首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Copper(II) and V(IV)O complexes of an open chain (1:2) Schiff-base ligand (H(2)L1), derived by the template condensation of diaminomaleonitrile (DMN) and salicylaldehyde, and dicopper(II) complexes of (2:2) macrocyclic Schiff-base ligands derived by template condensation of diformylphenols and diaminomaleonitrile, have been synthesized and studied. Structures have been established for the first time for mononuclear Cu(II) and V(IV)O derivatives of the open chain ligand H(2)L1 (1:2), a dinuclear macrocyclic Cu(II) complex derived from a 2:2 macrocyclic ligand (H(2)M1), and the half-condensed 1:1 salicylaldehyde ligand (H(2)L2). [Cu(L1)] (1) (L1 = C(18)H(10)N(4)O(2)) crystallized in the monoclinic system, space group P2(1)/n (No. 14), with a = 11.753(6) ?, b = 7.708(5) ?, c = 16.820(1) ?, and Z = 4. [VO(L1)(DMSO] (2) crystallized in the orthorhombic system, space group Pbca (No. 61), with a = 22.534(9) ?, b = 23.31(1) ?, c = 7.694(5) ?, and Z = 8. H(2)L2 (C(18)H(8)N(4)O) (3) crystallized in the monoclinic system, space group P2(1)/c (No. 14), with a = 13.004(6) ?, b = 11.441(7) ?, c = 7.030(4) ?, and Z = 4. [Cu(2)(M3)](CH(3)COCH(3)) (4) (M3 = C(32)H(24)N(8)O(4)) crystallized in the monoclinic system, space group C2/c (No. 15), with a = 38.33(2) ?, b = 8.059(4) ?, c = 22.67(2) ?, and Z = 8. [Cu(L3)(DMSO)] (5) (L3 = C(20)H(14)N(2)O(4)) crystallized in the triclinic system, space group P&onemacr; (No. 2), with a = 10.236(4) ?, b = 13.514(4) ?, c = 9.655(4) ?, and Z = 2. 4 results from the unique addition of two acetone molecules to two imine sites in [Cu(2)(M1)](ClO(4))(2) (M1 = 2:2 macrocyclic ligand derived from template condensation of DMN and 2,6-diformyl-4-methylphenol). 4 has extremely small Cu-OPh-Cu bridge angles (92.0, 92.8 degrees ), well below the expected lower limit for antiferromagnetic behavior, but is still antiferromagnetically coupled (-2J = 25.2 cm(-)(1)). This behavior is associated with a possible antiferromagnetic exchange term that involves the conjugated framework of the macrocyclic ligand itself. The ligand L3 in 5 results from hydrolysis of M1 on recrystallization of [Cu(2)(M1)](ClO(4))(2) from undried dimethyl sulfoxide.  相似文献   

2.
Phase-pure NaCN(3)H(4) and KCN(3)H(4) were synthesized from molecular guanidine and elemental metal in liquid ammonia at room temperature and elevated pressure close to 10 atm. The crystal structures were determined at 100 K using single-crystal X-ray diffraction. Both compounds crystallize in the monoclinic system (P2(1)/c, No. 14) but are far from being isotypical. NaCN(3)H(4) (a = 7.9496(12) ?, b = 5.0328(8) ?, c = 9.3591(15) ?, β = 110.797(3)°, Z = 4) contains a tetrahedrally N-coordinated sodium cation while KCN(3)H(4) (a = 7.1200(9) ?, b = 6.9385(9) ?, c = 30.404(4) ?, β = 94.626(2)°, Z = 16) features a very large c axis and a rather complicated packing of irregularly N-coordinated potassium cations. In the crystal structures, the guanidinate anions resemble the motif known from RbCN(3)H(4), that is, with one elongated C-((amino))N single bond and two shorter C-((imino))N bonds (bond order = 1.5) although the orientation of one N-H bond differs in the guanidinate anion of NaCN(3)H(4). Both crystal structures and infrared spectroscopy evidence the presence of hydrogen-bridging bonds, and the vibrational properties were analyzed by ab initio phonon calculations.  相似文献   

3.
The hexaaza macrocyclic ligand 3,6,9,16,19,22-hexaaza-27,28-dioxatricyclo[22.2.1.1(11,14)]octacosa-1(26),11,13,24-tetraene (BFBD), forms both mono- and dinuclear complexes, as well as several protonated and hydroxo chelates, with Cu(II) ions. These cationic species can bind inorganic and organic anions through coordination and hydrogen bonding. Stability constants of the mono- and dinuclear Cu(II) complexes of BFBD and their interaction with oxalate, malonate, and pyrophosphate anions have been measured potentiometrically. The nature of the bonding between the hosts and the guests is discussed. The crystal structures of two new dinuclear Cu(II) complexes, determined by X-ray crystallography, are also reported. [BFBDCu(2)(Cl)(3)]ClO(4).0.5H(2)O crystallizes in the monoclinic system, space group P2(1)/n, with a = 13.267(2) ?, b = 12.155(6) ?, c = 18.461 0 ?, beta = 90.86(2) degrees, and Z = 4. Each Cu(II) ion is coordinated by three nitrogen atoms from the diethylenetriamine unit of the macrocyclic ligand and two chloride anions, forming a square pyramidal geometry. [BFBDCu(2)(Ox)](BF(4))(1.8)Cl(0.2) crystallizes in the triclinic system, space group P1, with a = 6.772(1) ?, b = 10.646(2) ?, c = 11.517(2) ?, alpha = 64.74(3) degrees, beta = 79.79(3) degrees, gamma = 81.94(3) degrees, and Z = 1. The environment of each copper is intermediate between square pyramidal and trigonal pyramidal. The oxalate anion bridges in a bis-bidentate fashion between two Cu(II) ions.  相似文献   

4.
Huang Q  Wu X  Wang Q  Sheng T  Lu J 《Inorganic chemistry》1996,35(4):893-897
Synthetic methods for [Et(4)N](4)[W(4)Cu(4)S(12)O(4)] (1), [Et(4)N](4)[Mo(4)Cu(4)S(12)O(4)] (2), [W(4)Cu(4)S(12)O(4)(CuTMEN)(4)] (3), and [Mo(4)Cu(4)S(12)O(4)(CuTMEN)(4)] (4) are described. [Et(4)N](2)[MS(4)], [Et(4)N](2)[MS(2)O(2)], Cu(NO(3))(2).3H(2)O, and KBH(4) (or Et(4)NBH(4)) were used as starting materials for the synthesis of 1 and 2. Compounds 3 and 4 were produced by reaction of [Et(4)N](2)[WOS(3)], Cu(NO(3))(2).3H(2)O, and TMEN and by reaction of [Me(4)N](2)[MO(2)O(2)S(8)], Cu(NO(3))(2).3H(2)O, and TMEN, respectively. Crystal structures of compounds 1-4 were determined. Compounds 1 and 2 crystallized in the monoclinic space group C2/c with a = 14.264(5) ?, b = 32.833(8) ?, c = 14.480(3) ?, beta = 118.66(2) degrees, V = 5950.8(5) ?(3), and Z = 4 for 1 and a = 14.288(5) ?, b = 32.937(10) ?, c = 14.490(3) ?, beta = 118.75(2) degrees, V = 5978.4(7) ?(3), and Z = 4 for 2. Compounds 3 and 4 crystallized in the trigonal space group P3(2)21 with a = 13.836(6) ?, c = 29.81(1) ?, V = 4942(4) ?(3), and Z = 3 for 3 and a = 13.756(9) ?, c = 29.80(2) ?, V = 4885(6) ?(3), and Z = 3 for 4. The cluster cores have approximate C(2v) symmetry. The anions of 1 and 2 may be viewed as consisting of two butterfly-type [CuMOS(3)Cu] fragments bridged by two [MOS(3)](2-) groups. Eight metal atoms in the anions are arranged in an approximate square configuration, with a Cu(4)M(4)S(12) ring structure. Compounds 3 and 4 can be considered to consist of one [M(4)Cu(4)S(12)O(4)](4-) (the anions of 1 and 2) unit capped by Cu(TMEN)(+) groups on each M atom; the Cu(TMEN)(+) groups extend alternately up and down around the Cu(4)M(4) square. The electronic spectra of the compounds are dominated by the internal transitions of the [MOS(3)](2-) moiety. (95)Mo NMR spectral data are investigated and compared with those of other compounds.  相似文献   

5.
The first pentanuclear complexes of formula {Dy[Cu(apox)](2)[Cu(apox)(H(2)O)](2)}[ClO(4)](3).7H(2)O (1), {Ho[Cu(apox)][Cu(apox)(H(2)O)](3)}[PF(6)](3).4.5H(2)O (2), {Gd[Cu(apox)](2)[Cu(apox)(H(2)O)](2)}[ClO(4)](3).7H(2)O (3) and {Gd[Cu(apox)][Cu(apox) (H(2)O)](3)}[PF(6)](3).4.5H(2)O (4) (H(2)apox = N,N'-bis(3-aminopropyl)oxamide) have been synthesized. The crystal structures of complexes 1 and 2 have been determined by X-ray diffraction methods. Complexes 3 and 4 are isostructural with 1 and 2, respectively. Crystallographic data are as follows: 1 and 3, monoclinic, space group C2/c and Z = 4, with a = 14.646(6) ?, b = 29.496(7) ?, c = 16.002(7) ?, and beta = 111.76(2) degrees for 1 and a = 14.523(6) ?, b = 29.441(6) ?, c = 15.925(8) ?, and beta = 111.90(4) degrees for 3; 2 and 4, triclinic, P&onemacr;, and Z = 2, with a = 14.346(2) ?, b = 14.454(2) ?, c = 18.107(4) ?, alpha = 90.95(2) degrees, beta = 110.75(2) degrees, and gamma = 106.77(2) degrees for 2 and a = 14.365(6) ?, b = 14.496(5) ?, c = 18.172(7) ?, alpha = 91.27(3) degrees, beta = 110.74(3) degrees, and gamma = 106.67(3) degrees for 4. A tripositive ion is present in these structures, the electroneutrality being achieved by three uncoordinated perchlorate (1) or hexafluorophosphate (2) anions. The lanthanide cations are eight-coordinate with a pseudo-square-antiprismatic environment formed by carbonyl oxygen atoms from two [Cu(apox)] and two Cu(apox)(H(2)O)] (1) and one [Cu(apox)] and three [Cu(apox)(H(2)O)] (2) bidentate ligands. The temperature dependence of the magnetic susceptibility of complexes 1-4 was investigated in the range 1.8-300 K. The ligand-field effect, as well as the mixing of the free-ion states in Dy(III) and Ho(III), make extremely difficult the analysis of the overall antiferromagnetic interaction which is observed for complexes 1 and 2. The magnetic susceptibility data for complexes 3 and 4 have shown that the ground-state spin for the [Gd(III)Cu(II)(4)] unit is S = 11/2, the Gd(III)-Cu(II) interaction being ferromagnetic with an interaction parameter J(GdCu) = 0.85 cm(-)(1) (the interaction Hamiltonian is of the form H = -JS(A).S(B)). The field dependence of the magnetization at 2 K of 3 and 4 confirms the nature of the ground state and of the Gd(III)-Cu(II) interaction. The influence of the topology and of the type of bridging ligand on the nature and magnitude of the magnetic interaction in the Gd(III)-Cu(II) pair is analyzed and discussed in light of available magnetostructural data.  相似文献   

6.
1 INTRODUCTION Water oxidation to oxygen gas by photo- synthetic apparatus of green plants and cyano- bacteria is the origin of this gas in the atmosphere. The water oxidation center is a tetranuclear, oxide- bridged manganese cluster with O,N-based peri- pheral ligation by amino acid side-chain group[1, 2]. The binding of aqua to the Mn site may be impor- tant to the oxidation of aqua for producing dioxygen. 1,10-Phenanthroline has been adopted to simulate coordination sphere of manga…  相似文献   

7.
Novel tripodal ligand 1,1',1'-tris(tetrazol-1-ylmethyl)methane (111tz) and products of its reactions with perchlorate as well as with tetrafluoroborate salts of iron(II) are presented. The isostructural complexes, [Fe(111tz)?](ClO?)? and [Fe(111tz)?](BF?)?, were isolated as two-dimensional (2D) coordination networks revealing a honeycomb-like pattern with cages occupied by disordered anions. 111tz molecules act as a tridentate ligand bridging three adjacent Fe(II) ions, and the nitrogen N4 atom of six tetrazole rings (tz) is placed in octahedron vertices of FeN? chromophores. The complexes, crystallizing in the P3 space group, were characterized by variable-temperature single-crystal X-ray diffraction and variable-temperature magnetic susceptibility measurements. Variable-temperature magnetic susceptibility measurements show that both systems undergo abrupt and complete spin transition with T(1/2)(↑) = T(1/2)(↓) = 176 K for perchlorate and T(1/2)(↑) = 193.8 and T(1/2)(↓) = 192.8 K for the tetrafluoroborate analogue. Change of spin state in both complexes is accompanied by a thermochromic effect. The HS→LS transition in [Fe(111tz)?](ClO?)? involves shortening of the Fe-N4 bond lengths from 2.171(2) ? (293 K) to 2.002(1) ? (100 K). In [Fe(111tz)?](BF?)?, lowering of temperature from 293 to 100 K is accompanied by shortening of the Fe-N4 distances from 2.179(2) to 1.987(2) ?, respectively. Perchlorate in [Fe(111tz)?](ClO?)? or tetrafluoroborate anions in [Fe(111tz)?](BF?)? are engaged in the formation of intermolecular contacts within as well as with the neighboring 2D layer.  相似文献   

8.
Reaction of potassium N-R-Sulfonyldithiocarbimates, K2(RSO2N=CS2) (R=Me, Ph, 4-MeC6H4, 2-MeC6H4, 4-ClC6H4, 4-BrC6H4), with CoCl2·6H2O, yielded the complex CoIII anions [Co(RSO2N=CS2)3]3-, which were isolated as their Bu4N+ salts. Elemental analyses, i.r. spectra and u.v.-vis. data were consistent with the formation of cobalt-sulfur diamagnetic octahedral (D3) complexes. The 1H and 13C n.m.r. spectra showed the expected signals for the Bu4N+ cation and the dithiocarbimate moieties. The 1H n.m.r. integrations were consistent with a 3:1 cation:anion ratio.  相似文献   

9.
Vittal JJ  Dean PA 《Inorganic chemistry》1996,35(11):3089-3093
The salts (Ph(4)E)[M(SOCPh)(3)] (M = Zn, Cd, or Hg; E = P or As) are produced by the reaction of Zn(NO(3))(2).6 H(2)O, Cd(NO(3))(2).4H(2)O or HgCl(2) with Et(3)NH(+)PhCOS(-) and (Ph(4)E)X (E = P, X = Br; E = As, X = Cl) in aqueous MeOH in the ratios M(II):PhCOS(-):Ph(4)E(+) = 1:>/=3:>/=1. The crystal structures of (Ph(4)P)[Zn(SOCPh)(3)] (1), (Ph(4)As)[Cd(SOCPh)(3)] (2) and (Ph(4)P)[Hg(SOCPh)(3)] (3) have been determined by single-crystal X-ray diffraction experiments. Crystal data for 1: triclinic; space group P&onemacr;; Z = 2; a = 10.819(2) ?, b = 13.219(3) ?, c = 15.951(3) ?; alpha = 101.75(2) degrees, beta = 97.92(1) degrees, gamma = 109.18(2) degrees. Crystal data for 2: triclinic; space group P&onemacr;; Z= 2; a = 10.741(2) ?, b = 13.168(2) ?, c = 15.809(2) ?; alpha = 101.00(1) degrees, beta = 97.65(1) degrees, gamma = 109.88(1) degrees. Crystal data for 3: monoclinic; space group P2(1)/n; Z = 4; a = 13.302(2) ?, b = 14.276(2) ?, c = 21.108(2) ?; beta = 90.92(1) degrees. The compounds 1 and 2 are isomorphous and isostructural. In the anions [M(SOCPh)(3)](-) the metal atoms have trigonal planar coordination by three sulfur atoms. The metal atoms are further more weakly coordinated intramolecularly to one (M = Hg) or two (M = Zn, Cd) thiobenzoate oxygen atom(s). Using the Bond Valence approach it is found that the contribution of M.O bonding to the total bonding is in the order Cd > Zn > Hg. The metal ((113)Cd, (199)Hg) NMR signals of [M(SOCPh)(3)](-) (M = Cd, Hg) are more shielded than those found for MS(3) kernels in thiolate complexes, a difference attributed to the M(.)O bonding in the thiobenzoate complexes. The (113)Cd resonance of [Cd(SOCPh)(3)](-) in dilute solution is in the region anticipated from dilution data for [Na(Cd{SOCPh}(3))(2)](-).  相似文献   

10.
The K-Au-Ga system has been investigated at 350 °C for <50 at. % K. The potassium gold gallides K(0.55)Au(2)Ga(2), KAu(3)Ga(2), KAu(2)Ga(4) and the solid solution KAu(x)Ga(3-x) (x = 0-0.33) were synthesized directly from the elements via typical high-temperature reactions, and their crystal structures were determined by single crystal X-ray diffraction: K(0.55)Au(2)Ga(2) (I, I4/mcm, a = 8.860(3) ?, c = 4.834(2) ?, Z = 4), KAu(3)Ga(2) (II, Cmcm, a = 11.078(2) ?, b = 8.486(2) ?, c = 5.569(1) ?, Z = 4), KAu(2)Ga(4) (III, Immm, a = 4.4070(9) ?, b = 7.339(1) ?, c = 8.664(2) ?, Z = 2), KAu(0.33)Ga(2.67) (IV, I-4m2, a = 6.0900(9) ?, c = 15.450(3) ?, Z = 6). The first two compounds contain different kinds of tunnels built of puckered six- (II) or eight-membered (I) ordered Au/Ga rings with completely different cation placements: uniaxial in I and III but in novel 2D-zigzag chains in II. III contains only infinite chains of a potassium-centered 20-vertex polyhedron (K@Au(8)Ga(12)) built of ordered 6-8-6 planar Au/Ga rings. The main structural feature of IV is dodecahedral (Au/Ga)(8) clusters. Tight-binding electronic structure calculations by linear muffin-tin-orbital methods were performed for idealized models of I, II, and III to gain insights into their structure-bonding relationships. Density of states curves reveal metallic character for all compounds, and the overall crystal orbital Hamilton populations are dominated by polar covalent Au-Ga bonds. The relativistic effects of gold lead to formation of bonds of greater population with most post-transition elements or to itself, and these appear to be responsible for a variety of compounds, as in the K-Au-Ga system.  相似文献   

11.
Reaction of LRu(III)Cl(3) (L = 1,4,7-trimethyl-1,4,7-triazacyclononane) with 1,2-phenylenediamine (opdaH(2)) in H(2)O in the presence of air affords [LRu(II)(bqdi)(OH(2))](PF(6)) (1), where (bqdi) represents the neutral ligand o-benzoquinone diimine. From an alkaline methanol/water mixture of 1 was obtained the dinuclear species [{LRu(II)(bqdi)}(2)(&mgr;-H(3)O(2))](PF(6))(3) (1a). The coordinated water molecule in 1 is labile and can be readily substituted under appropriate reaction conditions by acetonitrile, yielding [LRu(II)(bqdi)(CH(3)CN)](PF(6))(2) (2), and by iodide and azide anions, affording [LRu(II)(bqdi)I](PF(6)).0.5H(2)O (3) and [LRu(bqdi)(N(3))](PF(6)).H(2)O (4), respectively. Heating of solid 4 in vacuum at 160 degrees C generates N(2) and the dinuclear, nitrido-bridged complex [{LRu(o-C(6)H(4)(NH)(2))}(2)(&mgr;-N)](PF(6))(2) (5). Complex 5 is a mixed-valent, paramagnetic species containing one unpaired electron per dinuclear unit whereas complexes 1-4 are diamagnetic. The crystal structures of 1, 1a.3CH(3)CN, 3, 4.H(2)O, and 5.3CH(3)CN.0.5(toluene) have been determined by X-ray crystallography: 1 crystallizes in the monoclinic space group P2(1)/m, Z = 2, with a = 8.412(2) ?, b = 15.562(3) ?, c = 10.025 ?, and beta = 109.89(2) degrees; 1a.3CH(3)CN, in the monoclinic space group C2/c, Z = 4, with a = 19.858(3) ?, b = 15.483(2) ?, c = 18.192(3) ?, and beta = 95.95(2) degrees; 3, in the orthorhombic space group Pnma, Z = 4, with a = 18.399(4) ?, b = 9.287(2) ?, and c = 12.052(2) ?, 4.H(2)O, in the monoclinic space group P2(1)/c, Z = 4, with a = 8.586(1) ?, b = 15.617(3) ?, c = 16.388(5) ?, and beta = 90.84(2) degrees; and 5.3CH(3)CN.0.5(toluene), in the monoclinic space group P2(1)/c, Z = 4, with a = 15.003(3) ?, b = 16.253(3) ?, c = 21.196(4) ?, and beta = 96.78(3) degrees. The structural data indicate that in complexes 1-4 the neutral o-benzoquinone diimine ligand prevails. In contrast, in 5 this ligand has predominantly o-phenylenediamide character, which would render 5 formally a mixed-valent Ru(IV)Ru(V) species. On the other hand, the Ru-N bond lengths of the Ru-N-Ru moiety at 1.805(5) and 1.767(5) ? are significantly longer than those in other crystallographically characterized Ru(IV)=N=Ru(IV) units (1.72-1.74 ?). It appears that the C(6)H(4)(NH)(2) ligand in 5 is noninnocent and that formal oxidation state assignments to the ligands or metal centers are not possible.  相似文献   

12.
The title compound, trans-bis(3-amino-2-phenyl-4H-1-benzopyran-4-one-κ2N,O4)bis(perchlorato-κO)copper(II), [Cu(ClO4)2(C15H11NO2)2], is composed of mononuclear units wherein the central CuII cation occupies a crystallographic inversion centre. The cation is coordinated by two bidentate 3-aminoflavone ligands occupying the equatorial sites and by two perchlorate anions in the apical positions, thereby giving rise to a markedly elongated octahedral coordination geometry. Two symmetry-related intermolecular N—H...O hydrogen bonds link the molecules into chains of rings running parallel to the [100] direction, while intramolecular N—H...O hydrogen bonds help to determine the orientation of the apical perchlorate anions.  相似文献   

13.
利用间接紫外毛细管区带电泳方法完成了对爆炸残留物中7种无机离子(K+,NH+4,NO-2,NO-3,SO2-4,ClO-3,ClO-4)的分离检测。阳离子测定采用的缓冲体系为10 mmol/L吡啶(pH 4.5)-3 mmol/L冠醚,K+和NH+4在2.6 min内达到基线分离,检出限分别为0.25 mg/L和0.10 mg/L(S/N=3)。阴离子测定采用的缓冲体系为40 mmol/L硼酸-1.8 mmol/L重铬酸钾-2 mmol/L硼酸钠(pH 8.6),氢氧化四甲铵为电渗流改性剂,5种阴离子在4.6 min内达到基线分离,检出限为0.10~1.85 mg/L。该方法已成功地应用于实际爆炸物样品种类的判定分析,取得了很好的结果。  相似文献   

14.
The second method for the synthesis of cis-[Ru(III)Cl(2)(cyclam)]Cl (1) (cyclam = 1,4,8,11-tetraazacyclotetradecane), with use of cis-Ru(II)Cl(2)(DMSO)(4) (DMSO = dimethyl sulfoxide) as a starting complex, is reported together with the synthesis of [Ru(II)(cyclam)(bpy)](BF(4))(2).H(2)O (2) (bpy = 2,2'-bipyridine) from 1. The syntheses of Ru complexes of tris(2-aminoethyl)amine (tren) are also reported. A reaction between K(3)[Ru(III)(ox)(3)] (ox = oxalate) and tren affords fac-[Ru(III)Cl(3)(trenH)]Cl.(1)/(2)H(2)O (3) (trenH = bis(2-aminoethyl)(2-ammonioethyl)amine = monoprotonated tren) and (H(5)O(2))(2)[K(tren)][Ru(III)Cl(6)] (4) as major products and gives fac-[Ru(III)Cl(ox)(trenH)]Cl.(3)/(2)H(2)O (5) in very low reproducibility. A reaction between 3 and bpy affords [Ru(II)(baia)(bpy)](BF(4))(2) (6) (baia = bis(2-aminoethyl)(iminomethyl)amine), in which tren undergoes a selective dehydrogenation into baia. The crystal structures of 2-6 have been determined by X-ray diffraction, and their structural features are discussed in detail. Crystallographic data are as follows: 2, RuF(8)ON(6)C(20)B(2)H(34), monoclinic, space group P2(1)/c with a = 12.448(3) ?, b = 13.200(7) ?, c = 17.973(4) ?, beta = 104.28(2) degrees, V = 2862(2) ?(3), and Z = 4; 3, RuCl(4)O(0.5)N(4)C(6)H(20), monoclinic, space group P2(1)/a with a = 13.731(2) ?, b = 14.319(4) ?, c = 13.949(2) ?, beta = 90.77(1) degrees, V = 2742(1) ?(3), and Z = 8; 4, RuKCl(6)O(4)N(4)C(6)H(28), trigonal, space group R&thremacr; with a = 10.254(4), c = 35.03(1) ?, V = 3190(2) ?(3), and Z = 6; 5, RuCl(2)O(5.5)N(4)C(8)H(22), triclinic, space group P&onemacr; with a = 10.336(2) ?, b = 14.835(2) ?, c = 10.234(1) ?, alpha = 90.28(1) degrees, beta = 90.99(1) degrees, gamma = 92.07(1) degrees, V = 1567.9(4) ?(3), and Z = 4; 6, RuF(8)N(6)C(16)B(2)H(24), monoclinic, space group P2(1)/c, a = 10.779(2) ?, b = 14.416(3) ?, c = 14.190(2) ?, beta = 93.75(2) degrees, V = 2200.3(7) ?(3), and Z = 4. Compound 4 possesses a very unique layered structure made up of both anionic and cationic slabs, {[K(tren)](2)[Ru(III)Cl(6)]}(n)()(n)()(-) and {(H(5)O(2))(4)[Ru(III)Cl(6)]}(n)()(n)()(+) (n = infinity), in which both sheets {[K(tren)](2)}(n)()(2)(n)()(+) and {(H(5)O(2))(4)}(n)()(4)(n)()(+) offer cylindrical pores that are occupied with the [Ru(III)Cl(6)](3)(-) anions. The presence of a C=N double bond of baia in 6 is judged from the C-N distance of 1.28(2) ?. It is suggested that the structural restraint enhanced by the attachment of alkylene chelates at the nitrogen donors of amines results in either the mislocation or misdirection of the donors, leading to the elongation of the Ru-N(amine) distances and to the weakening of their trans influence. Such structural strain is also discussed as related to the spectroscopic and electrochemical properties of the cis-[Ru(II)L(4)(bpy)](2+) complexes (L(4) = (NH(3))(4), (ethylenediamine)(2), and cyclam).  相似文献   

15.
1 INTRODUCTION Polynitrile compound Na(cda) is a very useful ligand and its complexes have been synthesized[1~3], in which the two-dimensional Eu(III) complex exhi- bits the strongest fluorescence and non-linear optic property[4]. We originally want to…  相似文献   

16.
A series of novel organically templated metal sulfates, [C(5)H(14)N(2)][M(II)(H(2)O)(6)](SO(4))(2) with (M(II) = Mn (1), Fe (2), Co (3) and Ni (4)), have been successfully synthesized by slow evaporation and characterized by single-crystal X-ray diffraction as well as with infrared spectroscopy, thermogravimetric analysis and magnetic measurements. All compounds were prepared using a racemic source of the 2-methylpiperazine and they crystallized in the monoclinic systems, P2(1)/n for (1, 3) and P2(1)/c for (2,4). Crystal data are as follows: [C(5)H(14)N(2)][Mn(H(2)O)(6)](SO(4))(2), a = 6.6385(10) ?, b = 11.0448(2) ?, c = 12.6418(2) ?, β = 101.903(10)°, V = 906.98(3) ?(3), Z = 2; [C(5)H(14)N(2)][Fe(H(2)O)(6)](SO(4))(2), a = 10.9273(2) ?, b = 7.8620(10) ?, c = 11.7845(3) ?, β = 116.733(10)°, V = 904.20(3) ?(3), Z = 2; [C(5)H(14)N(2)][Co(H(2)O)(6)](SO(4))(2), a = 6.5710(2) ?, b = 10.9078(3) ?, c = 12.5518(3) ?, β = 101.547(2)°, V = 881.44(4) ?(3), Z = 2; [C(5)H(14)N(2)][Ni(H(2)O)(6)](SO(4))(2), a = 10.8328(2) ?, b = 7.8443(10) ?, c = 11.6790(2) ?, β = 116.826(10)°, V = 885.63(2) ?(3), Z = 2. The three-dimensional structure networks for these compounds consist of isolated [M(II)(H(2)O)(6)](2+) and [C(5)H(14)N(2)](2+) cations and (SO(4))(2-) anions linked by hydrogen-bonds only. The use of racemic 2-methylpiperazine results in crystallographic disorder of the amines and creation of inversion centers. The magnetic measurements indicate that the Mn complex (1) is paramagnetic, while compounds 2, 3 and 4, (M(II) = Fe, Co, Ni respectively) exhibit single ion anisotropy.  相似文献   

17.
1 INTRODUCTION The donor properties of pyridine N-oxide and its substituted derivatives to form metal complexes have been widely investigated[1~3]. The resulting comple- xes were used as drugs[4] and catalysts[5]. So far, there have been a few reports on the synthesis of Schiff base derived from picolinaldehyde N-oxide with se- micarbazone (PNOS Scheme 1) and its metal com- plexes. And crystal structures of the complexes of PNOS with Au(III)[6], Pd(II)[7] and Cu(II)[8] were re- …  相似文献   

18.
<正> The title compound, (C33H42N4O12K)C6H2N3O7·H2O·CH3OH,Mr = 1003. 98,space group P1,a=11. 458(2) ,b= 14. 565(6) ,c=15. 828(3) A ;α=63. 34 (2),β=74. 06(1),γ=81. 03(2)°,V=2268. 1 A3;Z = 2,Dx = l. 47g/cm3,λ=0. 71069 A (MoKa).The final R = 0. 041 for 1700 observed reflections (I≥3σ(I)). The molecule is sandwich-like, and the cation K+ is sandwiched between the two crown rings.  相似文献   

19.
The influence of the nature of alkali metal cations on the structure of the species obtained from the trivacant precursor A-alpha-[SiW(9)O(34)](10-) has been studied. Starting from the potassium salt 1, K(10)A-alpha-[SiW(9)O(34)].24H(2)O, the sandwich-type complex 2, K(10.75)[Co(H(2)O)(6)](0.5)[Co(H(2)O)(4)Cl](0.25)A-alpha-[K(2)(Co(H(2)O)(2))(3)(SiW(9)O(34) )(2)].32H(2)O, has been obtained. The crystal structures of these two compounds consist of two A-alpha-[SiW(9)O(34)](10-) anions linked by a set of potassium (1) or cobalt plus potassium cations (2), and the relative orientation of the two half-anions is the same. Attempts to link two A-alpha-[SiW(9)O(34)](10-) anions by tungsten atoms instead of cobalt failed whatever the alkali metal cation. Moreover, the nondisordered structure of Cs(15)[K(SiW(11)O(39))(2)].39H(2)O is described. Two [SiW(11)O(39)](8-) anions are linked through a potassium cation with a "trans-oid" conformation, and the potassium occupies a cubic coordination site.  相似文献   

20.
An extensive series of radical salts formed by the organic donor bis(ethylenedithio)tetrathiafulvalene (ET), the paramagnetic tris(oxalato)ferrate(III) anion [Fe(C(2)O(4))(3)](3-), and halobenzene guest molecules has been synthesized and characterized. The change of the halogen atom in this series has allowed the study of the effect of the size and charge polarization on the crystal structures and physical properties while keeping the geometry of the guest molecule. The general formula of the salts is ET(4)[A(I)Fe(C(2)O(4))(3)]·G with A/G = H(3)O(+)/PhF (1); H(3)O(+)/PhCl (2); H(3)O(+)/PhBr (3), and K(+)/PhI (4), (crystal data at room temperature: (1) monoclinic, space group C2/c with a = 10.3123(2) ?, b = 20.0205(3) ?, c = 35.2732(4) ?, β = 92.511(2)°, V = 7275.4(2) ?(3), Z = 4; (2) monoclinic, space group C2/c with a = 10.2899(4) ?, b = 20.026(10) ?, c = 35.411(10) ?, β = 92.974°, V = 7287(4) ?(3), Z = 4; (3) monoclinic, space group C2/c with a = 10.2875(3) ?, b = 20.0546(15) ?, c = 35.513(2) ?, β = 93.238(5)°, V = 7315.0(7) ?(3), Z = 4; (4) monoclinic, space group C2/c with a = 10.2260(2) ?, b = 19.9234(2) ?, c = 35.9064(6) ?, β = 93.3664(6)°, V = 7302.83(18) ?(3), Z = 4). The crystal structures at 120 K evidence that compounds 1-3 undergo a structural transition to a lower symmetry phase when the temperature is lowered (crystal data at 120 K: (1) triclinic, space group P1 with a = 10.2595(3) ?, b = 11.1403(3) ?, c = 34.9516(9) ?, α = 89.149(2)°, β = 86.762(2)°, γ = 62.578(3)°, V = 3539.96(19) ?(3), Z = 2; (2) triclinic, space group P1 with a = 10.25276(14) ?, b = 11.15081(13) ?, c = 35.1363(5) ?, α = 89.0829(10)°, β = 86.5203(11)°, γ = 62.6678(13)°, V = 3561.65(8) ?(3), Z = 2; (3) triclinic, space group P1 with a = 10.25554(17) ?, b = 11.16966(18) ?, c = 35.1997(5) ?, α = 62.7251(16)°, β = 86.3083(12)°, γ = 62.7251(16)°, V = 3575.99(10) ?(3), Z = 2; (4) monoclinic, space group C2/c with a = 10.1637(3) ?, b = 19.7251(6) ?, c = 35.6405(11) ?, β = 93.895(3)°, V = 7128.7(4) ?(3), Z = 4). A detailed crystallographic study shows a change in the symmetry of the crystal for compound 3 at about 200 K. This structural transition arises from the partial ordering of some ethylene groups in the ET molecules and involves a slight movement of the halobenzene guest molecules (which occupy hexagonal cavities in the anionic layers) toward one of the adjacent organic layers, giving rise to two nonequivalent organic layers at 120 K (compared to only one at room temperature). The structural transition at about 200 K is also observed in the electrical properties of 1-3 and in the magnetic properties of 1. The direct current (dc) conductivity shows metallic behavior in salts 1-3 with superconducting transitions at about 4.0 and 1.0 K in salts 3 and 1, respectively. Salt 4 shows a semiconductor behavior in the temperature range 300-50 K with an activation energy of 64 meV. The magnetic measurements confirm the presence of high spin S = 5/2 [Fe(C(2)O(4))(3)](3-) isolated monomers together with a Pauli paramagnetism, typical of metals, in compounds 1-3. The magnetic properties can be very well reproduced in the whole temperature range with a simple model of isolated S = 5/2 ions with a zero field splitting plus a temperature independent paramagnetism (Nα) with the following parameters: g = 1.965, |D| = 0.31 cm(-1), and Nα = 1.5 × 10(-3) emu mol(-1) for 1, g = 2.024, |D| = 0.65 cm(-1), and Nα = 1.4 × 10(-3) emu mol(-1) for 2, and g = 2.001, |D| = 0.52 cm(-1), and Nα = 1.5 × 10(-3) emu mol(-1) for 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号