首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present article details the formation of lanthanum-modified apatites and the binding process of tartrate ions with these obtained apatites. Chemical analyses, FT-IR and (31)P NMR spectroscopies, XRD powder, TGA, and TEM analyses were employed for studying the reaction between Ca(10)(PO(4))(6)(OH)(2) (HAp) or Ca(10)(PO(4))(6)(F)(2) (FAp) and LaCl(3). The reaction was found to take place mainly through partial dissolution of the apatite followed by precipitation of a new phase containing lanthanum phosphate. When La(3+) was introduced in the presence of L(+)-tartaric acid (TAH(2)), no fundamental changes were observed in the HAp or FAp structures. However, there did occur a formation of a new phase of Ca or/and La tartrate salt.  相似文献   

2.
Two multifunctional photoactive complexes [Re(Cl)(CO)(3)(MeDpe(+))(2)](2+) and [Re(MeDpe(+))(CO)(3)(bpy)](2+) (MeDpe(+)=N-methyl-4-[trans-2-(4-pyridyl)ethenyl]pyridinium, bpy=2,2'-bipyridine) were synthesized, characterized, and their redox and photonic properties were investigated by cyclic voltammetry; ultraviolet-visible-infrared (UV/Vis/IR) spectroelectrochemistry, stationary UV/Vis and resonance Raman spectroscopy; photolysis; picosecond time-resolved absorption spectroscopy in the visible and infrared regions; and time-resolved resonance Raman spectroscopy. The first reduction step of either complex occurs at about -1.1 V versus Fc/Fc(+) and is localized at MeDpe(+). Reduction alone does not induce a trans-->cis isomerization of MeDpe(+). [Re(Cl)(CO)(3)(MeDpe(+))(2)](2+) is photostable, while [Re(MeDpe(+))(CO)(3)(bpy)](2+) and free MeDpe(+) isomerize under near-UV irradiation. The lowest excited state of [Re(Cl)(CO)(3)(MeDpe(+))(2)](2+) has been identified as the Re(Cl)(CO)(3)-->MeDpe(+ 3)MLCT (MLCT=metal-to-ligand charge transfer), decaying directly to the ground state with lifetimes of approximately 42 (73 %) and approximately 430 ps (27 %). Optical excitation of [Re(MeDpe(+))(CO)(3)(bpy)](2+) leads to population of Re(CO)(3)-->MeDpe(+) and Re(CO)(3)-->bpy (3)MLCT states, from which a MeDpe(+) localized intraligand (3)pipi* excited state ((3)IL) is populated with lifetimes of approximately 0.6 and approximately 10 ps, respectively. The (3)IL state undergoes a approximately 21 ps internal rotation, which eventually produces the cis isomer on a much longer timescale. The different excited-state behavior of the two complexes and the absence of thermodynamically favorable interligand electron transfer in excited [Re(MeDpe(+))(CO)(3)(bpy)](2+) reflect the fine energetic balance between excited states of different orbital origin, which can be tuned by subtle structural variations. The complex [Re(MeDpe(+))(CO)(3)(bpy)](2+) emerges as a prototypical, multifunctional species with complementary redox and photonic behavior.  相似文献   

3.
Lam WW  Man WL  Wang YN  Lau TC 《Inorganic chemistry》2008,47(15):6771-6778
The kinetics and mechanisms of the oxidation of I (-) and Br (-) by trans-[Ru (VI)(N 2O 2)(O) 2] (2+) have been investigated in aqueous solutions. The reactions have the following stoichiometry: trans-[Ru (VI)(N 2O 2)(O) 2] (2+) + 3X (-) + 2H (+) --> trans-[Ru (IV)(N 2O 2)(O)(OH 2)] (2+) + X 3 (-) (X = Br, I). In the oxidation of I (-) the I 3 (-)is produced in two distinct phases. The first phase produces 45% of I 3 (-) with the rate law d[I 3 (-)]/dt = ( k a + k b[H (+)])[Ru (VI)][I (-)]. The remaining I 3 (-) is produced in the second phase which is much slower, and it follows first-order kinetics but the rate constant is independent of [I (-)], [H (+)], and ionic strength. In the proposed mechanism the first phase involves formation of a charge-transfer complex between Ru (VI) and I (-), which then undergoes a parallel acid-catalyzed oxygen atom transfer to produce [Ru (IV)(N 2O 2)(O)(OHI)] (2+), and a one electron transfer to give [Ru (V)(N 2O 2)(O)(OH)] (2+) and I (*). [Ru (V)(N 2O 2)(O)(OH)] (2+) is a stronger oxidant than [Ru (VI)(N 2O 2)(O) 2] (2+) and will rapidly oxidize another I (-) to I (*). In the second phase the [Ru (IV)(N 2O 2)(O)(OHI)] (2+) undergoes rate-limiting aquation to produce HOI which reacts rapidly with I (-) to produce I 2. In the oxidation of Br (-) the rate law is -d[Ru (VI)]/d t = {( k a2 + k b2[H (+)]) + ( k a3 + k b3[H (+)]) [Br (-)]}[Ru (VI)][Br (-)]. At 298.0 K and I = 0.1 M, k a2 = (2.03 +/- 0.03) x 10 (-2) M (-1) s (-1), k b2 = (1.50 +/- 0.07) x 10 (-1) M (-2) s (-1), k a3 = (7.22 +/- 2.19) x 10 (-1) M (-2) s (-1) and k b3 = (4.85 +/- 0.04) x 10 (2) M (-3) s (-1). The proposed mechanism involves initial oxygen atom transfer from trans-[Ru (VI)(N 2O 2)(O) 2] (2+) to Br (-) to give trans-[Ru (IV)(N 2O 2)(O)(OBr)] (+), which then undergoes parallel aquation and oxidation of Br (-), and both reactions are acid-catalyzed.  相似文献   

4.
The reaction of UO(2)(NO(3))(2).6H(2)O with Cs(2)CO(3) or CsCl, H(3)PO(4), and Ga(2)O(3) under mild hydrothermal conditions results in the formation of Cs(4)[(UO(2))(2)(GaOH)(2)(PO(4))(4)].H(2)O (UGaP-1) or Cs[UO(2)Ga(PO(4))(2)] (UGaP-2). The structure of UGaP-1 was solved from a twinned crystal revealing a three-dimensional framework structure consisting of one-dimensional (1)(infinity)[Ga(OH)(PO(4))(2)](4-) chains composed of corner-sharing GaO(6) octahedra and bridging PO(4) tetrahedra that extend along the c axis. The phosphate anions bind the UO(2)(2+) cations to form UO(7) pentagonal bipyramids. The UO(7) moieties edge-share to create dimers that link the gallium phosphate substructure into a three-dimensional (3)(infinity)[(UO(2))(2)(GaOH)(2)(PO(4))(4)](4-) anionic lattice that has intersecting channels running down the b and c axes. Cs(+) cations and water molecules occupy these channels. The structure of UGaP-2 is also three-dimensional and contains one-dimensional (1)(infinity)[Ga(PO(4))(2)](3-) gallium phosphate chains that extend down the a axis. These chains are formed from fused eight-membered rings of corner-sharing GaO(4) and PO(4) tetrahedra. The chains are in turn linked together into a three-dimensional (3)(infinity)[UO(2)Ga(PO(4))(2)](1-) framework by edge-sharing UO(7) dimers as occurs in UGaP-1. There are channels that run down the a and b axes through the framework. These channels contain the Cs(+) cations. Ion-exchange studies indicate that the Cs(+) cations in UGaP-1 and UGaP-2 can be exchanged for Ca(2+) and Ba(2+). Crystallographic data: UGaP-1, monoclinic, space group P2(1)/c, a = 18.872(1), b = 9.5105(7), c = 14.007(1) A, beta = 109.65(3)(o) , Z = 4 (T = 295 K); UGaP-2, triclinic, space group P, a = 7.7765(6), b = 8.5043(7), c = 8.9115(7) A, alpha = 66.642(1)(o), beta = 70.563(1)(o), gamma = 84.003(2)(o), Z = 2 (T = 193 K).  相似文献   

5.
The one-electron reduction of [alpha(2)-Fe(III)(OH(2))P(2)W(17)O(61)](7-) at a glassy carbon electrode was investigated using cyclic and rotating-disk-electrode voltammetry in buffered and unbuffered aqueous solutions over the pH range 3.45-7.50 with an ionic strength of approximately 0.6 M maintained. The behavior is well-described by a square-scheme mechanism P + e(-) <--> Q (E(1)(0/) = -0.275 V, k(1)(0/) = 0.008 cm s(-1), and alpha(1) = 1/2), PH(+) + e(-) <--> QH(+) (E(2)(0/) = -0.036 V, k(2)(0/) = 0.014 cm s(-1), and alpha(2) = 1/2), PH(+) <--> P + H(+) (K(P) = 3.02 x 10(-6) M), and QH(+) <--> Q + H(+) (K(Q) = 2.35 x 10(-10) M), where P, Q, PH(+), and QH(+) correspond to [alpha(2)-Fe(III)(OH)P(2)W(17)O(61)](8-), [alpha(2)-Fe(II)(OH)P(2)W(17)O(61)](9-), [alpha(2)-Fe(III)(OH(2))P(2)W(17)O(61)](7-), and [alpha(2)-Fe(II)(OH(2))P(2)W(17)O(61)](8-), respectively; E(1)(0)' and E(2)(0)' are the formal potentials, k(1)(0)' and k(2)(0)' are the formal (standard) rate constants, and K(P) and K(Q) are the acid dissociation constants for the relevant reactions. The analysis for the buffered media is based on the approach of Laviron who demonstrated that a square scheme with fully reversible protonations, reversible or quasi reversible electron transfers with the assumption that alpha(1) = alpha(2), can be well-described by the behavior of a simple redox couple, ox + e(-) <--> red, whose formal potential, E(app)(0)', and standard rate constant, k(app)(0)', are straightforwardly derived functions of pH, as are the values of E(1)(0)', k(1)(0)', E(2)(0)', k(2)(0)', and K(P) (only three of the four thermodynamic parameters in a square scheme can be specified). It was assumed that alpha(app) = 1/2, and the simulation program DigiSim was used to determine the values of E(app)(0)' and k(app)(0)', which are required to describe the cyclic voltammograms obtained in buffered media in the pH range from 3.45 to 7.52 (buffer-related reactions which effect general acid-base catalysis are included in the simulations). DigiSim simulations of cyclic voltammograms obtained in unbuffered media yielded the values of E(1)(0)' and k(1)(0)'; K(Q) was then directly computed from thermodynamic constraints. These simulations included additional reactions between the redox species and H(2)O. The value of the diffusion coefficient of the [alpha(2)-Fe(III)(OH(2))P(2)W(17)O(61)](7-), 2.92 x 10(-6) cm(2) s(-1), was determined using DigiSim simulations of voltammograms at a rotating disk electrode in buffered and unbuffered media at pH 3.45. The diffusion coefficients of all redox species were assumed to be identical. When the pH is greater than 6, instability of P (i.e., [alpha(2)-Fe(III)(OH)P(2)W(17)O(61)](8-)) led to the loss of the reactant and precluded lengthy experimentation.  相似文献   

6.
A series of gas-phase reactions involving molecular Ca-containing ions was studied by the pulsed laser ablation of a calcite target to produce Ca(+) in a fast flow of He, followed by the addition of reagents downstream and detection of ions by quadrupole mass spectrometry. Most of the reactions that were studied are important for describing the chemistry of meteor-ablated calcium in the earth's upper atmosphere. The following rate coefficients were measured: k(CaO(+) + O --> Ca(+) + O(2)) = (4.2 +/- 2.8) x 10(-11) at 197 K and (6.3 +/- 3.0) x 10(-11) at 294 K; k(CaO(+) + CO --> Ca(+) + CO(2), 294 K) = (2.8 +/- 1.5) x 10(-10); k(Ca(+).CO(2) + O(2) --> CaO(2)(+) + CO(2), 294 K) = (1.2 +/- 0.5) x10(-10); k(Ca(+).CO(2) + H(2)O --> Ca(+).H(2)O + CO(2)) = (13.0 +/- 4.0) x 10(-10); and k(Ca(+).H(2)O + O(2) --> CaO(2)(+) + H(2)O, 294 K) = (4.0 +/- 2.5) x 10(-10) cm(3) molecule(-1) s(-1). The quoted uncertainties are a combination of the 1sigma standard errors in the kinetic data and the systematic errors in the models used to extract the rate coefficients. Rate coefficients were also obtained for the following recombination (also termed association) reactions in He bath gas: k(Ca(+).CO(2) + CO(2) --> Ca(+).(CO(2))(2), 294 K) = (2.6 +/- 1.0) x 10(-29); k(Ca(+).H(2)O + H(2)O --> Ca(+).(H(2)O)(2)) = (1.6 +/- 1.1) x 10(-27); and k(CaO(2)(+) + O(2) --> CaO(2)(+).O(2)) < 1 x 10(-31) cm(6) molecule(-2) s(-1). These recombination rate coefficients, as well as those for the ligand-switching reactions listed above, were then interpreted using a combination of high level quantum chemistry calculations and RRKM theory using an inverse Laplace transform solution of the master equation. The surprisingly slow reaction between CaO(+) and O was explained using quantum chemistry calculations on the lowest (2)A', (2)A' and (4)A' potential energy surfaces. These calculations indicate that reaction mostly occurs on the (2)A' surface, leading to production of Ca(+)((2)S) + O(2)((1)Delta(g)). The importance of this reaction for controlling the lifetime of Ca(+) in the upper mesosphere and lower thermosphere is then discussed.  相似文献   

7.
The trans-[Ru(NO)(NH(3))(4)(P(OH)(3))]Cl(3) complex was synthesized by reacting [Ru(H(2)O)(NH(3))(5)](2+) with H(3)PO(3) and characterized by spectroscopic ((31)P-NMR, δ = 68 ppm) and spectrophotometric techniques (λ = 525 nm, ε = 20 L mol(-1) cm(-1); λ = 319 nm, ε = 773 L mol(-1) cm(-1); λ = 241 nm, ε = 1385 L mol(-1) cm(-1); ν(NO(+)) = 1879 cm(-1)). A pK(a) of 0.74 was determined from infrared measurements as a function of pH for the reaction: trans-[Ru(NO)(NH(3))(4)(P(OH)(3))](3+) + H(2)O ? trans-[Ru(NO)(NH(3))(4)(P(O(-))(OH)(2))](2+) + H(3)O(+). According to (31)P-NMR, IR, UV-vis, cyclic voltammetry and ab initio calculation data, upon deprotonation, trans-[Ru(NO)(NH(3))(4)(P(OH)(3))](3+) yields the O-bonded linkage isomer trans- [Ru(NO)(NH(3))(4)(OP(OH)(2))](2+), then the trans-[Ru(NO)(NH(3))(4)(OP(H)(OH)(2))](3+) decays to give the final products H(3)PO(3) and trans-[Ru(NO)(NH(3))(4)(H(2)O)](3+). The dissociation of phosphorous acid from the [Ru(NO)(NH(3))(4)](3+) moiety is pH dependent (k(obs) = 2.1 × 10(-4) s(-1) at pH 3.0, 25 °C).  相似文献   

8.
In the four studied monoalkyl phosphoric acids (n-C(12)H(25)OPO(OH)(2), MDP; n-C(14)H(29)OPO(OH)(2), MTP; n-C(16)H(33)OPO(OH)(2), MHP; and n-C(18)H(37)OPO(OH)(2)MOP), only MOP can form an insoluble monolayer at the air/water interface (pH 5.6), suggesting that the longer alkyl chain (> or =C(18)) is essential for the formation of insoluble monolayers. On the contrary, all four corresponding dialkyl phosphoric acids ((n-C(12)H(25)O)(2)PO(OH), DDP; (n-C(14)H(29)O)(2)PO(OH), DTP; (n-C(16)H(33)O)(2)PO(OH), DHP; and (n-C(18)H(37)O)(2)PO(OH) DOP) can form insoluble monolayers, with only the pi-A isotherm of DDP showing a phase transition plateau at 25 degrees C. The enhancement of the subphase temperature not only increases the plateau pressure of the DDP monolayer, but also induces the emergence of a plateau for the DTP monolayer. In contrast to the weak influence of Na(+) and K(+) (1 x 10(-4) M in the subphases, pH approximately 5.6) on the pi-A isotherm of DDP, Ca(2+), Sr(2+), and Ba(2+) (1 x 10(-4) M in the subphases, pH approximately 5.6) have an evident impact on the isotherms of DDP, and the different isotherm results indicate that DDP can recognize the three divalent cations at the air/water interface. In addition, the gaseous portion and phase transition plateaus of the isotherms of some DAPs on pure water and on subphases containing Ca(2+), Sr(2+), or Ba(2+) were well simulated by Volmer's equation of state and Vollhardt's equation, except for a small difference for gas phases around critical points. The relationship between the plateau and the net molecule area is also discussed.  相似文献   

9.
The catalytic efficiency of Fe(+) ion over the CO(2) decomposition in the gas phase has been extensively investigated with the help of electronic structure calculation methods. Potential-energy profiles for the activation process Fe(+) + CO(2) --> CO + FeO(+) along two rival potential reaction paths, namely the insertion and addition pathways, originating from the end-on kappa(1)-O and kappa(2)-O,O coordination modes of CO(2) with the metal ion, respectively, have been explored by DFT calculations. For each pathway the potential energy surfaces of the high-spin sextet (S = 5/2) and the intermediate-spin quartet (S = 3/2) spin-states have been explored. The complete energy reaction profile calculated by a combination of ab initio and density functional theory (DFT) computational techniques reveals a two-state reactivity, involving two spin inversions, for the decomposition process and accounts well for the experimentally observed inertness of bare Fe(+) ions towards CO(2) activation. Furthermore, the coordination of up to three extra ancillary NH(3) ligands with the Fe(+) metal ion has been explored and the geometric and energetic reaction profiles of the CO(2) activation processes Fe(+) + n x NH(3) + CO(2) --> [Fe(NH(3))(n)(CO(2))](+) --> [Fe(NH(3))(n)(O)(CO)](+) --> CO + [Fe(O)(NH(3))(n)](+) (n = 1, 2 or 3) have thoroughly been scrutinized for both the insertion and the addition mechanisms. Inter alia, the geometries and energies of the various states of the [Fe(NH(3))(n)(CO(2))](+) and [Fe(NH(3))(n)(O)(CO)](+) complexes are explored and compared. Finally, a detailed analysis of the coordination modes of CO(2) in the cationic [Fe(NH(3))(n)(CO(2))](+) (n = 0, 1, 2 and 3) complexes is presented.  相似文献   

10.
An ion chromatography (IC) method has been proposed for the determination of seven common inorganic anions (F(-), H(2)PO(4)(-), NO(2)(-), Cl(-), Br(-), NO(3)(-), and SO(4)(2-)) and/or five common inorganic cations (Na(+), NH(4)(+), K(+), Mg(2+), and Ca(2+)) using a single pump, a single eluent and a single detector. The present system used cation-exchange and anion-exchange columns connected in series via a single 10-port switching valve. The 10-port valve was switched for the separation of either cations or anions in a single chromatographic run. When 1.0mM trimellitic acid (pH 2.94) was used as the eluent, the seven anions and the five cations could be separated on the anion-exchange column and the cation-exchange column, respectively. The elution order was found to be F(-)相似文献   

11.
Experimentally based lattice energies are calculated for the apatite family of double salts M(5)(PO(4))(3)X, where M is a divalent metal cation (Ca, Sr, Ba) and X is hydroxide or a halide. These values are also shown to be estimable, generally to within 4%, using the recently derived Glasser-Jenkins equation, U(POT) = AI(2I/V(m))(1/3), where A = 121.39 kJ mol(-)(1). The apatites exhibiting greater covalent character (e.g., M = Pb, Cd, etc.) are less well reproduced but are within 8% of the experimentally based value. The lattice energy for ionic apatites (having identical lattice ionic strengths, I) takes the particularly simple form U(POT)/kJ mol(-)(1) = 26680/(V(m)/nm(3))(1/3), reproducing cycle values of U(POT) well when V(m) is estimated by ion volume summation and employing a volume for the PO(4)(3)(-) ion (not previously quantified with an associated error) of 0.063 +/- 0.003 nm(3). A value for the enthalpy of formation of the gaseous phosphate ion, DeltaH(f)( ) degrees (PO(4)(3)(-), g), is absent from current thermochemical tabulations. Examination of solution and solid state thermochemical cycles for apatites, however, leads us to a remarkably consistent value of 321.8 +/- 1.2 kJ mol(-)(1). Experimental and estimated lattice energies were used along with other thermodynamic data to determine enthalpies, entropies, and free energies of dissolution for apatites of uncertain stabilities. These dissolution values are compared with the corresponding values for stable apatites and are used to rationalize the relative instability of certain derivatives.  相似文献   

12.
The new complex trans-[NCRu(py)(4)(CN)Ru(py)(4)NO](PF(6))(3) (I) was synthesized. In acetonitrile solution, I shows an intense visible band (555 nm, epsilon = 5800 M(-1) cm(-1)) and other absorptions below 350 nm, associated with d(pi) --> pi(py) and pi(py) --> pi(py) transitions. The visible band is presently assigned as a donor-acceptor charge transfer (DACT) transition from the remote Ru(II) to the delocalized [Ru(II)-NO(+)] moiety. Photoinduced release of NO is observed upon irradiation at the DACT band. Application of the Hush model reveals strong electronic coupling, with H(DA) = approximately 2000 cm(-1). The difference between the optical absorption energy and redox potentials for the donor and acceptor sites (Ru(III,II), 1.40 V, and NO(+)/NO, 0.50 V, vs Ag/AgCl, 3 M KCl, respectively) (hnu - DeltaE(red)) is 1.33 eV, a large value which probably relates to the significant changes in distances and angles for the Ru-N-O moiety upon reduction. UV-vis absorptions, IR frequencies, and redox potentials are solvent-dependent. Controlled potential reduction (of NO(+)) and oxidation (of Ru(II) associated with the dicyano-chromophore) of I afford stable species, [NCRu(II)(py)(4)(CN)Ru(py)(4)NO](2+) (I(red)) and [NCRu(III)(py)(4)(CN)Ru(py)(4)NO](4+) (I(ox)), respectively, which are characterized by UV-vis and IR spectroscopies. I(red) shows an EPR spectrum characteristic of [Ru(II)-NO(*)] complexes. Compound I is electrophilically reactive in aqueous solution above pH 5: values of the equilibrium constant for the reaction [NCRu(py)(4)(CN)Ru(py)(4)NO](3+)+ 2 OH(-) <--> [NCRu(py)(4)(CN)Ru(py)(4)NO(2)](+) + H(2)O, K = 3.2 +/- 1.4 x 10(15) M(-2), and of the rate constant for the nucleophilic addition of OH(-), k = 9.2 +/- 0.2 x 10(3) M(-1) s(-1)(25 degrees C, I = 1 M), are obtained, with DeltaH = 90.7 +/- 3.8 kJ mol(-1) and DeltaS = 135 +/- 13 J K(-1) mol(-1). The oxidized complex, I(ox), shows an enhanced electrophilic reactivity toward OH(-). This addition reaction is followed by irreversible processes, which most probably lead to disproportionation of bound nitrite and other products.  相似文献   

13.
Nitrosyl complexes with {Ru-NO} (6) and {Ru-NO} (7) configurations have been isolated in the framework of [Ru(trpy)(L)(NO)] ( n+ ) [trpy = 2,2':6',2'-terpyridine, L = 2-phenylimidazo[4,5- f]1,10-phenanthroline] as the perchlorate salts [ 4](ClO 4) 3 and [ 4](ClO 4) 2, respectively. Single crystals of protonated material [ 4-H (+)](ClO 4) 4.2H 2O reveal a Ru-N-O bond angle of 176.1(7) degrees and triply bonded N-O with a 1.127(9) A bond length. Structures were also determined for precursor compounds of [ 4] (3+) in the form of [Ru(trpy)(L)(Cl)](ClO 4).4.5H 2O and [Ru(trpy)(L-H)(CH 3CN)](ClO 4) 3.H 2O. In agreement with largely NO centered reduction, a sizable shift in nu(NO) frequency was observed on moving from [ 4] (3+) (1953 cm (-1)) to [ 4] (2+) (1654 cm (-1)). The Ru (II)-NO* in isolated or electrogenerated [ 4] (2+) exhibits an EPR spectrum with g 1 = 2.020, g 2 = 1.995, and g 3 = 1.884 in CH 3CN at 110 K, reflecting partial metal contribution to the singly occupied molecular orbital (SOMO); (14)N (NO) hyperfine splitting ( A 2 = 30 G) was also observed. The plot of nu(NO) versus E degrees ({RuNO} (6) --> {RuNO} (7)) for 12 analogous complexes [Ru(trpy)(L')(NO)] ( n+ ) exhibits a linear trend. The electrophilic Ru-NO (+) species [ 4] (3+) is transformed to the corresponding Ru-NO 2 (-) system in the presence of OH (-) with k = 2.02 x 10 (-4) s (-1) at 303 K. In the presence of a steady flow of dioxygen gas, the Ru (II)-NO* state in [ 4] (2+) oxidizes to [ 4] (3+) through an associatively activated pathway (Delta S++ = -190.4 J K (-1) M (-1)) with a rate constant ( k [s (-1)]) of 5.33 x 10 (-3). On irradiation with light (Xe lamp), the acetonitrile solution of paramagnetic [Ru(trpy)(L)(NO)] (2+) ([ 4] (2+)) undergoes facile photorelease of NO ( k NO = 2.0 x 10 (-1) min (-1) and t 1/2 approximately 3.5 min) with the concomitant formation of the solvate [Ru (II)(trpy)(L)(CH 3CN)] (2+) [ 2'] (2+). The photoreleased NO can be trapped as an Mb-NO adduct.  相似文献   

14.
The mechanism of the reaction of trans-ArPdBrL(2) (Ar=p-Z-C(6)H(4), Z=CN, H; L=PPh(3)) with Ar'B(OH)(2) (Ar'=p-Z'-C(6)H(4), Z'=H, CN, MeO), which is a key step in the Suzuki-Miyaura process, has been established in N,N-dimethylformamide (DMF) with two bases, acetate (nBu(4)NOAc) or carbonate (Cs(2)CO(3)) and compared with that of hydroxide (nBu(4)NOH), reported in our previous work. As anionic bases are inevitably introduced with a countercation M(+) (e.g., M(+)OH(-)), the role of cations in the transmetalation/reductive elimination has been first investigated. Cations M(+) (Na(+), Cs(+), K(+)) are not innocent since they induce an unexpected decelerating effect in the transmetalation via their complexation to the OH ligand in the reactive ArPd(OH)L(2), partly inhibiting its transmetalation with Ar'B(OH)(2). A decreasing reactivity order is observed when M(+) is associated with OH(-): nBu(4)N(+) > K(+) > Cs(+) > Na(+). Acetates lead to the formation of trans-ArPd(OAc)L(2), which does not undergo transmetalation with Ar'B(OH)(2). This explains why acetates are not used as bases in Suzuki-Miyaura reactions that involve Ar'B(OH)(2). Carbonates (Cs(2)CO(3)) give rise to slower reactions than those performed from nBu(4)NOH at the same concentration, even if the reactions are accelerated in the presence of water due to the generation of OH(-). The mechanism of the reaction with carbonates is then similar to that established for nBu(4)NOH, involving ArPd(OH)L(2) in the transmetalation with Ar'B(OH)(2). Due to the low concentration of OH(-) generated from CO(3)(2-) in water, both transmetalation and reductive elimination result slower than those performed from nBu(4)NOH at equal concentrations as Cs(2)CO(3). Therefore, the overall reactivity is finely tuned by the concentration of the common base OH(-) and the ratio [OH(-)]/[Ar'B(OH)(2)]. Hence, the anionic base (pure OH(-) or OH(-) generated from CO(3)(2-)) associated with its countercation (Na(+), Cs(+), K(+)) plays four antagonist kinetic roles: acceleration of the transmetalation by formation of the reactive ArPd(OH)L(2), acceleration of the reductive elimination, deceleration of the transmetalation by formation of unreactive Ar'B(OH)(3)(-) and by complexation of ArPd(OH)L(2) by M(+).  相似文献   

15.
The reflected shock tube technique with multipass absorption spectrometric detection of OH radicals at 308 nm (corresponding to a total path length of approximately 4.9 m) has been used to study the dissociation of methanol between 1591 and 2865 K. Rate constants for two product channels [CH3OH + Kr --> CH3 + OH + Kr (1) and CH3OH + Kr --> 1CH2 + H2O + Kr (2)] were determined. During the course of the study, it was necessary to determine several other rate constants that contributed to the profile fits. These include OH + CH3OH --> products, OH + (CH3)2CO --> CH2COCH3 + H2O, and OH + CH3 --> 1,3CH2 + H2O. The derived expressions, in units of cm(3) molecule(-1) s(-1), are k(1) = 9.33 x 10(-9) exp(-30857 K/T) for 1591-2287 K, k(2) = 3.27 x 10(-10) exp(-25946 K/T) for 1734-2287 K, kOH+CH3OH = 2.96 x 10-16T1.4434 exp(-57 K/T) for 210-1710 K, k(OH+(CH3)(2)CO) = (7.3 +/- 0.7) x 10(-12) for 1178-1299 K and k(OH+CH3) = (1.3 +/- 0.2) x 10(-11) for 1000-1200 K. With these values along with other well-established rate constants, a mechanism was used to obtain profile fits that agreed with experiment to within <+/-10%. The values obtained for reactions 1 and 2 are compared with earlier determinations and also with new theoretical calculations that are presented in the preceding article in this issue. These new calculations are in good agreement with the present data for both (1) and (2) and also for OH + CH3 --> products.  相似文献   

16.
This study was on the influence of the mineral phase crystallite microstrain (CM) on the nature of the surface complex (SC) governing the metastable equilibrium solubility (MES) behavior of carbonated apatites (CAPs) in aqueous acidic media (0.10 M acetate buffers, with and without fluoride, 0.50 M ionic strength maintained with NaCl). The MES behavior of a set of four CAPs (synthesized at 85 degrees C by a precipitation method) of increasing CM and therefore of increasing MES (CAP4 > CAP3 > CAP2 > CAP1) was quantified. The following were the findings. For CAP1 and CAP2, the SCs deduced were Ca10(PO4)6(OH)2 and Ca10(PO4)6F2 for the nonfluoride and the fluoride cases, respectively. For CAP3 and CAP4, the SCs deduced were Ca9.5(PO4)6OH or Ca9.5(HPO4)(PO4)5(OH)2 and NaCa9.5(PO4)6F2 for the nonfluoride and the fluoride cases, respectively. These results together with that from an earlier limited study show that the Ca/P ratio of the SC decreases from 1.67 to 1.58 to 1.50 with increasing CM of the CAPs; this relationship inversely correlates with the chemistry of maturation of aqueously precipitated defective apatites. Also the SCs do not appear to exist as a continuous series and only a few SCs may account for the MES behavior over a wide range of CAP preparations.  相似文献   

17.
The dissociations of two types of copper(II)-containing complexes of tryptophan (Trp), tyrosine (Tyr), or phenylalanine (Phe) are described. The first type is the bis-amino acid complex, [Cu(II)(M)(2)].(2+), where M = Trp, Tyr, or Phe; the second [Cu(II)(4Cl-tpy)(M)].(2+), where 4Cl-tpy is the tridendate ligand 4'-chloro-2,2':6',2'-terpyridine. Dissociations of the Cu(ii) bis-amino acid complexes produce abundant radical cation of the amino acid, M.(+), and/or its secondary products. By contrast, dissociations of the 4Cl-tpy-bearing ternary complexes give abundant M.(+) only for Trp. Density functional theory (DFT) calculations show that for Tyr and Phe, amino-acid displacement reactions by H(2)O and CH(3)OH (giving [Cu(II)(4Cl-tpy)(H(2)O)].(2+) and [Cu(II)(4Cl-tpy)(CH(3)OH)].(2+)) are energetically more favorable than dissociative electron transfer (giving M.(+) and [Cu(I)(4Cl-tpy)](+)). The fragmentation pathway common to all these [Cu(II)(4Cl-tpy)(M)].(2+) ions is the loss of NH(3). DFT calculations show that the loss of NH(3) proceeds via a "phenonium-type" intermediate. Dissociative electron transfer in [Cu(II)(4Cl-tpy)(M-NH(3))].(2+) results in [M-NH(3)].(+). The [Phe-NH(3)] (+) ion dissociates facilely by eliminating CO(2) and giving a metastable phenonium-type ion that rearranges readily into the styrene radical cation.  相似文献   

18.
Complex systems, simulating natural conditions like in groundwater, have rarely been studied, since measuring and in particular, modeling of such systems is very challenging. In this paper, the adsorption of the oxyanions of As(III) and As(V) on goethite has been studied in presence of various inorganic macro-elements (Mg(2+), Ca(2+), PO(3-)(4), CO(2-)(3)). We have used 'single-,' 'dual-,' and 'triple-ion' systems. The presence of Ca(2+) and Mg(2+) has no significant effect on As(III) oxyanion (arsenite) adsorption in the pH range relevant for natural groundwater (pH 5-9). In contrast, both Ca(2+) and Mg(2+) promote the adsorption of PO(3-)(4). A similar (electrostatic) effect is expected for the Ca(2+) and Mg(2+) interaction with As(V) oxyanions (arsenate). Phosphate is a major competitor for arsenate as well as arsenite. Although carbonate may act as competitor for both types of As oxyanions, the presence of significant concentrations of phosphate makes the interaction of (bi)carbonate insignificant. The data have been modeled with the charge distribution (CD) model in combination with the extended Stern model option. In the modeling, independently calculated CD values were used for the oxyanions. The CD values for these complexes have been obtained from a bond valence interpretation of MO/DFT (molecular orbital/density functional theory) optimized geometries. The affinity constants (logK) have been found by calibrating the model on data from 'single-ion' systems. The parameters are used to predict the ion adsorption behavior in the multi-component systems. The thus calibrated model is able to predict successfully the ion concentrations in the mixed 2- and 3-component systems as a function of pH and loading. From a practical perspective, data as well as calculations show the dominance of phosphate in regulating the As concentrations. Arsenite (As(OH)(3)) is often less strongly bound than arsenate (AsO(3-)(4)) but arsenite responses less strongly to changes in the phosphate concentration compared to arsenate, i.e., deltalogc(As(III))/deltalogc(PO(4)) approximately 0.4 and deltalogc(As(V))/deltalogc(PO(4)) approximately 0.9 at pH 7. Therefore, the response of As in a sediment on a change in redox conditions will be variable and will depend on the phosphate concentration level.  相似文献   

19.
Surface modification of calcium hydroxyapatite with pyrophosphoric acid   总被引:2,自引:0,他引:2  
The surface of synthetic colloidal calcium hydroxyapatite (Ca(10)(PO(4))(6)(OH)(2); CaHap) was treated with pyrophosphoric acid (H(4)P(2)O(7); PP) in acetone and the materials were characterized by XRD, thermal analysis, N(2) adsorption, TEM, and FTIR. No remarkable change in XRD patterns or in particle morphology by the modification was observed. The additional amount of PO(4) of CaHap was increased with an increase in PP concentration. The Ca/P molar ratio of CaHap was decreased from 1.62 to 1.35 by the modification. IR results indicated that the PP reacts with surface P-OH groups of CaHap to form additional surface P-OH groups as follows: surface P-OH+H(4)P(2)O(7)--> surface P-O-PO(OH)(2) + H(3)PO(4). When the modified CaHap with Ca/P molar ratio less than 1.50 was treated at 850 degrees C in air, the materials transformed into beta-Ca(3)(PO(4))(2).  相似文献   

20.
Kim D  Goldberg IB  Judy JW 《The Analyst》2007,132(4):350-357
An electrochemical system that consists of a silver electrode in 0.01 M sodium hydroxide electrolyte was investigated in an effort to develop a sensitive in situ analytical method for nitrate. Cyclic voltammetry demonstrated that the proposed system has a high normalized sensitivity (2.47 A s(1/2) V(-1/2) M(-1) cm(-2)), compared to more complex electroanalytical schemes. Double-potential-step chronocoulometry was used to maximize the signal-to-noise ratio (SNR), and minimize interference from dissolved oxygen in the electrolyte. The integration period for double-potential-step chronocoulometry was determined by optimizing the extended Cottrell equation. The integrated current is proportional to nitrate up to 10 mM and the average detection limit is approximately 1.7 microM. Dissolved oxygen does not degrade performance. To examine the potential interference of other ions when analyzing nitrate, we measured the electrode response to 1000 microM each of NO(2-), Cl(-), PO(4)(3-), SO(4)(2-), F(-), CO(3)(2-), BO(2-), K(+), Ca(2+), and Sr(2+) with and without 1000 microM nitrate. Interference is negligible for most of the ions when nitrate is absent (i.e. <1% of the response to equimolar nitrate). However, interference is substantial (>20% increase or decrease in the electrode response to nitrate) for PO(4)(3-), Ca(2+), and Sr(2+) when equimolar nitrate is present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号