugar) complex, [Ni(N-(aldosyl)-tren)(H(2)O)(2)]Cl(2) (aldosyl = D-glucosyl (4b), 2-amino-2-deoxy-D-glucosyl (5a), and 2-amino-2-deoxy-D-galactosyl (5b)), instead of a bis(sugar) complex. The hydrogen bondings between the sugar moieties as observed in 2 and 3 should be responsible for the assembly of two sugar molecules on the metal center. Reactions of tris(N-aldosyl-2-aminoethyl)amine with nickel(II) salts gave the tris(sugar) complexes, [Ni(N,N',N"-(aldosyl)(3)-tren)]X(2) (aldosyl = D-mannosyl, X = Cl (6a), Br (6b); L-rhamnosyl, X = Cl (7a), Br (7b); D-glucosyl, X = Cl (9); maltosyl, X = Br (10); and melibiosyl, X = Br (11)), which were assumed to have a shuttle-type C(3) symmetrical structure with Delta helical configuration for D-type aldoses on the basis of circular dichroism and (13)C NMR spectra. When tris(N-rhamnosyl)-tren was reacted with NiSO(4).6H(2)O at low temperature, a labile neutral complex, [Ni(N,N',N"-(L-rhamnosyl)(3)-tren)(SO(4))] (8), was successfully isolated and characterized by X-ray crystallography, in which three sugar moieties are anchored only at the N atom of the C-1 position (8.3CH(3)OH.H(2)O: orthorhombic, P2(1)2(1)2(1), a = 16.035(4) ?, b = 16.670(7) ?, c = 15.38(1) ?, V = 4111 ?(3), Z = 4, R = 0.084, and R(w) = 0.068). Complex 8 could be regarded as an intermediate species toward the C(3) symmetrical tris(sugar) complexes 7, and in fact, it was readily transformed to 7b by an action of BaBr(2).  相似文献   

17.
A series of novel organically templated metal sulfates, [C(5)H(14)N(2)][M(II)(H(2)O)(6)](SO(4))(2) with (M(II) = Mn (1), Fe (2), Co (3) and Ni (4)), have been successfully synthesized by slow evaporation and characterized by single-crystal X-ray diffraction as well as with infrared spectroscopy, thermogravimetric analysis and magnetic measurements. All compounds were prepared using a racemic source of the 2-methylpiperazine and they crystallized in the monoclinic systems, P2(1)/n for (1, 3) and P2(1)/c for (2,4). Crystal data are as follows: [C(5)H(14)N(2)][Mn(H(2)O)(6)](SO(4))(2), a = 6.6385(10) ?, b = 11.0448(2) ?, c = 12.6418(2) ?, β = 101.903(10)°, V = 906.98(3) ?(3), Z = 2; [C(5)H(14)N(2)][Fe(H(2)O)(6)](SO(4))(2), a = 10.9273(2) ?, b = 7.8620(10) ?, c = 11.7845(3) ?, β = 116.733(10)°, V = 904.20(3) ?(3), Z = 2; [C(5)H(14)N(2)][Co(H(2)O)(6)](SO(4))(2), a = 6.5710(2) ?, b = 10.9078(3) ?, c = 12.5518(3) ?, β = 101.547(2)°, V = 881.44(4) ?(3), Z = 2; [C(5)H(14)N(2)][Ni(H(2)O)(6)](SO(4))(2), a = 10.8328(2) ?, b = 7.8443(10) ?, c = 11.6790(2) ?, β = 116.826(10)°, V = 885.63(2) ?(3), Z = 2. The three-dimensional structure networks for these compounds consist of isolated [M(II)(H(2)O)(6)](2+) and [C(5)H(14)N(2)](2+) cations and (SO(4))(2-) anions linked by hydrogen-bonds only. The use of racemic 2-methylpiperazine results in crystallographic disorder of the amines and creation of inversion centers. The magnetic measurements indicate that the Mn complex (1) is paramagnetic, while compounds 2, 3 and 4, (M(II) = Fe, Co, Ni respectively) exhibit single ion anisotropy.  相似文献   

18.
The new water-soluble ruthenium(II) mononuclear complexes [RuCp(X)(PTA)(L)] (X = 8-thio-theophyllinate (TTH(-)), L = PTA (1), L = PPh(3) (7)); (X = 8-methylthio-theophyllinate (8-MTT(-)), L = PTA (2), L = PPh(3) (8)), (X = 8-benzylthio-theophyllinate (8-BzTT(-)), L = PTA (3), L = PPh(3) (9)) and binuclear complexes [{RuCp(PTA)(L)}(2)-μ-(Y-κN7,N'7)] (Y = bis(S-8-thiotheophyllinate)methane (MBTT(2-)), L = PTA (4), L = PPh(3) (10)), (Y = 1,2-bis(S-8-thiotheophyllinate)ethane (EBTT(2-)), L = PTA (5), L = PPh(3) (11)), (Y = 1,3-bis(S-8-thiotheophyllinate)propane (PBTT(2-)); L = PTA (6), L = PPh(3) (12)) have been synthesized and characterized by NMR, IR spectroscopy and elemental analysis. The single crystal X-ray structure of [RuCp(8-MTT-κS)(PTA)(2)] (2) was also obtained. The antiproliferative activity of the complexes on cisplatin-sensitive T2 and cisplatin-resistant SKOV3 cell lines has been evaluated.  相似文献   

19.
The interaction of the complexes [Pd(dien)(1-MeCyt)]2+ (2) and [Pd(dien)(9-EtGH)]2+ (3) with the amino acids L-tryptophan (Trp) and N-acetyltryptophan (N-AcTrp) was studied and compared with the previously studied platinum analogues [Pt(dien)(1-MeCyt)]2+ (4) and [Pt(dien)(9-EtGH)]2+ (5). Solid-state structures for 2 and 4 are reported. For the palladium complexes, the interaction is pH sensitive. Below pH 5, the noncovalent interaction with stacking between the aromatic amino acid residue and the metalated nucleobase was observed. Fluorescence quenching experiments indicated similar association constants for platinum and palladium derivatives 2-5. Unusual substitution of the model nucleobases 1-methylcytosine (1-MeCyt) and 9-ethylguanine (9-EtGH) by tryptophan was observed in the range of pH 5-11. The resulting species [Pd(dien)(Trp)]+ (6) and [Pd(dien)(N-AcTrp)]+ (7) were characterized using 1H NMR, 13C NMR, and ESI-MS spectroscopy with coordination indicated through the amino and deprotonated amido nitrogens, respectively. Complexes 6 and 7 were also obtained from a solution of [Pd(dien)Cl]+ (1) incubated with either Trp or N-AcTrp, respectively.  相似文献   

20.
A tetranuclear mixed ligand copper(II) complex of a pyrazole containing Schiff base and a hydroxyhexahydropyrimidylpyrazole and copper(II) and nickel(II) complexes of the Schiff base having N-donor atoms have been investigated. A 2 equiv amount of 5-methyl-3-formylpyrazole (MPA) and 2 equiv of 1,3-diamino-2-propanol (1,3-DAP) on reaction with 1 equiv of copper(II) nitrate produce an unusual tetranuclear mixed ligand complex [Cu4(L1)2(L2)2(NO3)2] (1), where H2L1 = 1,3-bis(5-methyl-3-formylpyrazolylmethinimino)propane-2-ol and HL2 = 5-methyl-3-(5-hydroxyhexahydro-2-pyrimidyl)pyrazole. In contrast, a similar reaction with nickel(II) nitrate leads to the formation of a hygroscopic intractable material. On the other hand, the reaction involving 2 equiv of MPA and 1 equiv each of 1,3-DAP and various copper(II) salts gives rise to two types of products, viz. [Cu(T3-porphyrinogen)(H2O)]X2 (X = ClO4, NO3, BF4 (2)) (T3-porphyrinogen = 1,6,11,16-tetraza-5,10,15,20-tetrahydroxy-2,7,12,17-tetramethylporphyrinogen) and [Cu(H2L1)X]X x H2O (X = Cl (3), Br (4)). The same reaction carried out with nickel(II) salts also produces two types of compounds [Ni(H2L1)(H2O)2]X2 [X = ClO4 (5), NO3 (6), BF4 (7)] and [Ni(H2L1)X2] x H2O [X = Cl (8), Br (9)]. Among the above species 1, 3, and 5 are crystallographically characterized. In 1, all four copper atoms are in distorted square pyramidal geometry with N4O chromophore around two terminal copper atoms and N5 chromophore around two inner copper atoms. In 3, the copper atom is also in distorted square pyramidal geometry with N4Cl chromophore. The nickel atom in 5 is in a distorted octahedral geometry with N4O2 chromophore, where the metal atom is slightly pulled toward one of the axial coordinated water molecules. Variable-temperature (300 to 2 K) magnetic susceptibility measurements have been carried out for complex 1. The separations between the metal centers, viz., Cu(1)...Cu(2), Cu(2)...Cu(2)A, and Cu(2)A...Cu(1)A are 3.858, 3.89, and 3.858 A, respectively. The overall magnetic behavior is consistent with strong antiferromagnetic interactions between the spin centers. The exchange coupling constants between Cu(1)...Cu(2) and Cu(2)...Cu(2A) centers have turned out to be -305.3 and -400.7 cm(-1), respectively, resulting in a S = 1/2 ground state. The complexes are further characterized by UV-vis, IR, electron paramagnetic resonance, and electrochemical studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号