首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The salts [(eta-C(5)Me(5))Ru(NO)(bipy)][OTf](2) (1[OTf](2)) and [(eta-C(5)Me(5))Ru(NO)(dppz)][OTf](2) (2[OTf](2)) are obtained from the treatment of (eta-C(5)Me(5))Ru(NO)(OTf)(2) with 2,2'-bipyridine (bipy) or dipyrido[3,2-a:2',3'-c]phenazine (dppz) (OTf = OSO(2)CF(3)). X-ray data for 1[OTf](2): monoclinic space group P2(1)/c, a = 11.553 (4) ?, b = 16.517 (5) ?, c = 14.719 (4) ?, beta = 94.01 (2) degrees, V = 2802 (2) ?(3), Z = 4, R1 = 0.0698. X-ray data for 2[OTf](2): monoclinic space group P2(1)/c, a = 8.911 (2) ?, b = 30.516 (5) ?, c = 24.622 (4) ?, beta = 99.02 (1) degrees, V = 6613 (2) ?(3), Z = 8, R1 = 0.0789. Both 1[OTf](2) and 2[OTf](2) are soluble in water where they exhibit irreversible electrochemical oxidation and reduction. A fluorescence-monitored titration of a DNA solution containing 2[OTf](2) with ethidium bromide provides evidence that 2(2+) intercalates into DNA with a binding constant greater than 10(6) M(-)(1). DNA cleavage occurs when the DNA solutions containing 2[OTf](2) are photolyzed or treated with H(2)O(2) or K(2)S(2)O(8).  相似文献   

2.
Diphenylvinylarsine oxide reacts with 1,2-bis(phenylphosphino)ethane in the presence of potassium tert-butoxide to give the anti-Markovnikov product (R,R)-(+/-)/(R,S)-1,1,4,7,10,10-hexaphenyl-1,10-diarsa-4,7-diphosphadecane dioxide-1AsO,10AsO, which, upon reduction with HSiCl(3)/NEt(3) in boiling acetonitrile, affords in 84% overall yield the di(tertiary arsine)-di(tertiary phosphine) (R,R)-(+/-)/(R,S)-diphars. After separation of the diastereomers by fractional crystallization, the (R,R)-(+/-) form of the ligand was resolved by metal complexation with (+)-di(mu-chloro)bis[(R)-1-[1-(dimethylamino)ethyl]-2-phenyl-C(2),N]dipalladium(II): (R,R)-diphars, mp 87-88 degrees C, has [alpha](D)(21) = -18.6 (c 1.0, CH(2)Cl(2)); (S,S)-diphars has [alpha](D)(21) = +18.4 (c 1.0, CH(2)Cl(2)). The crystal and molecular structures of the complexes (M)-[M(2)[(R,R)-diphars](2)](PF(6))(2) (M = Cu, Ag, Au) have been determined: [M-(S(Cu),S(Cu))]-(-)-[Cu(2)[(R,R)-diphars](2)](PF(6))(2), orthorhombic, P2(1)2(1)2(1) (No. 19), a = 16.084(3) A, b = 18.376(3) A, c = 29.149(6) A, Z = 4; [M-(S(Ag),S(Ag))]-(+)-[Ag(2)[(R,R)-diphars](2)](PF(6))(2), triclinic, P1, a = 12.487(2) A, b = 12.695(4) A, c = 27.243(4) A, alpha = 92.06 degrees, beta = 95.19 degrees, gamma = 98.23 degrees, Z = 2; [M-(S(Au),S(Au))]-(-)-[Au(2)[(R,R)-diphars](2)](PF(6))(2), orthorhombic, P2(1)2(1)2(1) (No. 19), a = 16.199(4) A, b = 18.373(4) A, c = 29.347(2) A, Z = 4. In the copper(I) and gold(I) helicates, each ligand strand completes 1.5 turns of an M helix in a parallel arrangement about the two chiral MAs(2)P(2) stereocenters of S configuration. The unit cell of the silver(I) complex contains one molecule each of the parallel helicate of M configuration and the conformationally related double alpha-helix of M configuration in which each ligand strand completes 0.5 turns of an M helix about two metal stereocenters of S configuration. Energy minimization calculations of the three structures with use of the program SPARTAN 5.0 gave results that were in close agreement with the core structures observed.  相似文献   

3.
A series of optically active silatrane derivatives, [Si{N(CHRCH(2)O)(CH(2)CH(2)O)(2)}X] (R = Me, i-Pr; X = Ph, OMe) has been synthesized by the reaction of optically active triethanolamine derivatives with XSi(OMe)(3), and characterized by (1)H NMR, (13)C NMR, (29)Si NMR, and mass spectroscopy, and the structures of six compounds have been determined by X-ray analysis. Molecular mechanics methods have also been employed to obtain the energy-minimized structures. The (29)Si NMR chemical shifts and the lengths of Si-N determined by X-ray analysis are sensitive to the bulkiness of the substituent (R). The Si-X bond lengths (X: trans position to nitrogen) do not appreciably differ from one another. The MM2 calculations indicated that the substituent exists in the equatorial position, and the results are in agreement with those of X-ray analysis and (1)H NMR spectroscopy. Crystallographic data: [R = H; X = OMe], C(7)H(15)NO(4)Si, orthorhombic, Pna2(1), a = 13.407(1) ?, b = 8.761(2) ?, c = 8.191(1) ?, Z = 4; [R = Me; X = OMe], C(8)H(17)NO(4)Si, orthorhombic, P2(1)2(1)2(1), a = 10.110(3) ?, b = 11.083(2) ?, c = 9.474(2) ?, Z = 4; [R = i-Pr; X = OMe], C(10)H(21)NO(4)Si, monoclinic, P2(1), a = 8.481(1) ?, b = 7.805(1) ?, c = 10.218(2) ?, beta = 111.31(1) degrees, Z = 2; [R = Me; X = Ph], C(13)H(19)NO(3)Si, orthorhombic, P2(1)2(1)2(1), a = 8.813(1) ?, b = 11.137(2) ?, c = 13.757(1) ?, Z = 4; [R = i-Pr; X = Ph], C(15)H(23)NO(3)Si, orthorhombic, P2(1)2(1)2(1), a = 8.365(1) ?, b = 13.538(2) ?, c = 13.841(2) ?, Z = 4.  相似文献   

4.
The configuration at phosphorus in cyclic (S)-HPMPC (1, cidofovir) and (S)-HPMPA (2) phenyl ester (5 and 6, respectively) diastereomers ((R(p))-5, (R(p))-6, (S(p))-6) was determined by X-ray crystallography and correlated to their (1)H and (31)P NMR spectra in solution. (R(p))-5 and (R(p))-6 have chair conformations with the nucleobase substituent equatorial and the P-OPh axial. Perhaps surprisingly, (S(p))-6 is (a, a) in the crystal and exists largely as an equilibrium of (a, a)/(e, e) conformers in chloroform or acetonitrile.  相似文献   

5.
The reactivity of diethyl azodicarboxylate (DEAD)/diisopropyl azodicarboxylate (DIAD) with P(III) compounds bearing oxygen or nitrogen substituents is explored. Compounds with structures quite different from that of Morrison-Brunn-Huisgen intermediate R'(3)P(+)N(CO(2)R)N(-)(CO(2)R) (1), observed in the Mitsunobu reaction, have been established by using X-ray crystallography and NMR spectroscopy. Thus reactions with X(6-t-Bu-4-Me-C(6)H(2)O)(2)P-NH-t-Bu [X = S (8), CH(2) (9)] or XP(mu-N-t-Bu)(2)P-NH-t-Bu [X = Cl (14) or NH-t-Bu (15)] and DEAD/DIAD lead to phosphinimine-carbamate-type of products X[6-t-Bu-4-Me-C(6)H(2)O](2)P[N-t-Bu][N(CO(2)R)NH(CO(2)R)] [X = S, R = Et (16); X = CH(2), R = Et (17); X = CH(2), R = i-Pr (18)] or XP(mu-N-t-Bu)(2)P(N-t-Bu)[N-(CO(2)-i-Pr)-N(H)(CO(2)-i-Pr) [X = Cl (19), NH-t-Bu (20)]. Treatment of 19 with 2,2,2-trifluoroethanol afforded the product [(CF(3)CH(2)O)P(mu-N-t-Bu)(2)P(+)(NH-t-Bu)[N(CO(2)-i-Pr)(HNCO(2)-i-Pr)]][Cl(-)] (21) whose structure is close to one of the intermediates proposed in the Mitsunobu reaction. The isocyanate CH(2)(6-t-Bu-4-Me-C(6)H(2)O)(2)P-NCO (10) underwent 1,3-(P,C) cycloaddition with DEAD/DIAD to lead to CH(2)(6-t-Bu-4-Me-C(6)H(2)O)(2)P[N(CO(2)R)N(CO(2)R)-C(O)-N] [R = Et (22), i-Pr (23)]. Reaction of 22-23 with 1,1'-bi-2-naphthol or catechol leads to novel tetracoordinate CH(2)(6-t-Bu-4-Me-C(6)H(2)O)(2)P(2,2'-OC(10)H(6)-C(10)H(6)-OH)[NC(O)-(CO(2)R)NH(CO(2)R)] [R = Et (24), i-Pr (25)] or pentacoordinate CH(2)(6-t-Bu-4-Me-C(6)H(2)O)(2)P(1,2-O(2)C(6)H(4))[NHC(O)-N(CO(2)R)NH(CO(2)R)] [R = Et (26), i-Pr (27)] compounds in which the original NCO residue is retained; this mode of reactivity is quite different from that observed for the MBH betaine 1. In 27, the nitrogen, rather than the oxygen, occupies an apical position of the trigonal bipyramidal phosphorus violating the commonly assumed preference rules for apicophilicity. It is shown that the previously reported azide derivative 3, obtained from the reaction of 11 with DIAD, undergoes a Curtius-type rearrangement to lead to the fused cyclodiphosphazane [(CH(2)(6-t-Bu-4-Me-C(6)H(2)O)(2))P(OC(O-i-Pr)NN(CO(2)-i-Pr)N)](2) (28); this compound is in equilibrium with its monomeric form in solution at >300 K. Finally, reaction of S(6-t-Bu-4-Me-C(6)H(2)O)(2)P(OPh) (13) with DIAD gave the hexacoordinate compound S[6-t-Bu-4-Me-C(6)H(2)O](2)P(OPh)[N(CO(2)-i-Pr)NC(O-i-Pr)O] (30) with an intramolecular S-->P bond. X-ray crystallographic evidence for compounds 16, 19, 21, 22, 25, 27, 28, and 30 has been provided.  相似文献   

6.
The first examples of α-azido bisphosphonates [(RO)(2)P(O)](2)CXN(3) (1, R = i-Pr, X = Me; 2, R = i-Pr, X = H; 3, R = H, X = Me; 4, R = H, X = H) and corresponding β,γ-CXN(3) dGTP (5-6) and α,β-CXN(3) dATP (7-8) analogues are described. The individual diastereomers of 7 (7a/b) were obtained by HPLC separation of the dADP synthetic precursor (14a/b).  相似文献   

7.
Huang Q  Wu X  Wang Q  Sheng T  Lu J 《Inorganic chemistry》1996,35(4):893-897
Synthetic methods for [Et(4)N](4)[W(4)Cu(4)S(12)O(4)] (1), [Et(4)N](4)[Mo(4)Cu(4)S(12)O(4)] (2), [W(4)Cu(4)S(12)O(4)(CuTMEN)(4)] (3), and [Mo(4)Cu(4)S(12)O(4)(CuTMEN)(4)] (4) are described. [Et(4)N](2)[MS(4)], [Et(4)N](2)[MS(2)O(2)], Cu(NO(3))(2).3H(2)O, and KBH(4) (or Et(4)NBH(4)) were used as starting materials for the synthesis of 1 and 2. Compounds 3 and 4 were produced by reaction of [Et(4)N](2)[WOS(3)], Cu(NO(3))(2).3H(2)O, and TMEN and by reaction of [Me(4)N](2)[MO(2)O(2)S(8)], Cu(NO(3))(2).3H(2)O, and TMEN, respectively. Crystal structures of compounds 1-4 were determined. Compounds 1 and 2 crystallized in the monoclinic space group C2/c with a = 14.264(5) ?, b = 32.833(8) ?, c = 14.480(3) ?, beta = 118.66(2) degrees, V = 5950.8(5) ?(3), and Z = 4 for 1 and a = 14.288(5) ?, b = 32.937(10) ?, c = 14.490(3) ?, beta = 118.75(2) degrees, V = 5978.4(7) ?(3), and Z = 4 for 2. Compounds 3 and 4 crystallized in the trigonal space group P3(2)21 with a = 13.836(6) ?, c = 29.81(1) ?, V = 4942(4) ?(3), and Z = 3 for 3 and a = 13.756(9) ?, c = 29.80(2) ?, V = 4885(6) ?(3), and Z = 3 for 4. The cluster cores have approximate C(2v) symmetry. The anions of 1 and 2 may be viewed as consisting of two butterfly-type [CuMOS(3)Cu] fragments bridged by two [MOS(3)](2-) groups. Eight metal atoms in the anions are arranged in an approximate square configuration, with a Cu(4)M(4)S(12) ring structure. Compounds 3 and 4 can be considered to consist of one [M(4)Cu(4)S(12)O(4)](4-) (the anions of 1 and 2) unit capped by Cu(TMEN)(+) groups on each M atom; the Cu(TMEN)(+) groups extend alternately up and down around the Cu(4)M(4) square. The electronic spectra of the compounds are dominated by the internal transitions of the [MOS(3)](2-) moiety. (95)Mo NMR spectral data are investigated and compared with those of other compounds.  相似文献   

8.
Reduction of {2,6-[2,6-(i-Pr)2PhN=C(CH3)]2(C5H3N)}CrCl (3) with NaH afforded the dinuclear dinitrogen complex {[{2,6-[2,6-(i-Pr)2PhN=C(CH3)]2(C5H3N)}Cr(THF)]2(mu-N2)}.THF (5). Reaction carried in exclusion of dinitrogen afforded instead deprotonation of the ligand with the formation of {2-[2,6-(i-Pr)2PhN=C(CH3)]-6-[2,6-(i-Pr)2PhNC=CH2](C5H3N)}Cr(THF) (4). Further reduction of 5 with NaH yielded a curious dinuclear compound formulated as [{2,6-[2,6-(i-Pr)2PhN=C(CH3)]2(C5H3N)}Cr(THF)][{2-[2,6-(i-Pr)2PhN=C(CH3)]-6-[2,6-(i-Pr)2PhNC=CH2](C5H3N)}Cr(THF)](mu-N2 H)(mu-Na)2 (6) containing two sodium atoms only bound to the dinitrogen unit and the pi systems of the two diiminepyridine ligands. Subsequent reduction with NaH triggered a complex series of events, leading to the formation of a species formulated as {2-[2,6-(i-Pr)2PhN=C(CH3)]-6-[2,6-(i-Pr)2PhNC=CH2](C5H3N)}Cr(mu-NH)][Na(THF)] (7) on the basis of crystallographic, spectroscopic, isotopic labeling, and chemical degradation experiments.  相似文献   

9.
The coordination chemistry of the sterically hindered macrocyclic triamines, 1,4,7-R3-1,4,7-triazacyclononane (R = i-Pr, i-Pr3tacn, and R = i-Bu, i-Bu3tacn) with divalent transition metals has been investigated. These ligands form a series of stable novel complexes with the triflate salts MII(CF3SO3)2 (M = Fe, Co, or Zn) under anaerobic conditions. The complexes Fe(i-Pr3tacn)(CF3SO3)2 (2), [Co(i-Pr3tacn)(SO3CF3)(H2O)](CF3SO3) (3), [Co(i-Pr3tacn)(CH3CN)2](BPh4)2 (4), Zn(i-Pr3tacn)(CF3SO3)2 (5), [Fe(i-Bu3tacn)(CH3CN)2(CF3SO3)](CF3SO3) (6), Fe(i-Bu3tacn)-(H2O)(CF3SO3)2 (7), and Co(i-Bu3tacn)(CF3SO3)2 (8) have been isolated. The behavior of these paramagnetic complexes in solution is explored by their 1H NMR spectra. The solid-state structures of four complexes have been determined by X-ray single-crystal crystallography. Crystallographic parameters are as follows. 2: C17H33F6FeN3O6S2, monoclinic, P2(1)/n, a = 10.895(1) A, b = 14.669(1) A, c = 16.617(1) A, beta = 101.37(1) degrees, Z = 4. 3: C17H35CoF6N3O7S2, monoclinic, P2(1)/c, a = 8.669(2) A, b = 25.538(3) A, c = 12.4349(12) A, beta = 103.132(13) degrees, Z = 4. 6: C24H45F6FeN5O6S2, monoclinic, P2(1)/c, a = 12.953(6) A, b = 16.780(6) A, c = 15.790(5) A, beta = 96.32(2) degrees, Z = 4. 7: C20H41F6FeN3O7S2, monoclinic, C2/c, a = 22.990(2) A, b = 15.768(2) A, c = 17.564(2) A, beta = 107.65(1) degrees, Z = 8. The ligand i-Pr3tacn leads to complexes in which the metal ions are five-coordinate, while it's isobutyl homologue affords six-coordinate complexes. This difference in the stereochemistries around the metal center is attributed to steric interactions involving the bulky alkyl appendages of the macrocycles.  相似文献   

10.
Reaction of aryllithium reagents LiR (R = C(6)H(4)((R)-CH(Me)NMe(2))-2 (1a), C(6)H(3)(CH(2)NMe(2))(2)-2,6 (1b), C(6)H(4)(CH(2)N(Me)CH(2)CH(2)OMe)-2 (1c)) with 1 equiv of sulfur (1/8 S(8)) results in the quantitative formation of the corresponding lithium arenethiolates [Li{SC(6)H(4)((R)-CH(Me)NMe(2))-2}](6) (3), [Li{SC(6)H(3)(CH(2)NMe(2))(2)-2,6}](6) (4), and [Li{SC(6)H(4)(CH(2)N(Me)CH(2)CH(2)OMe)-2}](2) (5). Alternatively, 3 can be prepared by reacting the corresponding arenethiol HSC(6)H(4)((R)-CH(Me)NMe(2))-2 (2) with (n)BuLi. X-ray crystal structures of lithium arenethiolates 3 and 4, reported in abbreviated form, show them to have hexanuclear prismatic and hexanuclear planar structures, respectively, that are unprecedented in lithium thiolate chemistry. The lithium arenethiolate [Li{SC(6)H(4)(CH(2)N(Me)CH(2)CH(2)OMe)-2}](2) (5) is dimeric in the solid state and in solution, and crystals of 5 are monoclinic, space group P2(1)/c, with a = 17.7963(9) ?, b = 8.1281(7) ?, c = 17.1340(10) ?, beta = 108.288(5) degrees, Z = 4, and final R = 0.047 for 4051 reflections with F > 4sigma(F). Hexameric 4 reacts with 1 equiv of lithium iodide and 2 equiv of tetrahydrofuran to form the dinuclear adduct [Li(2)(SAr)(I)(THF)(2)] (6). Crystals of 6 are monoclinic, space group P2(1)/c, with a = 13.0346(10) ?, b = 11.523(3) ?, c = 16.127(3) ?, beta = 94.682(10) degrees, Z = 4, and final R = 0.059 for 3190 reflections with F > 4sigma(F).  相似文献   

11.
Decaborane(14) reacts with 1-(CH(3))(3)SiC&tbd1;CC(4)H(9) in the presence of dimethyl sulfide to give the new alkenyldecaborane 5-(S(CH(3))(2))-6-[(CH(3))(3)Si(C(4)H(9))C=CH]B(10)H(11) (I). Crystal data for 5-(S(CH(3))(2))-6-[(CH(3))(3)Si(C(4)H(9))C=CH]B(10)H(11): space group P2(1)/n, monoclinic, a = 9.471(1) ?, b = 13.947(3) ?, c = 17.678(3) ?, beta = 100.32(1) degrees. A total of 3366 unique reflections were collected over the range 2.0 degrees /= 3sigma(F(o)(2)) and were used in the final refinement. R(F)() = 0.083; R(w)(F)() = 0.094. The single-crystal X-ray structure of 5-(S(CH(3))(2))-6-[((CH(3))(3)Si)(2)C=CH]B(10)H(11) (A) is also reported. Crystal data for 5-(S(CH(3))(2))-6-[((CH(3))(3)Si)(2)C=CH]B(10)H(11): space group, P2(1)2(1)2(1), orthorhombic, a = 9.059 (3) ?, b = 12.193(4) ?, c = 21.431(3) ?. A total of 4836 unique reflections were collected over the range 6 degrees /= 3sigma(F(o)(2)) and were used in the final refinement. R(F)() = 0.052; R(w)(F)() = 0.059. The reactions of 5-(S(CH(3))(2))6-[(CH(3))(3)Si(C(4)H(9))C=CH]B(10)H(11) and 5-(S(CH(3))(2))6-[((CH(3))(3)Si)(2)C=CH]B(10)H(11) with a variety of alkyl isocyanides were investigated. All of the alkenyl monocarbon carboranes reported are the result of incorporation of the carbon atom from the isocyanide into the alkenyldecaborane framework and reduction of N&tbd1;C bond to a N-C single bond. The characterization of these compounds is based on (1)H and (11)B NMR data, IR spectroscopy, and mass spectrometry.  相似文献   

12.
A series of new complexes, Mo(2)O(2)S(2)[S(2)P(OR)(2)](2) (where R = Et, n-Pr, i-Pr) and Mo(2)O(2)S(2)[S(2)POGO](2) (where G = -CH(2)CMe(2)CH(2)-, -CMe(2)CMe(2)-) have been prepared by the dropwise addition of an ethanolic solution of the ammonium or sodium salt of the appropriate O,O-dialkyl or -alkylene dithiophosphoric acid, or the acid itself, to a hot aqueous solution of molybdenum(V) pentachloride. The complexes were also formed by heating solutions of Mo(2)O(3)[S(2)P(OR)(2)](4) or Mo(2)O(3)[S(2)POGO](4) species in glacial acetic acid. The Mo(2)O(2)S(2)[S(2)P(OR)(2)](2) and Mo(2)O(2)S(2)[S(2)POGO](2) compounds were characterized by elemental analyses, (1)H, (13)C, and (31)P NMR, and infrared and Raman spectroscopy, as were the 1:2 adducts formed on reaction with pyridine. The crystal structures of Mo(2)O(2)S(2)[S(2)P(OEt(2))](2), Mo(2)O(2)S(2)[S(2)P(OEt)(2)](2).2NC(5)H(5), and Mo(2)O(3)[S(2)P(OPh)(2)](4) were determined. Mo(2)O(2)S(2)[S(2)P(OEt)(2)](2) (1) crystallizes in space group C2/c, No. 15, with cell parameters a = 15.644(3) ?, b = 8.339(2) ?, c = 18.269(4) ?, beta = 103.70(2) degrees, V = 2315.4(8) ?(3), Z = 4, R = 0.0439, and R(w) = 0.0353. Mo(2)O(2)S(2)[S(2)P(OEt)(2)](2).2NC(5)H(5) (6) crystallizes in space group P&onemacr;, No. 2, with the cell parameters a = 12.663(4) ?,b = 14.291(5) ?, c = 9.349(3) ?, alpha = 100.04(3) degrees, beta = 100.67(3) degrees, gamma = 73.03(3) degrees V = 1557(1) ?(3), Z = 2, R = 0.0593, and R(w) = 0.0535. Mo(2)O(3)[S(2)P(OPh)(2)](4) (8) crystallizes in space group P2(1)/n, No. 14, with cell parameters a = 15.206(2)?, b = 10.655(3)?, c = 19.406(3)?, beta = 111.67(1) degrees, V = 2921(1)?(3), Z = 2, R = 0.0518, R(w) = 0.0425. The immediate environment about the molybdenum atoms in 1 is essentially square pyramidal if the Mo-Mo interaction is ignored. The vacant positions in the square pyramids are occupied by two pyridine molecules in 6, resulting in an octahedral environment with very long Mo-N bonds. The terminal oxygen atoms in both 1 and 6 are in the syn conformation. In 8, which also has a distorted octahedral environment about molybdenum, two of the dithiophosphate groups are bidentate as in 1 and 6, but the two others have one normal Mo-S bond and one unusually long Mo-S bond.  相似文献   

13.
The ligated benzonitriles in the platinum(II) complex [PtCl2(PhCN)2] undergo metal-mediated [2 + 3] cycloaddition with nitrones -ON+(R3)=C(R1)(R2) [R1/R2/R3 = H/Ph/Me, H/p-MeC6H4/Me, H/Ph/CH2Ph] to give delta 4-1,2,4-oxadiazoline complexes, [PtCl2(N=C(Ph)O-N(R3)-C(R1)(R2))2] (2a, 4a, 6a), as a 1:1 mixture of two diastereoisomers, in 60-75% yields, while [PtCl2(MeCN)2] is inactive toward the addition. However, a strong activation of acetonitrile was reached by application of the platinum(IV) complex [PtCl4(MeCN)2] and both [PtCl4(RCN)2] (R = Me, Ph) react smoothly with various nitrones to give [PtCl4(N=C(R)O-N(R3)-C(R1)(R2))2] (1b-6b). The latter were reduced to the corresponding platinum(II) complexes [PtCl2(N=C(R)O-N(R3)-C(R1)(R2))2] (1a-6a) by treatment with PhCH2NHOH, while the reverse reaction, i.e. conversion of 1a-6a to 1b-6b, was achieved by chlorination with Cl2. The diastereoisomers of [PtCl2(N=C(R)O-N(R3)-C(R1)(R2))2] (1a-6a) exhibit different kinetic labilities, and liberation of the delta 4-1,2,4-oxadiazolines by substitution with 1,2-bis(diphenylphosphino)ethane (dppe) in CDCl3 proceeds at different reaction rates to give free N=C(R)O-N(R3)-C(R1)(R2) and [PtCl2(dppe)] in almost quantitative NMR yield. All prepared compounds were characterized by elemental analyses, FAB mass spectrometry, and IR and 1H, 13C(1H), and 195Pt (metal complexes) NMR spectroscopies; X-ray structure determination of the first (delta 4-1,2,4-oxadiazoline)Pt(II) complexes was performed for (S,S)/(R,R)-rac-[PtCl2(N=C(Me)O-N(Me)-C(H)Ph)2] (1a) (a = 9.3562(4), b = 9.8046(3), c = 13.1146(5) A; alpha = 76.155(2), beta = 83.421(2), gamma = 73.285(2) degrees; V = 1117.39(7) A3; triclinic, P1, Z = 2), (R,S)-meso-[PtCl2(N=C(Ph)O-N(Me)-C(H)Ph)2] (2a) (a = 8.9689(9), b = 9.1365(5), c = 10.1846(10) A; alpha = 64.328(6), beta = 72.532(4), gamma = 67.744(6) degrees; V = 686.82(11) A3; triclinic, P1, Z = 1), (S,S)/(R,R)-rac-[PtCl2(N=C(Me)O-N(Me)-C(H)(p-C6H4Me))2] (3a) (a = 11.6378(2), b = 19.0767(7), c = 11.5782(4) A; beta = 111.062(2) degrees; V = 2398.76(13) A3; monoclinic, P2(1)/c, Z = 4), and (S,S)/(R,R)-rac-[PtCl2(N=C(Me)O-N(CH2Ph)-C(H)Ph2] (5a) (a = 10.664(2), b = 10.879(2), c = 14.388(3) A; alpha = 73.11(3), beta = 78.30(3), gamma = 88.88(3) degrees; V = 1562.6(6) A3; triclinic, P1, Z = 2).  相似文献   

14.
Tan G  Zhu H 《Inorganic chemistry》2011,50(15):6979-6986
The dinuclear NNP-ligand copper(I) complex [o-N═CH(C(4)H(3)N)-PPh(2)C(6)H(4)](2)Cu(2) (1) has been synthesized by the reaction of (CuMes)(4) (Mes = 2,4,6-Me(3)C(6)H(2)) with N-((1H-pyrrol-2-yl)-methylene)-2-(diphenylphosphino)benzenamine under an elimination of MesH. Further reaction of 1 with an excess of S(8) produced a mononuclear Cu(II) complex [o-N═CH(C(4)H(3)N)-P(S)Ph(2)C(6)H(4)](2)Cu (5) and CuS. CuS was identified by Raman spectroscopy and 1 and 5 were clearly confirmed by X-ray crystallography. The N-heterocyclic carbene was employed to react with 1 to give a mononuclear [o-N═CH(C(4)H(3)N)-PPh(2)C(6)H(4)]Cu{C[N(iPr)CMe](2)} (2). The reactions of 2 were carried out with (1)/(8), (2)/(8), and (5)/(8) equiv of S(8), leading to compounds [o-N═CH(C(4)H(3)N)-P(S)Ph(2)C(6)H(4)]Cu{C[N(iPr)CMe](2)} (3), [o-N═CH(C(4)H(3)N)-P(S)Ph(2)C(6)H(4)]Cu (4), and 5 respectively, in which CuS was generated in the third reaction and S═C[N(iPr)CMe](2) in the latter two reactions. The clean confirmation of 2-4 demonstrates a stepwise reaction process of 1 with S(8) to 5 and CuS and the N-heterocyclic carbene acts well as a trapping agent.  相似文献   

15.
The racemic secondary phosphine PH(Me)(Is) (1, Is = 2,4,6-(i-Pr)3C6H2) was coupled with PhI in the presence of NaOSiMe3 and the catalyst Pd((R,R)-Me-Duphos)(Ph)(I) (3) to give P(Ph)(Me)(Is) (2) in up to 78% ee. The intermediate phosphido complex Pd((R,R)-Me-Duphos)(Ph)(P(Me)(Is)) (5a,b) was observed as a mixture of diastereomers by low-temperature 31P NMR. The rate of interconversion of 5a,b by phosphorus inversion is greater than or equal to that of reductive elimination, which suggests that the enantiodetermining step occurs after Pd-P bond formation.  相似文献   

16.
The diastereoselective addition of Ph(2)PH to the chiral ortho-substituted eta(6)-benzaldimine complexes (eta(6)-o-X-C(6)H(4)CH=NAr)Cr(CO)(3) (1, X = MeO, Ar = p-C(6)H(4)OMe; 2, X = Cl, Ar = Ph) leads to the formation of the corresponding chiral aminophosphines (alpha-P,N) Ph(2)P-CH(Ar(1))-NHAr(2) (3, Ar(1) = o-C(6)H(4)(OCH(3))[Cr(CO)(3)], Ar(2) = p-C(6)H(4)OCH(3); 4, Ar(1) = o-C(6)H(4)Cl[Cr(CO)(3)], Ar(2) = Ph) in equilibrium with the starting materials. The uncomplexed benzaldimine (o-ClC(6)H(4)CH=NPh), 2', analogously produces an equilibrium amount of the corresponding aminophosphine Ph(2)P-CH(Ar(1))-NHAr(2) (4', Ar(1) = o-C(6)H(4)Cl, Ar(2) = Ph). Depending on the equilibrium constant, the subsequent addition of (1)/(2) equiv of [RhCl(COD)](2) (COD = 1,5-cyclooctadiene) leads to either Ph(2)PH oxidative addition in the case of 3 or to the corresponding [RhCl(COD)(alpha-P,N)] complexes [RhCl(COD)(Ph(2)P-CH[o-C(6)H(4)Cl[Cr(CO)(3)]]-NHPh)] (5) and [RhCl(COD)(Ph(2)P-CH(o-C(6)H(4)Cl)-NHPh)] (5') in the cases of the aminophosphines 4 and 4'. The addition of the latter ligands, as racemic mixtures, to (1)/(4) equiv of [Rh(CO)(2)Cl](2) leads to the [RhCl(CO)(alpha-P,N)(2)] complexes [RhCO(Ph(2)P-CH[o-C(6)H(4)Cl[Cr(CO)(3)]]-NHPh)(2)Cl] (7) or [RhCO(Ph(2)P-CH(o-C(6)H(4)Cl)-NHPh)(2)Cl] (7') as mixtures of (R(C),S(C))/(S(C),R(C)) and (R(C),R(C))/(S(C),S(C)) diastereomers. The rhodium complexes 5 and 7' have been fully characterized by IR and (31)P NMR spectroscopies and X-ray crystallography. These compounds exhibit intramolecular Rh-Cl.H-N interactions in the solid state and in solution. The stability of the new rhodium complexes has been studied under different CO pressures. Under 1 atm of CO, 5 is converted to an unstable complex [RhCl(CO)(2)(alpha-P,N)], 6, which undergoes ligand redistribution leading to 7 plus an unidentified complex. This reaction is inhibited under higher CO or syngas pressure, as confirmed by the observation of the same catalytic activity in hydroformylation when styrene was added to a catalytic mixture that was either freshly prepared or left standing for 20 h under high CO pressure.  相似文献   

17.
The double-decker sandwich complex CpIr(2,3-Et(2)C(2)B(4)H(4)) (1a) was prepared via deprotonation of nido-2,3-Et(2)C(2)B(4)H(6) to its mono- or dianion and reaction with (CpIrCl(2))(2) in THF and isolated as a colorless air-stable solid; the B(4)-chloro derivative 1b was also obtained. Decapitation of 1a and 1b with TMEDA afforded colorless nido-CpIr(2,3-Et(2)C(2)B(3)H(5)) (2a) and its 4-chloro derivative 2b. Chlorination of 1a by Cl(2) or N-chlorosuccinimide gave the symmetrical species CpIr(2,3-Et(2)C(2)B(4)H(3)-5-Cl) (1c), which was decapped to yield nido-CpIr(2,3-Et(2)C(2)B(3)H(4)-5-Cl) (2c). The triple-decker complexes CpIr(2,3-Et(2)C(2)B(3)H(2)-4[6]-Cl)IrCp (3), an orange solid, and dark green CpIr(2,3-Et(2)C(2)B(3)H(2)-4[6]-Cl)CoCp (5) were prepared from 2a and nido-CpCo(2,3-Et(2)C(2)B(3)H(5)) (4a), respectively, by deprotonation and reaction with (CpIrCl(2))(2) in THF. Reaction of the 2c(-) anion with Rh(MeCN)(3)Cl(3) gave the dark green tetradecker complex [CpIr(Et(2)C(2)B(3)H(2)-5-Cl)](2)RhH (6). In an attempt to prepare a heterotrimetallic Co-Rh-Ir tetradecker sandwich, a three-way reaction involving the deprotonated anions derived from CpCo(2,3-Et(2)C(2)B(3)H(4)-5-Cl) (4b) and 2c with Rh(MeCN)(3)Cl(3) was conducted. The desired species CpCo(Et(2)C(2)B(3)H(2)Cl)RhH(Et(2)C(2)B(3)H(2)Cl)IrCp (7) and the tetradeckers [CpCo(Et(2)C(2)B(3)H(2)Cl)](2)RhH (8) and 6 were isolated in small quantities from the product mixture; many other apparent triple-decker and tetradecker products were detected via mass spectroscopy but were not characterized. All new compounds were isolated via column or plate chromatography and characterized via NMR, UV-visible, and mass spectroscopy and by X-ray crystal structure determinations of 1a and 3. Crystal data for 1a: space group C2/c; a = 28.890(5) ?, b = 8.511(2) ?, c = 15.698(4) ?, beta = 107.61(2) degrees; Z = 8; R = 0.049 for 1404 independent reflections having I > 3sigma(I). Crystal data for 3: space group P2(1)/c; a = 11.775(4) ?, b = 15.546(5) ?, c = 15.500(5) ?, beta = 103.16(3) degrees; Z = 4; R = 0.066 for 2635 independent reflections having I > 3sigma(I).  相似文献   

18.
The orthopalladation of iminophosphoranes [R(3)P=N-C(10)H(7)-1] (R(3) = Ph(3) 1, p-Tol(3) 2, PhMe(2) 3, Ph(2)Me 4, N-C(10)H(7)-1 = 1-naphthyl) has been studied. It occurs regioselectively at the aryl ring bonded to the P atom in 1 and 2, giving endo-[Pd(μ-Cl)(C(6)H(4)-(PPh(2=N-1-C(10)H(7))-2)-κ-C,N](2) (5) or endo-[Pd(μ-Cl)(C(6)H(3)-(P(p-Tol)(2)=N-C(10)H(7)-1)-2-Me-5)-κ-C,N](2) (6), while in 3 the 1-naphthyl group is metallated instead, giving exo-[Pd(μ-Cl)(C(10)H(6)-(N=PPhMe(2))-8)-κ-C,N](2) (7). In the case of 4, orthopalladation at room temperature affords the kinetic exo isomer [Pd(μ-Cl)(C(10)H(6)-(N=PPh(2)Me)-8)-κ-C,N](2) (11exo), while a mixture of 11exo and the thermodynamic endo isomer [Pd(μ-Cl)(C(6)H(4)-(PPhMe=N-C(10)H(7)-1)-2)-κ-C,N](2) (11endo) is obtained in refluxing toluene. The heating in toluene of the acetate bridge dimer [Pd(μ-OAc)(C(10)H(6)-(N=PPh(2)Me)-8)-κ-C,N](2) (13exo) promotes the facile transformation of the exo isomer into the endo isomer [Pd(μ-OAc)(C(6)H(4)-(PPhMe=N-C(10)H(7)-1)-2)-κ-C,N](2) (13endo), confirming that the exo isomers are formed under kinetic control. Reactions of the orthometallated complexes have led to functionalized molecules. The stoichiometric reactions of the orthometallated complexes [Pd(μ-Cl)(C(10)H(6)-(N=PPhMe(2))-8)-κ-C,N](2) (7), [Pd(μ-Cl)(C(6)H(4)-(PPh(2)[=NPh)-2)](2) (17) and [Pd(μ-Cl)(C(6)H(3)-(C(O)N=PPh(3))-2-OMe-4)](2) (18) with I(2) or with CO results in the synthesis of the ortho-halogenated compounds [PhMe(2)P=N-C(10)H(6)-I-8] (19), [I-C(6)H(4)-(PPh(2)=NPh)-2] (21) and [Ph(3)P=NC(O)C(6)H(3)-I-2-OMe-5] (23) or the heterocycles [C(10)H(6)-(N=PPhMe(2))-1-(C(O))-8]Cl (20), [C(6)H(5)-(N=PPh(2)-C(6)H(4)-C(O)-2]ClO(4) (22) and [C(6)H(3)-(C(O)-1,2-N-PPh(3))-OMe-4]Cl (24).  相似文献   

19.
Structural characterization of compounds analogous to the proposed intermediates in the Mitsunobu esterification process is achieved by the combined use of NMR spectroscopy and X-ray diffractometric studies. The results show that compounds (t-BuNH)P(mu-N-t-Bu)(2)P[(N-t-Bu)(N-(CO(2)R)-N(H)(CO(2)R))] [R = Et (11), i-Pr (12)], obtained by treating [(t-Bu-NH)P-mu-N-t-Bu](2) (10) with diethylazodicarboxylate (DEAD) or diisopropylazodicarboxylate (DIAD), respectively, have a structure with the NH proton residing between the two nitrogen atoms ((P)N(t-Bu) and (P)N-N(CO(2)Et)); this is the tautomeric form of the expected betaine (t-BuNH)P(mu-N-t-Bu)(2)P(+)[(NH-t-Bu)(N-(CO(2)R)-N(-)(CO(2)R)]. Treatment of ClP(mu-N-t-Bu)(2)P[(N-t-Bu){N-(CO(2)-i-Pr)-N(H)(CO(2)-i-Pr)] (6) with 2,6-dicholorophenol affords (2,6-Cl(2)-C(6)H(3)-O)P(mu-N-t-Bu)(2)P(+)[(NH-t-Bu){N[(CO(2)i-Pr)(HNCO(2)i-Pr)]}](Cl(-))(2,6-Cl(2)-C(6)H(3)-OH) (14) that has a structure similar to that of (CF(3)CH(2)O)P(mu-N-t-Bu)(2)P(+)[(NH-t-Bu){N[(CO(2)i-Pr)(HNCO(2)i-Pr)]}](Cl(-)) (13), but with an additional hydrogen bonded phenol. Both of these have the protonated betaine structure analogous to that of Ph(3)P(+)N(CO(2)R)NH(CO(2)R)(R'CO(2))(-) (2) proposed in the Mitsunobu esterification. Two other compounds, (ArO)P(mu-N-t-Bu)(2)P(+)(NH-t-Bu){N(CO(2)i-Pr)(HNCO(2)i-Pr)}(Cl(-)) [Ar = 2,6-Me(2)C(6)H(3)O- (15) and 2-Me-6-t-Bu-C(6)H(3)-O- (16)], are also prepared by the same route. Although NMR tube reactions of 11 or 12 with tetrachlorocatechol, catechol, 2,2'-biphenol, and phenol revealed significant changes in the (31)P NMR spectra, attempted isolation of these products was not successful. On the basis of (31)P NMR spectra, the phosphonium salt structure (t-BuNH)P(mu-N-t-Bu)(2)P(+)[(HN-t-Bu){N-(CO(2)R)-N(H)(CO(2)R)](ArO(-)) is proposed for these. The weakly acidic propan-2-ol or water did not react with 11 or 12. Treatment of 12 with carboxylic acids/ p-toluenesulfonic acid gave the products (t-BuNH)P(mu-N-t-Bu)(2)P(+)[(HN-t-Bu){N-(CO(2)-i-Pr)-N(H)(CO(2)-i-Pr)](ArCO(2)(-)) [Ar = Ph (18), 4-Cl-C(6)H(4)CH(2) (19), 4-Br-C(6)H(4) (20), 4-NO(2)-C(6)H(4) (21)] and (t-BuNH)P(mu-N-t-Bu)(2)P(+)[(HN-t-Bu){N-(CO(2)-i-Pr)-N(H)(CO(2)-i-Pr)](4-CH(3)-C(6)H(4)SO(3)(-)) (22) that have essentially the same structure as 2. Compound 18 has additional stabilization by hydrogen bonding, as revealed by X-ray structure determination. Finally it is shown that the in situ generated (t-BuNH)P(mu-N-t-Bu)(2)P(+)[(HN-t-Bu){N-(CO(2)Et)-N(H)(CO(2)Et)](4-NO(2)-C(6)H(4)CO(2)(-)) can also effect Mitsunobu esterification. A comparison of the Ph(3)P-DIAD system with the analogous synthetically useful Ph(3)P-dimethyl acetylenedicarboxylate (DMAD) system is made.  相似文献   

20.
The complexes of osmium with tacn (1,4,7-triazacyclononane) and Me(3)tacn (1,4,7-trimethyl-1,4,7-triazacyclononane), [LOs (eta(6)-C(6)H(6))](PF(6))(2) (L = tacn) and LOsCl(3) (L = tacn, Me(3)tacn), have been prepared by substitution of L on [Os(eta(6)-C(6)H(6))Cl(2)](2) or [Os(2)Cl(8)](2)(-), respectively. Reaction of LOsCl(3) with neat triflic acid leads to partial replacement of chloride and formation of the binuclear Os(III)-Os(III) complexes [LOs(&mgr;-Cl(3))OsL](PF(6))(3) (L = tacn, Me(3)tacn). The binuclear nature was established by NMR spectroscopy and elemental analysis and, for L = tacn, a partially refined X-ray crystal structure which shows the Os-Os separation to be 2.667 ?, indicative of significant metal-metal bonding. Reduction of [LOs(&mgr;-Cl(3))OsL](3+) over zinc amalgam in either aqueous or non-aqueous solution yields the intensely colored Os(II)-Os(III) mixed-valence ions [LOs(&mgr;-Cl(3))OsL](2+). Electrochemical measurements on [LOs(&mgr;-Cl(3))OsL](3+) in CH(3)CN reveal the reversible formation of the mixed valence ions. These are further reduced at lower potential to the Os(II)-Os(II) binuclear species, reversibly for L = Me(3)tacn. (Me(3)tacn)OsCl(3) is oxidized by persulfate ion to give [(Me(3)tacn)OsCl(3)](+); zinc amalgam reduction in an aqueous solution at high concentration produces the binuclear complex [(Me(3)tacn)Os(&mgr;-Cl(3))Os(Me(3)tacn)](3+) or, at low concentration, a solution containing an air sensitive osmium(II) species. Addition of BPh(4)(-) results in the eta(6)-arene zwitterion [(Me(3)tacn)Os(eta(6)-C(6)H(5)BPh(3))](+), which was characterized by X-ray diffraction on the BPh(4)(-) salt. The compound crystallizes in the triclinic space group P1 with a = 11.829(2) ?, b = 12.480(3) ?, c = 17.155(4) ?, alpha = 84.42(2) degrees, beta = 83.52(2) degrees, gamma = 71.45(2) degrees, V = 2380(2) ?(3), Z = 2, and R = 7.62%, and R(w) = 7.39%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号