首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
V(SO3CF3)3, VO(SO3CF3)2 and VO(SO3CF3)3 have been prepared by reacting V(O2CCF3)3, VO(O2CCF3)2 and VOC13 with HSO3CF3. The i.r. data suggest a bridging bidentate nature for SO3CF3 groups. The diffuse reflectance spectrum of V(SO3CF3)3 suggests hexacoordination of vanadium, whilst that of VO(SO3CF3)2 is comparable to either five or six coordinated oxovanadium (IV) systems. The magnetic moments of V(SO3CF3)3 and VO(SO3CF3)2 are slightly lower than the spin-only values. Thermal decomposition of these triflates is simple. All the three triflates form coordination complexes with pyridine, 2, 2′-bipyridyl and triphenylphosphine oxide.  相似文献   

2.
It was shown that vanadium(V) and vanadium(IV) can be determined at a large Pt electrode in H2SO4 solutions in the presence of copper and bismuth by controlled-potential coulometry with RSD no worse than 0.2%. Compounds of the composition Bi4V1.8Cu0.2O10.7 – x were analyzed.  相似文献   

3.
Synthesis and Structures of Vanadium(III) and Vanadium(IV) Silanolates The syntheses of the new and partially known vanadium(III)-silanolate complexes [{V(OSiMet2Bu)3}2(THF)] ( 1 ), [Li(THF)2V(OSiMet2Bu)4] ( 2 ), [V(OSiMet2Bu)(lut)] ( 3 ), V(OSiPh3)3(THF)3 ( 4 ), [Li(THF)4][V(OSiPh3)4](THF)2 ( 5 ), [Li(DME)VMes(OSiMet2Bu)3] ( 7 ), [Li(THF)4][VMes · (OSiPh3)3] ( 8 ), [Li(THF)4][VMes3(OSiMet2Bu)] ( 9 ), and Na[VMes3(OSiPh3)](THF)4 ( 10 ) as well as the vanadium(IV) compounds [V(OSiPh3)4] ( 6 ), [VMes3(OSiMet2Bu)] ( 11 ) and [VMes3(OSiPh3)] ( 12 ) are reported. In most cases the vanadium atom displays a coordination number of four. The dimeric structure of 1 with coordination numbers of four and five, respectively, has been deduced from molecular mass measurements, mass spectrometry and its magnetic properties. The crystal structures of compounds 2 , 4 , 5 , 9 and 11 were resolved. Complex 2 resembles a bridged contact ion pair in which both metal centres are in a tetrahedral coordination environment. In 4 the ligands are arranged trigonal bipyramidally with the THF molecules in the axial positions. Complexes 5 and 9 crystallize in separated ion paires with the vanadium in a tetrahedral coordination sphere. The crystal structure of 11 is analogous to that of 9 but with consequences due to the higher oxidation state. Oxidation of the vanadates(III), e. g. 5 , 9 and 10 , yields the corresponding vanadium(IV) compounds 6 , 11 and 12 .  相似文献   

4.
Two different monoanionic O,N-chelating ligand systems, i.e., [OC6H2(CH2NMe2)-2-Me2-4,6]- (1) and [OCMe2([2]-Py)]- (2), have been applied in the synthesis of vanadium(V) complexes. The tertiary amine functionality in 1 caused reduction of the vanadium nucleus to the 4+ oxidation state with either [VOCl3], [V(=NR)Cl3], or [V(=NR)(NEt2)3] (R = Ph, (3a, 5a), R = p-Tol (3b, 5b)), and applying 1 as a reducing agent resulted in the synthesis of the vanadium(IV) complexes [VO(OC6H2(CH2NMe2)-2-Me2-4,6)2] (4) and [V(=NPh)(OC6H2(CH2NMe2)-2-Me2-4,6)2] (6). In the case of [V(=N-p-Tol)(NEt2)(OC6H2(CH2NMe2)-2-Me2-4,6)2] (7b), the reduction was sufficiently slow to allow its characterization by 1H NMR and variable-temperature studies showed it to be a five-coordinate species in solution. Although the reaction of 1 with [V(=N-p-Tol)(O-i-Pr)3] (9b) did not result in reduction of the vanadium nucleus, vanadium(V) compounds could not be isolated. Mixtures of the vanadium(V) (mono)phenolate, [V(=N-p-Tol)(O-i-Pr)2(OC6H2(CH2NMe2)-2-Me2-4,6)] (10), and the vanadium(V) (bis)phenolate, [V(=N-p-Tol)(O-i-Pr)(OC6H2(CH2NMe2)-2-Me2-4,6)2] (11), were obtained. With the pyridylalkoxide 2, no reduction was observed and the vanadium(V) compounds [VOCl2(OCMe2([2]-Py))] (12) and [V(=N-p-Tol)Cl2(OCMe2([2]-Py)] (13) were obtained. 51V NMR showed 7b and 12 to be five-coordinate in solution, whereas for 10, 11, and 13 a coordination number of 6 was found. Compounds 12 and 13 showed decreased activity compared to their nonchelated vanadium(V) analogues when applied as catalysts in ethene polymerization. Two polymorphic forms with a difference in the V-N-C angle of 12.5 degrees have been found for 6. Crystal data: 6.Et2O, triclinic, P1, a = 11.1557(6) A, b = 12.5744(12) A, c = 13.1051(14) A, alpha = 64.244(8) degrees, beta = 70.472(7) degrees, gamma = 87.950(6) degrees, V = 1547(3) A3, Z = 2; 6.C6H6, triclinic, P1, a = 8.6034(3) A, b = 13.3614(4) A, c = 15.1044(5) A, alpha = 98.182(3) degrees, beta = 105.618(2) degrees, gamma = 107.130(2) degrees, V = 1551.00(10) A3, Z = 2; 12, orthorhombic, Pbca, a = 11.8576(12) A, b = 12.6710(13) A, c = 14.722(2) A, V = 2211.9(4) A3, Z = 8.  相似文献   

5.
Summary Molybdenum(V) and molybdenum(III) complexes [Mo2O3L4] and [Mo2L6] derived from hydroxamic acids (HL) were prepared and identified by Raman, i.r., e.s.r., electronic spectra and analytical data. The low magnetic moments of the dinuclear complexes are due to in part to intramolecular interactions. Electronic spectra and vibrational studies indicate the presence of a Mo2O3 core in the molybdenum(V) complexes. The relative intensities of the, main and satellite peaks in e.s.r. spectra indicate the dinulcear nature of molybdenum(III) hydroxamates.  相似文献   

6.
7.
8.
In this study, the determination of vanadium valence state, V(IV) and V(V) has been achieved using ion-exchange chromatography with conductivity detector. In this method, V(IV) was determined as V(IV)-EDTA complex and V(V) as vanadate ion. Determination of V(IV) was successfully done using 3 mM carbonate/bicarbonate/EDTA at pH 8.6 as the eluent. The additive, EDTA in the mobile phase did not seem to interfere with the V(IV) analysis. The detection of V(V) was achieved with 5 mM disodium hydrogen phosphate buffer at pH 10.4. A linear calibration graph over VO3 ? and V(IV) with concentration ranges 5–15 mg L?1 gave the detection limit at 0.09 and 0.1 mg L?1, respectively. Both V(IV) and V(V) were successfully determined in Benfield sample, with concentrations of V(IV) and V(V) at 4 and 11,000 mg L?1, respectively.  相似文献   

9.
10.
Vanadium(IV) dioxide has emerged as a promising thermochromic material for smart window application through metal–insulator transition, which simultaneously involves an abrupt change in optical, electrical, and magnetic properties. Here, Er3+ or Yb3+-codoped vanadium(IV) dioxide has been prepared by a hydrothermal and annealing process. The structure, metal–insulator transition, and upconversion luminescence characterizations have been evaluated using X-ray diffraction, differential thermal analysis, and fluorescence spectral analysis. The samples exhibit unique properties, including enhancing the intensity of upconversion emission, decreasing the metal–insulator transition temperature to 41.4°C, and emitting bright green upconversion emission along with extremely weak emission in the red region under 980?nm excitation. Moreover, green upconversion luminescence intensity increased by an order of magnitude from the low-temperature monoclinic structure of vanadium(IV) dioxide to the high-temperature rutile structure of vanadium(IV) dioxide for the first time, which will pave a new pathway for researching the application of photoluminescence in smart materials.  相似文献   

11.
Vanadium in Italian waters: monitoring and speciation of V(IV) and V(V)   总被引:1,自引:0,他引:1  
In this work, a highly sensitive method was developed to separate vanadium (IV) from vanadium (V), which are both contained in water at trace levels. A suitable strong anionic exchange column (SAX) loaded with disodium ethylendiaminetetraacetic acid (Na2EDTA) was used to trap both vanadium species dissolved in 10–100 ml of water at pH 3. The vanadyl ion was selectively eluted by means of 15 ml of an aqueous solution containing Na2EDTA, tetrabutylammonium hydroxide (TBA+OH), and isopropanol (iPr-OH) and was subsequently determined by atomic absorption spectroscopy with electrothermal atomization. The concentration of vanadate ion was calculated by subtracting the vanadyl concentration from the total concentration of vanadium. The optimal conditions for a selective elution were evaluated. The recovery of vanadium (IV) was 95% or better. The proposed method provides a simple procedure for the speciation of vanadium in aqueous matrices. The collection of the two forms could easily be carried out at the sampling site. Therefore, the risk of changing the concentration ratio between vanadium species was widely reduced. The detection limits were 1 μg/l for both species, when a 10-ml sample was eluted through the column. The method was applied successfully to vanadium speciation on different kinds of Italian volcanic water: Mount Etna (Sicily), Lake Bracciano and Castelli Romani (Latium).  相似文献   

12.
The synthesis and characterization of a V(IV) and a V(V) complex of the salicyladimine ligand system are described. The reaction of salicylaldehyde and 1,3-diaminohydroxypropane with vanadyl sulfate produced a monomer (VOL1) which, upon heating in methanol, crystallized as a V(V) complex (VO(2)L1). The reaction of 3-methoxysalicylaldehyde, 1,3-diaminohydroxypropane, and vanadyl sulfate resulted in a binuclear complex held together by hydrogen bonding (VOL2). VOL1 was determined to catalyze the epoxidation of cyclohexene better than VOL2. The synthesis and characterization of VOL1, VOL2, and VO(2)L1 are described. The role of each complex as a catalyst for the epoxidation of cyclohexene is investigated. Results indicate that the V(V) complex performs better than either of the V(IV) complexes.  相似文献   

13.

Complex formation equilibria of divinyltin(IV) with amino acids, peptides, and dicarboxylic acids have been investigated. Stoichiometry and stability constants for the complexes formed were determined at 25°C and ionic strength 0.1 M NaNO3. The results showed the formation of ML, MLH, and ML2 (organotin : ligand : hydrogen) complexes with amino acids. Peptides form ML complexes and the corresponding deprotonated amide species MLH?1. In the latter species the binding with divinyltin(IV) occurs through the terminal amino group, carboxylate oxygen, and the amide nitrogen atoms (CO? 2, N? amide, NH2). The results showed the formation of ML and ML2 complexes with dicarboxylic acids. The concentration distribution of the complexes in solution was evaluated. The bonding sites of the divinyltin(IV) complex in solid state with oxalic acid was investigated by means of elemental analyses, FTIR, and mass spectra. Non-isothermal decomposition of the above complex has been studied and the result was statistically analyzed. The main steps were identified for the thermal decomposition reaction and each step proved to be a first order reaction. The kinetic parameters E a and A were calculated for each step in the reaction. The thermodynamic functions H, G, and S* were calculated for each step of the reaction.  相似文献   

14.
The chiral (ONS) dianionic Schiff base ligand benzoin thiosemicarbazone (H2L) reacts with MoO2(acac)2 to give the polymeric complex [(MoO2L) n ] (1) (Type 1). The reaction of MoO2L with pyridine (py), 3-picoline (3-pic) or 4-picoline (4-pic) gives [MoVIO2LD] (D = py, 3-pic or 4-pic) (Type 1). Further, the reaction of [MoO2L] or [MoO2LD] with PPh3 or reaction of [MoO2L] with PPh3 (plus bpy or phen, D) in the presence of donor reagents D gives [MoIVOL] or [MoIVOLD] (Type 2). On the other hand, the reaction of [MoO2L] with hydrazides (zdhH3) such as benzoylhydrazine (bhH3), isonicotinoylhydrazine (inhH3), nicotinoylhydrazine (nhH3), salicyloylhydrazine (slhH3) and thiosemicarbazide (tscH3) produced non-oxo–diazenido complexes [MoL(zdh)] (Type 3). The complexes have been characterized by elemental analyses, molar conductance, magnetic moment, electronic, i.r. and e.s.r. spectroscopic measurements.  相似文献   

15.
《Analytical letters》2012,45(11-12):1177-1189
Abstract

Five new substitued hydroxamic acids are used for extraction and spectrophotometric determination of vanadium(V) in trace amounts. the binary complex of vanadium (V) with H-p-ciloropheny 1-3,4,5-trimethoxycinnamohdroxamic acid (PTCHA) and the mixed ligand complex of vanadium (V) with N-p-cinlorpheny-p-chlorophenoxyisobutyrohydroxamic acid (PP3HA) and thiocyanete were studied. The molar absorbtivities of the bluish violet vanadium(V) hydroxamate and mixed ligand complexes are 6.9 × 103 and 1.1 × 104 cm3 mol?3 cm?1, respectively. The vanadium is also determined with AAs and the method is applied for its determination in steel. alloy, rock and environmental samples.  相似文献   

16.
Abstract

The eight newly synthesized chlorosubstituted hydroxamic acids are described for the extraction and spectrophotometric determination of vanadium. The sensitive and selective reagent, N-m-Chlorophenylpalmito hydroxamic acid, (m-CPPHA), which gives violet coloured vanadium complex was extracted with chloroform from 6M HCl. The violet coloured complex thus obtained has a maximum absorbance at 520 nm and molar absorptivity 4.9 ± 1031mol?1cm?1. The Beer's law obeyed in the region 0.50-12.0ppm. Effects of acidity, reagent concentration, diverse ions have also been investigated. A comparison has been made with atomic absorption spectrophotometric method. Vanadium has been determined in the environment, e.g. plant, soil, rock, etc.  相似文献   

17.
Six- and seven-membered cyclic hydroxamic acids are found as terminal binding units in different families of siderophores, including exochelins and mycobactins. The simplest models of these preorganized chelating ligands were known, but their coordination chemistry with Fe3+, the target metal ion of siderophores, had never been reported. Four complexes were synthesized and studied: two Fe3+ complexes, one with the six-membered ring hydroxamate PIPO and one with the seven-membered ring hydroxamate AZEPO, and the two corresponding Ga3+ complexes. X-ray diffraction studies showed that the interligand repulsion energies were better minimized in the case of the AZEPO complexes whatever the metal cation considered, and that the Fe−O bond distances were shorter in [Fe(AZEPO)3] by comparison with [Fe(PIPO)3].  相似文献   

18.
19.
The reaction of [MoH4(depe)2] ( 1 ) (depe=1,2-bis(diethylphosphino)ethane) with different proton sources (HPtBu3+, C6H5COOH, C6F5COOH, H2SO4) was investigated. Whereas complete conversion of 1 into its protonated form is observed in the presence of the phosphonium salt, [MoH5(depe)2]+ only transiently forms upon treatment with the other acids. Further reactivity of the pentahydride complex is indeed noticed with the conjugated base, typically resulting in the formation of neutral (C6F5COOH, H2SO4) or cationic (PhCOOH) molybdenum dihydride complexes. The compounds were characterized by NMR spectroscopy and X-ray crystallographic studies were performed when suitable crystals were obtained.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号