首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photolysis of (eta(6)-arene)Cr(CO)(3) complexes and HSnPh(3) in aromatic solvents at room temperature has led to two classes of complexes: hydrido stannyl compounds containing the eta(2)-H-SnPh(3) ligand and bis(stannyl) compounds containing two SnPh(3) ligands. The ratio between the two complexes simultaneously produced depends on the choice of the arene. Complexes with different arenes (mesitylene, toluene, benzene, fluorobenzene, and difluorobenzene) have been obtained and characterized including X-ray structures for (eta(6)-C(6)H(3)(CH(3))(3))Cr(CO)(2)(H)(SnPh(3)) (1a), (eta(6)-C(6)H(3)(CH(3))(3))Cr(CO)(2)(SnPh(3))(2) (1b), (eta(6)-C(6)H(5)F)Cr(CO)(2)(SnPh(3))(2) (4b), and (eta(6)-C(6)H(4)F(2))Cr(CO)(2)(SnPh(3))(2) (5b). X-ray crystallography of the last three compounds has given the following results: 1b, monoclinic, space group P2(1)/c (No. 14), a = 13.905(4) ?, b = 18.499(2) ?, c = 17.708(2) ?, Z = 4, V = 4285(1) ?(3); 4b, orthorhombic, space group Pca2(1) (No. 29), a = 16.717(2) ?, b = 18.453(2) ?, c = 25.766(2) ?, Z = 8, V = 7948(2) ?(3); 5b, monoclinic, space group P2(1)/c (No. 14), a = 13.756(2) ?, b = 18.560(2) ?, c = 17.159(2) ?, Z = 4, V = 4372(2) ?(3). The relatively high J((119)Sn-Cr-H) and J((117)Sn-Cr-H) values as well as the X-ray structural data provide evidence for the existence of three-center two-electron bonds in the hydrido stannyl complexes. The (1)H NMR data of the complexes are compared with chromium-arene bond distances, and a sensible trend is observed and discussed.  相似文献   

2.
A theoretical study including full geometry optimizations is carried out at the IMOMM(MP2:MM3) (IMOMM = integrated molecular orbital molecular mechanics) computational level on the [ReH(5)(PPh(i)()Pr(2))(2)(SiHPh(2))(2)] and [ReH(5)(PCyp(3))(2)(SiH(2)Ph)(2)] systems, the results being compared with available experimental diffraction data, as well as with MP2 results on the model system [ReH(5)(PH(3))(2)(SiH(3))(2)]. A simple scheme for the analysis of the relative weight of different contributions to the "steric" distortion is also proposed and applied to the same [ReH(5)(PPh(i)()Pr(2))(2)(SiHPh(2))(2)] and [ReH(5)(PCyp(3))(2)(SiH(2)Ph)(2)] species.  相似文献   

3.
Extended labeling experiments have shown that formation of rhodium peroxocarbonate from CO(2) and [RhCl(eta(2)-O(2))(P)(3)] (P is PEt(2)Ph or PEtPh(2)) proceeds through O-O bond cleavage and CO(2) insertion. O-transfer to ancillary phosphine ligand to give R(3)P=O selectively (>85%) involves the Rh-linked O atom of the peroxo group of RhCl(CO(4))(P)(3).  相似文献   

4.
A series of new dicationic dihydrogen complexes of ruthenium of the type cis-[(dppm)(2)Ru(eta(2)-H(2))(L)][BF(4)](2) (dppm = Ph(2)PCH(2)PPh(2); L = P(OMe)(3), P(OEt)(3), PF(O(i)Pr)(2)) have been prepared by protonating the precursor hydride complexes cis-[(dppm)(2)Ru(H)(L)][BF(4)] (L = P(OMe)(3), P(OEt)(3), P(O(i)Pr)(3)) using HBF(4).Et(2)O. The cis-[(dppm)(2)Ru(H)(L)][BF(4)] complexes were obtained from the trans hydrides via an isomerization reaction that is acid-accelerated. This isomerization reaction gives mixtures of cis and trans hydride complexes, the ratios of which depend on the cone angles of the phosphite ligands: the greater the cone angle, the greater is the amount of the cis isomer. The eta(2)-H(2) ligand in the dihydrogen complexes is labile, and the loss of H(2) was found to be reversible. The protonation reactions of the starting hydrides with trans PMe(3) or PMe(2)Ph yield mixtures of the cis and the trans hydride complexes; further addition of the acid, however, give trans-[(dppm)(2)Ru(BF(4))Cl]. The roles of the bite angles of the dppm ligand as well as the steric and the electronic properties of the monodentate phosphorus ligands in this series of complexes are discussed. X-ray crystal structures of trans-[(dppm)(2)Ru(H)(P(OMe)(3))][BF(4)], cis-[(dppm)(2)Ru(H)(P(OMe)(3))][BF(4)], and cis-[(dppm)(2)Ru(H)(P(O(i)Pr)(3))][BF(4)] complexes have been determined.  相似文献   

5.
Several new polyhydride complexes of rhenium containing the tridentate phosphine PhP(CH(2)CH(2)CH(2)PCy(2))(2) (Cyttp) were synthesized and characterized by (1)H and (31)P{(1)H} NMR and IR spectroscopy. The solid state structure of the previously reported ReH(5)(Cyttp) (1) was determined by X-ray crystallography. 1 crystallizes in the space group P2(1)/m with the following unit cell parameters: a = 8.582(2) ?, b = 19.690(2) ?, c = 10.800(2) ?, beta = 95.57(1) degrees, and Z = 2. The molecule adopts a classical polyhydride, triangulated dodecahedral structure, with the three phosphorus atoms and one hydrogen atom occupying the B sites, and the remaining hydrogen atoms occupying the A sites. 1 is protonated by HSbF(6) (or HBF(4)) to yield [ReH(4)(eta(2)-H(2))(Cyttp)]SbF(6) (3), which was shown by X-ray diffraction techniques (space group P&onemacr;, unit cell parameters: a = 9.874(2) ?, b = 14.242(4) ?, c = 16.198(2) ?, alpha = 99.12(2) degrees, beta = 98.85(2) degrees, gamma = 109.42(2) degrees, and Z = 2) to contain a nonclassical polyhydride cation with a triangulated dodecahedral structure in the solid. The same structure is suggested in solution by (1)H NMR data (including T(1) measurements). 3 is inert to loss of H(2) and is unaffected by CO, t-BuNC, and P(OMe)(3) at room temperature. In contrast, 1 reacts with a variety of reagents to afford classical tetrahydride complexes which are thought also to possess a triangulated dodecahedral structure, with the hydrogens in the A sites, from spectroscopic evidence. Accordingly, CS(2), p-O(2)NC(6)H(4)NCS, and EtOC(O)NCS (X=C=S) insert into an Re-H bond to yield ReH(4)(SCH=X)(Cyttp) (5-7, respectively). MeI cleaves one Re-H bond to afford ReH(4)I(Cyttp) (8), and [C(7)H(7)]BF(4) abstracts hydride in the presence of MeCN, t-BuNC, CyNC, or P(OMe)(3) (L) to give [ReH(4)L(Cyttp)]BF(4) (9-12, respectively). A related pentahydride, ReH(5)(ttp) (2, ttp = PhP(CH(2)CH(2)CH(2)PPh(2))(2)), also reacts with HSbF(6) to yield [ReH(6)(ttp)]SbF(6) (4), which appears to be a nonclassical polyhydride in solution by T(1) measurements.  相似文献   

6.
The tetrahydroborate OsH(η(2)-H(2)BH(2))(CO)(P(i)Pr(3))(2) (1) reacts with aniline and p-toluidine to give the aminoboryl derivatives [chemical structure: see text] (R = H (2), CH(3) (3)) and four H(2) molecules. Treatment of 2 and 3 with phenylacetylene gives Os{B(NHC(6)H(4)R)(2)}(C≡CPh)(CO)(P(i)Pr(3))(2) (R = H (4), CH(3) (5)), which react with HBF(4) to afford the amino(fluoro)boryl species Os{BF(NHC(6)H(4)R)}(C≡CPh)(CO)(P(i)Pr(3))(2) (R = H (6), CH(3) (7)). In contrast to HBF(4), the addition of acetic acid to 4 and 5 induces the release of phenylacetylene and the formation of the six-coordinate derivatives Os{B(NHC(6)H(4)R)(2)}(κ(2)-O(2)CCH(3))(CO)(P(i)Pr(3))(2) (R = H (8), CH(3) (9)). The coordination number six for 4 and 5 can be also achieved by addition of CO. Under this gas Os{B(NHC(6)H(4)R)(2)}(C≡CPh)(CO)(2)(P(i)Pr(3))(2) (R = H (10), CH(3) (11)) are formed. In toluene, these alkynyl-aminoboryl compounds evolve into the aminoborylvinylidenes Os{═C═C(Ph)B(NHC(6)H(4)R)(2)}(CO)(2)(P(i)Pr(3))(2) (R = H (12), CH(3) (13)) via a unimolecular 1,3-boryl migration from the metal to the C(β) atom of the alkynyl ligand. Similarly to 4 and 5, complexes 6 and 7 coordinate CO to give Os{BF(NHC(6)H(4)R)}(C≡CPh)(CO)(2)(P(i)Pr(3))(2) (R = H (15), CH(3) (16)), which evolve to Os{═C═C(Ph)BF(NHC(6)H(4)R)}(CO)(2)(P(i)Pr(3))(2) (R = H (17), CH(3) (18)).  相似文献   

7.
The reactivity of [HMCo3(CO)12] and [Et4N][MCo3(CO)12] (M = Fe, Ru) toward phosphine selenides such as Ph3PSe, Ph2P(Se)CH2PPh2, Ph2(2-C5H4N)PSe, Ph2(2-C4H3S)PSe, and Ph2[(2-C5H4N)(2-C4H2S)]PSe has been studied with the aim to obtain new selenido-carbonyl bimetallic clusters. The reactions of the hydrido clusters give two main classes of products: (i) triangular clusters with a mu3-Se capping ligand of the type [MCo2(mu3-Se)(CO)(9-x)L(y)] resulting from the selenium transfer (x = y = 1, 2, with L = monodentate ligand; x = 2, 4, and y = 1, 2, with L = bidentate ligand) (M = Fe, Ru) and (ii) tetranuclear clusters of the type [HMCo3(CO)12xL(y)] obtained by simple substitution of axial, Co-bound carbonyl groups by the deselenized phosphine ligand. The crystal structures of [HRuCo3(CO)7(mu-CO)3(mu-dppy)] (1), [MCo2(mu3-Se)(CO)7(mu-dppy)] (M = Fe (16) or Ru (2)), and [RuCo2(mu3-Se)(CO)7(mu-dppm)] (12) are reported [dppy = Ph2(2-C5H4N)P, dppm = Ph2PCH2PPh2]. Clusters 2, 12, and 16 are the first examples of trinuclear bimetallic selenido clusters substituted by phosphines. Their core consists of metal triangles capped by a mu3-selenium atom with the bidentate ligand bridging two metals in equatorial positions. The core of cluster 1 consists of a RuCo3 tetrahedron, each Co-Co bond being bridged by a carbonyl group and one further bridged by a dppy ligand. The coordination of dppy in a pseudoaxial position causes the migration of the hydride ligand to the Ru(mu-H)Co edge. In contrast to the reactions of the hydrido clusters, those with the anionic clusters [MCo3(CO)12]- do not lead to Se transfer from phosphorus to the cluster but only to CO substitution by the deselenized phosphine.  相似文献   

8.
RuH(Ph)(CO)L(2) (L = P(t)Bu(2)Me) reacts with SiH(2)Ph(2) to give first benzene and RuH(SiHPh(2))(CO)L(2), and then RuH(3)(SiHPh(2))(CO)L(2) and Ru(H)(2)(CO)L(2), the trihydride being formed by a dehydrogenative silane coupling reaction when excess SiH(2)Ph(2) is present. Variable-temperature spin saturation transfer experiments reveal exchange between H(a) and H(b) in RuH(a)(SiH(b)Ph(2))(CO)L(2); this occurs both by an intramolecular mechanism and (when SiH(2)Ph(2) is present) by a mechanism dependent on SiH(2)Ph(2) concentration. Spin saturation transfer also reveals exchange between all three of the above complexes via addition/loss of SiH(2)Ph(2) or H(2).  相似文献   

9.
Treatment in acetonitrile at -30 C of the hydride-alkenylcarbyne complex [OsH([triple bond]CCH=CPh2)(CH3CN)2(P(i)Pr3)2][BF4]2 (1) with (t)BuOK produces the selective deprotonation of the alkenyl substituent of the carbyne and the formation of the bis-solvento hydride-allenylidene derivative [OsH(=C=C=CPh2)(CH3CN)2(P(i)Pr3)2]BF4 (2), which under carbon monoxide atmosphere is converted into [Os(CH=C=CPh2)(CO)(CH3CN)2(P(i)Pr3)2]BF4 (3). When the treatment of 1 with (t)BuOK is carried out in dichloromethane at room temperature, the fluoro-alkenylcarbyne [OsHF([triple bond]CCH=CPh2)(CH3CN)(P(i)Pr3)2]BF4 (4) is isolated. Complex 2 reacts with terminal alkynes. The reactions with phenylacetylene and cyclohexylacetylene afford [Os[(E)-CH=CHR](=C=C=CPh2)(CH3CN)2(P(i)Pr3)2]BF4 (R = Ph (5), Cy (6)), containing an alkenyl ligand beside the allenylidene, while the reaction with acetylene in dichloromethane at -20 degrees C gives the hydride-allenylidene-pi-alkyne [OsH(=C=C=CPh2)(eta2-HC[triple bond]CH)(P(i)Pr3)2]BF4 (7), with the alkyne acting as a four-electron donor ligand. In acetonitrile under reflux, complexes 5 and 6 are transformed into the osmacyclopentapyrrole compounds [Os[C=C(CPh2CR=CH)CMe=NH](CH3CN)2]BF4 (R = Ph (8), Cy (9)), as a result of the assembly of the allenylidene ligand, the alkenyl group, and an acetonitrile molecule. The X-ray structures of 2, 5, and 8 are also reported.  相似文献   

10.
This paper reports the synthesis, structure, and properties of a series of PNP pincer complexes of osmium OsH(3)Cl[HN(C(2)H(4)P(i)Pr(2))(2)] (1), OsH(3)[N(C(2)H(4)P(i)Pr(2))(2)] (2), OsH(4)[HN(C(2)H(4)P(i)Pr(2))(2)] (3), and OsH(2)(PMe(3))[HN(C(2)H(4)P(i)Pr(2))(2)] (4). The tetrahydride 3 operates as an efficient catalyst at 0.1 mol% loading for the reactions of amination and dehydrogenative coupling of primary alcohols, producing secondary amines and symmetrical esters, respectively. The catalyst 3 is distinguished by outstanding stability, and it can be used in an aqueous environment at temperatures as high as 200 °C.  相似文献   

11.
Oxidative addition of the silanes R(3)SiH (R(3)= Ph(3), Et(3), EtMe(2)) to the unsaturated cluster [Os(3)(micro-H)[micro(3)-Ph(2)PCH(2)PPh(C(6)H(4))](CO)(8)] leads to the saturated clusters [Os(3)(micro-H)(SiR(3))(CO)(9)(micro-dppm)](SiR(3)= SiPh(3) 1, SiEt(3) 2 and SiEtMe(2)3) and the unsaturated clusters [Os(3)(micro -H)(2)(SiR(3))[micro(3)-Ph(2)PCH(2)PPh(C(6)H(4))](CO)(7)](SiR(3)= SiPh(3) 4, SiEt(3) 5 and SiEtMe(2)6). Structures are based on spectroscopic evidence and a XRD structure of [Os(3)(micro-H)(SiPh(3))(CO)(9)(micro-dppm)] 1 in which all non-CO ligands are coordinated equatorially and the hydride and the silyl groups are mutually cis. From variable-temperature (1)H NMR spectra of the SiEt(3) compound 2, exchange of the P nuclei is clearly apparent. Simultaneous migrations of the SiEt(3) group and of the hydride from one Os-Os edge to another generate a time-averaged mirror plane in the molecule. VT (1)H NMR spectra of the somewhat less bulky compound [Os(3)(micro-H)(SiMe(2)Et)(CO)(9)(micro-dppm)] 3 have been analysed. Two isomers 3a and 3b are observed with the hydride ligand located on different Os-Os edges. Synchronous migration of the hydride and SiMe(2)Et groups is faster than the observed interconversion of isomers which occurs by hydride migration alone. The synchronous motion of H and SiR(3)only occurs when these ligands are mutually cis as in the major isomer 3a and we propose that this process requires the formation of a transient silane complex of the type [Os(3)(eta(2)-HSiR(3))(CO)(9)(micro-dppm)]. Turnstile rotation within an Os(CO)(3)(eta(2)-HSiR(3)) group leads to the observed exchange within the major isomer 3a without exchange with the minor isomer. This process is not observed for the minor isomer 3b because the hydride and the silyl group are mutually trans. Protonation to give [Os(3)(micro-H)(2)(SiR(3))(CO)(9)(micro-dppm)](+) totally suppresses the dynamic behaviour because there are no edge vacancies.  相似文献   

12.
The reaction of Ru(5)(CO)(12)(eta(6)-C(6)H(6))(mu(5)-C), 7, with Pt(PBu(t)(3))(2) yielded two products Ru(5)(CO)(12)(eta(6)-C(6)H(6))(mu(6)-C)[Pt(PBu(t)(3))], 8, and Ru(5)(CO)(12)(eta(6)-C(6)H(6))(mu(6)-C)[Pt(PBu(t)(3))](2), 9. Compound 8 contains a Ru(5)Pt metal core in an open octahedral structure. In solution, 8 exists as a mixture of two isomers that interconvert rapidly on the NMR time scale at 20 degrees C, DeltaH() = 7.1(1) kcal mol(-1), DeltaS() = -5.1(6) cal mol(-)(1) K(-)(1), and DeltaG(298)(#) = 8.6(3) kcal mol(-1). Compound 9 is structurally similar to 8, but has an additional Pt(PBu(t)(3)) group bridging an Ru-Ru edge of the cluster. The two Pt(PBu(t)(3)) groups in 9 rapidly exchange on the NMR time scale at 70 degrees C, DeltaH(#) = 9.2(3) kcal mol(-)(1), DeltaS(#) = -5(1) cal mol(-)(1) K(-)(1), and DeltaG(298)(#) = 10.7(7) kcal mol(-1). Compound 8 reacts with hydrogen to give the dihydrido complex Ru(5)(CO)(11)(eta(6)-C(6)H(6))(mu(6)-C)[Pt(PBu(t)(3))](mu-H)(2), 10, in 59% yield. This compound consists of a closed Ru(5)Pt octahedron with two hydride ligands bridging two of the four Pt-Ru bonds.  相似文献   

13.
Yih KH  Lee GH  Wang Y 《Inorganic chemistry》2003,42(4):1092-1100
The doubly bridged pyridine-2-thionate (pyS) dimolybdenum complex [Mo(eta(3)-C(3)H(5))(CO)(2)](2)(mu-eta(1),eta(2)-pyS)(2) (1) is accessible by the reaction of [Mo(eta(3)-C(3)H(5))(CO)(2)(CH(3)CN)(2)Br] with pySK in methanol at room temperature. Complex 1 reacts with piperidine in acetonitrile to give the complex [Mo(eta(3)-C(3)H(5))(CO)(2)(eta(2)-pyS)(C(5)H(10)NH)] (2). Treatment of 1 with 1,10-phenanthroline (phen) results in the formation of complex [Mo(eta(3)-C(3)H(5))(CO)(2)(eta(1)-pyS)(phen)] (3), in which the pyS ligand is coordinated to Mo through the sulfur atom. Four conformational isomers, endo,exo-complexes [Mo(eta(3)-C(3)H(5))(CO)(eta(2)-pyS)(eta(2)-diphos)] (diphos = dppm, 4a-4d; dppe, 5a-5d), are accessible by the reactions of 1 with dppm and dppe in refluxing acetonitrile. Homonuclear shift-correlated 2-D (31)P((1)H)-(31)P((1)H) NMR experiments of the mixtures 4a-4d have been employed to elucidate the four stereoisomers. The reaction of 4 and pySK or [Mo(CO)(3)(eta(1)-SC(5)H(4)NH)(eta(2)-dppm)] (6) and O(2) affords allyl-displaced seven-coordinate bis(pyridine-2-thionate) complex [Mo(CO)(eta(2)-pyS)(2)(eta(2)-dppm)] (7). All of the complexes are identified by spectroscopic methods, and complexes 1, 5d, 6, and 7 are determined by single-crystal X-ray diffraction. Complexes 1 and 5d crystallize in the orthorhombic space groups Pbcn and Pbca with Z = 4 and 8, respectively, whereas 6 belongs to the monoclinic space group C2/c with Z = 8 and 7 belongs to the triclinic space group Ponemacr; with Z = 2. The cell dimensions are as follows: for 1, a = 8.3128(1) A, b = 16.1704(2) A, c = 16.6140(2) A; for 5d, a = 17.8309(10) A, b = 17.3324(10) A, c = 20.3716(11) A; for 6, a = 18.618(4) A, b = 16.062(2) A, c = 27.456(6) A, beta = 96.31(3) degrees; for 7, a = 9.1660(2) A, b = 12.0854(3) A, c = 15.9478(4) A, alpha = 78.4811(10) degrees, beta = 80.3894(10) degrees, gamma = 68.7089(11) degrees.  相似文献   

14.
Treatment of 0.5 equiv of [Cp*IrCl(2)](2) with 1/3-P(i)Pr(2)-2-S(t)Bu-indene afforded Cp*Ir(Cl)(kappa(2)-3-P(i)Pr(2)-2-S-indene) (1) in 95% yield (Cp* = eta(5)-C(5)Me(5)). Addition of AgOTf or LiB(C(6)F(5))(4) x 2.5 OEt(2) to 1 gave [Cp*Ir(kappa(2)-3-P(i)Pr(2)-2-S-indene)](+)X(-) ([2](+)X(-); X = OTf, 78%; X = B(C(6)F(5))(4), 82%), which represent the first examples of isolable coordinatively unsaturated [Cp'Ir(kappa(2)-P,S)](+)X(-) complexes. Exposure of [2](+)OTf(-) to CO afforded [2 x CO](+)OTf(-) in 91% yield, while treatment of [2](+)B(C(6)F(5))(4)(-) with PMe(3) generated [2 x PMe(3)](+)B(C(6)F(5))(4)(-) in 94% yield. Treatment of 1 with K(2)CO(3) in CH(3)CN allowed for the isolation of the unusual adduct 3 x CH(3)CN (41% isolated yield), in which the CH(3)CN bridges the Lewis acidic Cp*Ir and Lewis basic indenide fragments of the targeted coordinatively unsaturated zwitterion Cp*Ir(kappa(2)-3-P(i)Pr(2)-2-S-indenide) (3). In contrast to the formation of [2 x CO](+)OTf(-), exposure of 3 x CH(3)CN to CO did not afford 3 x CO; instead, a clean 1:1 mixture of (kappa(2)-3-P(i)Pr(2)-2-S-indene)Ir(CO)(2) (4) and 1,2,3,4-tetramethylfulvene was generated. Treatment of [2](+)OTf(-) with Ph(2)SiH(2) resulted in the net loss of Ph(2)Si(OTf)H to give Cp*Ir(H)(kappa(2)-3-P(i)Pr(2)-2-S-indene) (5) in 44% yield. In contrast, treatment of [2](+)B(C(6)F(5))(4)(-) with Ph(2)SiH(2) or PhSiH(3) proceeded via H-Si addition across Ir-S to give the corresponding [Cp*Ir(H)(kappa(2)-3-P(i)Pr(2)-2-S(SiHPhX)-indene)](+)B(C(6)F(5))(4)(-) complexes 6a (X = Ph, 68%) or 6b (X = H, 77%), which feature a newly established S-Si linkage. Compound 6a was observed to effect net C-O bond cleavage in diethyl ether with net loss of Ph(2)Si(OEt)H, affording [Cp*Ir(H)(kappa(2)-3-P(i)Pr(2)-2-SEt-indene)](+)B(C(6)F(5))(4)(-) (7) in 77% yield. Furthermore, 6a proved capable of transferring Ph(2)SiH(2) to acetophenone, with concomitant regeneration of [2](+)B(C(6)F(5))(4)(-); however, [2](+)X(-) did not prove to be effective ketone hydrosilylation catalysts. Treatment of 1/3-P(i)Pr(2)-2-S(t)Bu-indene with 0.5 equiv of [Cp*RhCl(2)](2) gave Cp*Rh(Cl)(kappa(2)-3-P(i)Pr(2)-2-S-indene) (8) in 94% yield. Combination of 8 and LiB(C(6)F(5))(4) x 2.5 Et(2)O produced the coordinatively unsaturated cation [Cp*Rh(kappa(2)-3-P(i)Pr(2)-2-S-indene)](+)B(C(6)F(5))(4)(-) ([9](+)B(C(6)F(5))(4)(-)), which was transformed into [Cp*Rh(H)(kappa(2)-3-P(i)Pr(2)-2-S(SiHPh(2))-indene)](+)B(C(6)F(5))(4)(-) (10) via net H-Si addition of Ph(2)SiH(2) to Rh-S. Unlike [2](+)X(-), complex [9](+)B(C(6)F(5))(4)(-) was shown to be an effective catalyst for ketone hydrosilylation. Treatment of 3 x CH(3)CN with Ph(2)SiH(2) resulted in the loss of CH(3)CN, along with the formation of Cp*Ir(H)(kappa(2)-3-P(i)Pr(2)-2-S-(1-diphenylsilylindene)) (11) (64% isolated yield) as a mixture of diastereomers. The formation of 11 corresponds to heterolytic H-Si bond activation, involving net addition of H(-) and Ph(2)HSi(+) fragments to Ir and indenide in the unobserved zwitterion 3. Crystallographic data are provided for 1, [2 x CO](+)OTf(-), 3 x CH(3)CN, 7, and 11. Collectively, these results demonstrate the versatility of donor-functionalized indene ancillary ligands in allowing for the selection of divergent metal-ligand cooperativity pathways (simply by ancillary ligand deprotonation) in the activation of small molecule substrates.  相似文献   

15.
The triply bonded dirhenium(II) synthons Re(2)X(4)(mu-dppm)(2) (X = Cl, Br; dppm = Ph(2)PCH(2)PPh(2)) react with acetylene at room temperature in CH(2)Cl(2) and acetone to afford the bis(acetylene) complexes Re(2)X(4)(mu-dppm)(2)(mu:eta(2),eta(2)-HCCH)(eta(2)-HCCH) (X = Cl (3), Br(4)). Compound 3 has been derivatized by reaction with RNC ligands in the presence of TlPF(6) to give unsymmetrical complexes of the type [Re(2)Cl(3)(mu-dppm)(2)(mu:eta(2),eta(2)-HCCH)(eta(2)-HCCH)(CNR)]PF(6) (R = Xyl (5), Mes (6), t-Bu (7)), in which the RCN ligand has displaced the chloride ligand cis to the eta(2)-HCCH ligand. The reaction of 3 with an additional 1 equiv of acetylene in the presence of TlPF(6) gives the symmetrical all-cis isomer of [Re(2)Cl(3)(mu-dppm)(2)(mu:eta(2),eta(2)-HCCH)(eta(2)-HCCH)(2)]PF(6) (8). The two terminal eta(2)-HCCH ligands in 8 are very labile and can be displaced by CO and XylNC to give the complexes [Re(2)Cl(3)(mu-dppm)(2)(mu:eta(2),eta(2)-HCCH)(L)(2)]Y (L = CO when Y = PF(6) (9); L = CO when Y = (PF(6))(0.5)/(H(2)PO(4))(0.5) (10); L = XylNC when Y = PF(6) (11)). These substitution reactions proceed with retention of the all-cis stereochemistry. Single-crystal X-ray structure determinations have been carried out on complexes 3, 5, 8, 10, and 11. In no instance have we found that the acetylene ligands undergo reductive coupling reactions.  相似文献   

16.
The reaction of cyclodiborazane [Me(2)N-BH(2)](2) with the chloro(dihydrogen) ruthenium complex RuHCl(η(2)-H(2))(P(i)Pr(3))(2) (1) led to the formation of the unsymmetricaly coordinated dimethylaminoborane complex RuHCl(H(2)BNMe(2))(P(i)Pr(3))(2) (2). The dimethylaminoborane coordination (H(2)BNMe(2)) to the ruthenium center in 2 was carefully studied by combining X-ray, multinuclear NMR, and density functional theory (DFT) techniques, and compared with the recently reported osmium analogue which was originally formulated as a σ-B-H borinium complex [OsH(2)Cl(HBNMe(2))(P(i)Pr(3))(2)] (4). All our data are in favor of a bis(σ-B-H) coordination mode at a very activated stage in the case of the ruthenium complex 2, whereas in the osmium complex 4, full oxidative addition is favored leading to a complex better formulated as an osmium(IV) boryl species with an α-agostic B-H interaction. The synthesis and characterization of the symmetrical dihydride complex RuH(2)(H(2)BNMe(2))(P(i)Pr(3))(2) (3) from addition of the lithium dimethylaminoborohydride to 1 is reported for comparison.  相似文献   

17.
The structures of bis(pyrazolylethyl) ether derivatives of zinc and cobalt, namely [eta(3)-O(CH(2)CH(2)pz(Pr)()i()2)(2)]Zn(NO(3))(2) and [eta(3)-O(CH(2)CH(2)pz(Me)()2)(2)]Co(NO(3))(2), have been determined with a view to addressing the applicability of such ligands in modeling bioinorganic aspects of zinc chemistry. Specific consideration is given to the possibility that bis(pyrazolylethyl) ether ligands may provide an NNO donor system which may model aspects of the binding of zinc to protein backbones in enzymes such as thermolysin. The structural studies demonstrate that the bis(pyrazolylethyl) ether ligands do indeed coordinate via each of their NNO functionalities but that the relationship to the enzyme is limited by the adoption of meridional rather than facial coordination geometries. [eta(3)-O(CH(2)CH(2)pz(Pr)()i()2)(2)]Zn(NO(3))(2) is monoclinic, P2(1)/c (No. 14), with a = 11.619(2) ?, b = 14.380(3) ?, c = 16.757(2) ?, beta = 90.44(2) degrees, and Z = 4. [eta(3)-O(CH(2)CH(2)pz(Me)()2)(2)]Co(NO(3))(2) is monoclinic, C2/c (No. 15), with a = 17.136(3) ?, b = 10.505(2) ?, c = 11.121(2) ?, beta = 104.62(3) degrees, and Z = 4.  相似文献   

18.
The reactivity of (eta(3)-allyl)palladium chloro dimers [(1-R-eta(3)-C(3)H(4))PdCl](2) (R = H or Me) towards a sterically hindered diphosphazane ligand [EtN{P(OR)(2)}(2)] (R = C(6)H(3)(Pr(i))(2)-2,6), has been investigated under different reaction conditions. When the reaction is carried out using NH(4)PF(6) as the halide scavenger, the cationic complex [(1-R-eta(3)-C(3)H(4))Pd{EtN(P(OR)(2))(2)}]PF(6) (R = H or Me) is formed as the sole product. In the absence of NH(4)PF(6), the initially formed cationic complex, [(eta(3)-C(3)H(5))Pd{EtN(P(OR)(2))(2)}]Cl, is transformed into a mixture of chloro bridged complexes over a period of 4 days. The dinuclear complexes, [(eta(3)-C(3)H(5))Pd(2)(mu-Cl)(2){P(O)(OR)(2)}{P(OR)(2)(NHEt)}] and [Pd(mu-Cl){P(O)(OR)(2)}{P(OR)(2)(NHEt)}](2) are formed by P-N bond hydrolysis, whereas the octa-palladium complex [(eta(3)-C(3)H(5))(2-Cl-eta(3)-C(3)H(4))Pd(4)(mu-Cl)(4)(mu-EtN{P(OR)(2)}(2))](2), is formed as a result of nucleophilic substitution by a chloride ligand at the central carbon of an allyl fragment. The reaction of [EtN{P(OR)(2)}(2)] with [(eta(3)-C(3)H(5))PdCl](2) in the presence of K(2)CO(3) yields a stable dinuclear (eta(3)-allyl)palladium(I) diphosphazane complex, [(eta(3)-C(3)H(5))[mu-EtN{P(OR)(2)}(2)Pd(2)Cl] which contains a coordinatively unsaturated T-shaped palladium center. This complex exhibits high catalytic activity and high TON's in the catalytic hydrophenylation of norbornene.  相似文献   

19.
Ethylenediamine (en) solutions of [eta(4)-P(7)M(CO)(3)](3)(-) ions [M = W (1a), Mo (1b)] react under one atmosphere of CO to form microcrystalline yellow powders of [eta(2)-P(7)M(CO)(4)](3)(-) complexes [M = W (4a), Mo (4b)]. Compounds 4 are unstable, losing CO to re-form 1, but are highly nucleophilic and basic. They are protonated with methanol in en solvent giving [eta(2)-HP(7)M(CO)(4)](2)(-) ions (5) and are alkylated with R(4)N(+) salts in en solutions to give [eta(2)-RP(7)M(CO)(4)](2)(-) complexes (6) in good yields (R = alkyl). Compounds 5 and 6 can also be prepared by carbonylations of the [eta(4)-HP(7)M(CO)(3)](2)(-) (3) and [eta(4)-RP(7)M(CO)(3)](2)(-) (2) precursors, respectively. The carbonylations of 1-3 to form 4-6 require a change from eta(4)- to eta(2)-coordination of the P(7) cages in order to maintain 18-electron configurations at the metal centers. Comparative protonation/deprotonation studies show 4 to be more basic than 1. The compounds were characterized by IR and (1)H, (13)C, and (31)P NMR spectroscopic studies and microanalysis where appropriate. The [K(2,2,2-crypt)](+) salts of 5 were characterized by single crystal X-ray diffraction. For 5, the M-P bonds are very long (2.71(1) ?, average). The P(7)(3)(-) cages of 5 are not displaced by dppe. The P(7) cages in 4-6 have nortricyclane-like structures in contrast to the norbornadiene-type geometries observed for 1-3. (31)P NMR spectroscopic studies for 5-6 show C(1) symmetry in solution (seven inequivalent phosphorus nuclei), consistent with the structural studies for 5, and C(s)() symmetry for 4 (five phosphorus nuclei in a 2:2:1:1:1 ratio). Crystallographic data for [K(2,2,2-crypt)](2)[eta(2)-HP(7)W(CO)(4)].en: monoclinic, space group C2/c, a = 23.067(20) ?, b = 12.6931(13) ?, c = 21.433(2) ?, beta = 90.758(7) degrees, V = 6274.9(10) ?(3), Z = 4, R(F) = 0.0573, R(w)(F(2)) = 0.1409. For [K(2,2,2-crypt)](2)[eta(2)-HP(7)Mo(CO)(4)].en: monoclinic, space group C2/c, a = 22.848(2) ?, b = 12.528(2) ?, c = 21.460(2) ?, beta = 91.412(12) degrees, V = 6140.9(12) ?(3), Z = 4, R(F) = 0.0681, R(w)(F(2)) = 0.1399.  相似文献   

20.
Zhu G  Parkin G 《Inorganic chemistry》2005,44(26):9637-9639
Mo(PMe(3))(6) and W(PMe(3))(4)(eta(2)-CH(2)PMe(2))H undergo oxidative addition of the O-H bond of RCO(2)H to yield sequentially M(PMe(3))(4)(eta(2)-O(2)CR)H and M(PMe(3))(3)(eta(2)-O(2)CR)(eta(1)-O(2)CR)H(2) (M = Mo and R = Ph, Bu(t); M = W and R = Bu(t)). One of the oxygen donors of the bidentate carboxylate ligand may be displaced by H(2)O to give rare examples of aqua-dihydride complexes, M(PMe(3))(3)(eta(1)-O(2)CR)(2)(OH(2))H(2), in which the coordinated water molecule is hydrogen-bonded to both carboxylate ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号