首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction of CuI or CuBr with some imino nitroxides in methanol gave the halogen bridged dinuclear Cu(I) complexes [Cu(&mgr;-I)(impy)](2) (1), [Cu(&mgr;-I)(immepy)](2) (2), [Cu(&mgr;-Br)(immepy)](2) (3), and [Cu(&mgr;-Br)(imph-NO(2))](2) (4), respectively (impy = 2-(2'-pyridyl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazolyl-1-oxyl, immepy = 2-(6'-methyl-2'-pyridyl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazolyl-1-oxyl, imph-NO(2) = 2-(4'-nitrophenyl)-4,4,5,5-tetramethyl-4,6-dihydro-1H-imidazolyl-1-oxyl). Crystal structures and magnetic properties have been studied. Complexes 1-4 have dimeric structures where two copper ions are doubly bridged by halide ions in a &mgr;(2) fashion. In 1-3, each copper ion is tetrahedral with a bidentate imino nitroxide and two halide ions, and the two copper ions are separated by 2.592(2), 2.6869(8), and 2.7357(6) ?, respectively. In 4, triangular coordination sites of the copper ions are completed with a nitrogen atom from the imino nitroxide and two bromide ions bridging the two copper ions with a separation of 3.074(2) ?. Ligand imino nitroxides in 1-4 form one-dimensional radical chains, and the chains are linked with halocuprate dimer units. Structural and magnetic susceptibility data support that radicals in 1 and 4 are ferromagnetically stacked, while radicals in 2 and 3 form an antiferromagnetic chain. The magnetic behaviors are discussed in connection with the stacking modes of the radicals and bridging conformations. Crystal data (Mo Kalpha, lambda = 0.71069 ?): 1, orthorhombic, space group P2(1)2(1)2(1), a = 17.807(2) ?, b = 8.595(2) ?, c = 19.336(6) ?, and Z = 4; 2, monoclinic, space group P2(1)/c, a = 9.941(2) ?, b = 18.482(2) ?, c = 8.337(2) ?, beta = 96.41(2) degrees, and Z = 2; 3, monoclinic, space group P2(1)/c, a = 9.964(6) ?, b = 18.167(4) ?, c = 8.009(7) ?, beta = 95.81(6) degrees, and Z = 2; 4, monoclinic, space group P2(1)/c, a = 11.991(7) ?, b = 17.998(8) ?, c = 7.215(6) ?, beta = 104.07(6) degrees, and Z = 2.  相似文献   

2.
Reaction of LRu(III)Cl(3) (L = 1,4,7-trimethyl-1,4,7-triazacyclononane) with 1,2-phenylenediamine (opdaH(2)) in H(2)O in the presence of air affords [LRu(II)(bqdi)(OH(2))](PF(6)) (1), where (bqdi) represents the neutral ligand o-benzoquinone diimine. From an alkaline methanol/water mixture of 1 was obtained the dinuclear species [{LRu(II)(bqdi)}(2)(&mgr;-H(3)O(2))](PF(6))(3) (1a). The coordinated water molecule in 1 is labile and can be readily substituted under appropriate reaction conditions by acetonitrile, yielding [LRu(II)(bqdi)(CH(3)CN)](PF(6))(2) (2), and by iodide and azide anions, affording [LRu(II)(bqdi)I](PF(6)).0.5H(2)O (3) and [LRu(bqdi)(N(3))](PF(6)).H(2)O (4), respectively. Heating of solid 4 in vacuum at 160 degrees C generates N(2) and the dinuclear, nitrido-bridged complex [{LRu(o-C(6)H(4)(NH)(2))}(2)(&mgr;-N)](PF(6))(2) (5). Complex 5 is a mixed-valent, paramagnetic species containing one unpaired electron per dinuclear unit whereas complexes 1-4 are diamagnetic. The crystal structures of 1, 1a.3CH(3)CN, 3, 4.H(2)O, and 5.3CH(3)CN.0.5(toluene) have been determined by X-ray crystallography: 1 crystallizes in the monoclinic space group P2(1)/m, Z = 2, with a = 8.412(2) ?, b = 15.562(3) ?, c = 10.025 ?, and beta = 109.89(2) degrees; 1a.3CH(3)CN, in the monoclinic space group C2/c, Z = 4, with a = 19.858(3) ?, b = 15.483(2) ?, c = 18.192(3) ?, and beta = 95.95(2) degrees; 3, in the orthorhombic space group Pnma, Z = 4, with a = 18.399(4) ?, b = 9.287(2) ?, and c = 12.052(2) ?, 4.H(2)O, in the monoclinic space group P2(1)/c, Z = 4, with a = 8.586(1) ?, b = 15.617(3) ?, c = 16.388(5) ?, and beta = 90.84(2) degrees; and 5.3CH(3)CN.0.5(toluene), in the monoclinic space group P2(1)/c, Z = 4, with a = 15.003(3) ?, b = 16.253(3) ?, c = 21.196(4) ?, and beta = 96.78(3) degrees. The structural data indicate that in complexes 1-4 the neutral o-benzoquinone diimine ligand prevails. In contrast, in 5 this ligand has predominantly o-phenylenediamide character, which would render 5 formally a mixed-valent Ru(IV)Ru(V) species. On the other hand, the Ru-N bond lengths of the Ru-N-Ru moiety at 1.805(5) and 1.767(5) ? are significantly longer than those in other crystallographically characterized Ru(IV)=N=Ru(IV) units (1.72-1.74 ?). It appears that the C(6)H(4)(NH)(2) ligand in 5 is noninnocent and that formal oxidation state assignments to the ligands or metal centers are not possible.  相似文献   

3.
Huang Q  Wu X  Wang Q  Sheng T  Lu J 《Inorganic chemistry》1996,35(4):893-897
Synthetic methods for [Et(4)N](4)[W(4)Cu(4)S(12)O(4)] (1), [Et(4)N](4)[Mo(4)Cu(4)S(12)O(4)] (2), [W(4)Cu(4)S(12)O(4)(CuTMEN)(4)] (3), and [Mo(4)Cu(4)S(12)O(4)(CuTMEN)(4)] (4) are described. [Et(4)N](2)[MS(4)], [Et(4)N](2)[MS(2)O(2)], Cu(NO(3))(2).3H(2)O, and KBH(4) (or Et(4)NBH(4)) were used as starting materials for the synthesis of 1 and 2. Compounds 3 and 4 were produced by reaction of [Et(4)N](2)[WOS(3)], Cu(NO(3))(2).3H(2)O, and TMEN and by reaction of [Me(4)N](2)[MO(2)O(2)S(8)], Cu(NO(3))(2).3H(2)O, and TMEN, respectively. Crystal structures of compounds 1-4 were determined. Compounds 1 and 2 crystallized in the monoclinic space group C2/c with a = 14.264(5) ?, b = 32.833(8) ?, c = 14.480(3) ?, beta = 118.66(2) degrees, V = 5950.8(5) ?(3), and Z = 4 for 1 and a = 14.288(5) ?, b = 32.937(10) ?, c = 14.490(3) ?, beta = 118.75(2) degrees, V = 5978.4(7) ?(3), and Z = 4 for 2. Compounds 3 and 4 crystallized in the trigonal space group P3(2)21 with a = 13.836(6) ?, c = 29.81(1) ?, V = 4942(4) ?(3), and Z = 3 for 3 and a = 13.756(9) ?, c = 29.80(2) ?, V = 4885(6) ?(3), and Z = 3 for 4. The cluster cores have approximate C(2v) symmetry. The anions of 1 and 2 may be viewed as consisting of two butterfly-type [CuMOS(3)Cu] fragments bridged by two [MOS(3)](2-) groups. Eight metal atoms in the anions are arranged in an approximate square configuration, with a Cu(4)M(4)S(12) ring structure. Compounds 3 and 4 can be considered to consist of one [M(4)Cu(4)S(12)O(4)](4-) (the anions of 1 and 2) unit capped by Cu(TMEN)(+) groups on each M atom; the Cu(TMEN)(+) groups extend alternately up and down around the Cu(4)M(4) square. The electronic spectra of the compounds are dominated by the internal transitions of the [MOS(3)](2-) moiety. (95)Mo NMR spectral data are investigated and compared with those of other compounds.  相似文献   

4.
Using a unique three-solvent biphasic method, we have prepared and characterized three new fully conjugated, chalcogen-rich, bridged copper(II) complexes for the preparation of molecular conductors and magnetic materials, having the general formula (Bu(4)N)(2){tto[Cu(L)](2)} (tto = C(2)S(4)(2)(-) = tetrathiooxalato; L = mnt = C(4)N(2)S(2)(2)(-) = 1,2-dicyanoethene-1,2-dithiolato for complex 2, dsit = C(3)Se(2)S(3)(2)(-) = 2-thioxo-1,3-dithiole-4,5-diselenolato for complex 3, dmid = C(3)OS(4)(2)(-) = 2-oxo-1,3-dithiole-4,5-dithiolato for complex 4a). The single-crystal X-ray structures of 2 and 3 have been determined: 2, (Bu(4)N)(2){tto[Cu(mnt)](2)}, monoclinic, space group C2/m, a = 19.549(4) ?, b = 13.519(3) ?, c = 10.162(2) ?, beta = 90.33(1) degrees, Z = 2; 3, (Bu(4)N)(2){tto[Cu(dsit)](2)}, monoclinic, space group P2(1)/c, a = 9.903(1) ?, b = 15.589(1) ?, c = 18.218(1) ?, beta = 90.40(1) degrees, Z = 2. Complex 2 displays perfect planarity, while 3 shows a slight tetrahedral distortion at the metal centers, resulting in a dihedral angle of 24.86(3) degrees. Cyclic voltammetry of (Bu(4)N)(2){tto[Cu(mnt)](2)} (2), (Bu(4)N)(2){tto[Cu(dsit)](2)} (3), and (Bu(4)N)(2){tto[Cu(dmid)](2)} (4a) shows each complex to exhibit two reversible redox processes which can be attributed to {tto[Cu(L)](2)}(2)(-) right arrow over left arrow tto[Cu(L)](2)}(-) and {tto[Cu(L)](2)}(1)(-) right arrow over left arrow {tto[Cu(L)](2)}(0) couples. The structural and electronic properties of 2, 3, and 4a will be compared to those of the recently communicated analogous complex (Bu(4)N)(2){tto[Cu(dmit)](2)} (1).  相似文献   

5.
New copper(II) intercalation compounds, {[Cu(CA)(H(2)O)(2)](G)}(n)() (H(2)CA = chloranilic acid; G = 2,5-dimethylpyrazine (dmpyz) (1a and 1b) and phenazine (phz) (2)) have been synthesized and characterized. 1acrystallizes in the triclinic space group P&onemacr;, with a = 8.028(2) ?, b = 10.269(1) ?, c = 4.780(2) ?, alpha = 93.85(3) degrees, beta = 101.01(2) degrees, gamma = 90.04(3) degrees, and Z = 1. 1b crystallizes in the triclinic space group P&onemacr;, with a = 8.010(1) ?, b = 10.117(1) ?, c = 5.162(1) ?, alpha = 94.40(1) degrees, beta = 97.49(1) degrees, gamma = 112.64(1) degrees, and Z = 1. 2crystallizes in the triclinic space group P&onemacr;, with a = 8.071(1) ?, b = 11.266(1) ?, c = 4.991(1) ?, alpha = 97.80(1) degrees, beta = 99.58(1) degrees, gamma = 83.02(1) degrees, and Z = 1. For all the compounds, the crystal structures consist of one dimensional [Cu(CA)(H(2)O)(2)](m)() chains and uncoordinated guest molecules (G). Each copper atom for 1a, 1b, and 2 displays a six-coordinate geometry with the two bis-chelating CA(2)(-) anions and water molecules, providing an infinite, nearly coplanar linear chains running along the a-direction. Theses chains are linked by hydrogen bonds between the coordinated water and the oxygen atoms of CA(2)(-) on the adjacent chain, forming extended layers, which spread out along the ac-plane. The guest molecules are intercalated in between the {[Cu(CA)(H(2)O)(2)](k)()}(l)() layers, just like pillars, which are supported with N.H(2)O hydrogen bonding. The guest molecules are stacked each other with an interplanar distance of ca. 3.2 ? along the c-axis perpendicular to the [Cu(CA)(H(2)O)(2)](m)() chain. The EHMO band calculations of intercalated dmpyz and phz columns show an appreciable band dispersion of phz pi (b(2g) and b(3g)) and dmpyz pi (b(g)), indicative of the importance of planar pi structure for the formation of the intercalated structure. The distances of O-H---N (guest molecules) fall within the range 2.74-2.80 ?, insensitive to the guest, whereas the interlayer distances increase in the order 9.25 ? (1b), 10.24 ? (1a), and 11.03 ? (2). The degree in lengthening the distance correlates well with the size of a molecule, indicative of the stability of the 2-D sheet structure and the flexibility of the sheet packing. The magnetic susceptibilities were measured from 2 to 300 K and analyzed by a one-dimensional Heisenberg-exchange model to yield J = -1.83 cm(-)(1), g = 2.18 (1a), J = -0.39 cm(-)(1), g = 2.14 (1b), and J = -1.84 cm(-)(1), g = 2.18 (2). The absolute value of J is smaller than that value for [Cu(CA)](n)(), which has a planar ribbon structure suggesting that the magnetic orbital d(x)()()2(-)(y)()()2 is not parallel to the chloranilate plane. For comparison with phz another type of copper(II) coordination compound, {[Cu(CA)(H(2)O)](ohphz)}(n)() (ohphz = 1,2,3,4,6,7,8,9-octahydrophenazine (7)) has also been obtained. 7 crystallizes in the orthorhombic space group Cmcm with a = 7.601(2) ?, b = 13.884(2) ?, c = 17.676(4) ?, and Z = 4. Nonplanar ohphz molecules are in between [Cu(CA)(H(2)O)(2)](m)() chains with the N.H(2)O hydrogen bonding in a fashion parallel to the chain direction. The copper atom shows a five-coordinate square-pyramidal configuration with two CA and one water molecule, thus affording no hydrogen bonding links between chains, dissimilar to 1a, 1b, and 2. The magnetic susceptibilities yield J = -10.93 cm(-)(1) and g = 2.00, comparable to that of the four-coordinate [Cu(CA)](n)(). On this basis both hydrogen bonding and stack capability of a guest molecule is responsible for building the unique intercalated structure such as is seen in 1a, 1b, and 2.  相似文献   

6.
The first pentanuclear complexes of formula {Dy[Cu(apox)](2)[Cu(apox)(H(2)O)](2)}[ClO(4)](3).7H(2)O (1), {Ho[Cu(apox)][Cu(apox)(H(2)O)](3)}[PF(6)](3).4.5H(2)O (2), {Gd[Cu(apox)](2)[Cu(apox)(H(2)O)](2)}[ClO(4)](3).7H(2)O (3) and {Gd[Cu(apox)][Cu(apox) (H(2)O)](3)}[PF(6)](3).4.5H(2)O (4) (H(2)apox = N,N'-bis(3-aminopropyl)oxamide) have been synthesized. The crystal structures of complexes 1 and 2 have been determined by X-ray diffraction methods. Complexes 3 and 4 are isostructural with 1 and 2, respectively. Crystallographic data are as follows: 1 and 3, monoclinic, space group C2/c and Z = 4, with a = 14.646(6) ?, b = 29.496(7) ?, c = 16.002(7) ?, and beta = 111.76(2) degrees for 1 and a = 14.523(6) ?, b = 29.441(6) ?, c = 15.925(8) ?, and beta = 111.90(4) degrees for 3; 2 and 4, triclinic, P&onemacr;, and Z = 2, with a = 14.346(2) ?, b = 14.454(2) ?, c = 18.107(4) ?, alpha = 90.95(2) degrees, beta = 110.75(2) degrees, and gamma = 106.77(2) degrees for 2 and a = 14.365(6) ?, b = 14.496(5) ?, c = 18.172(7) ?, alpha = 91.27(3) degrees, beta = 110.74(3) degrees, and gamma = 106.67(3) degrees for 4. A tripositive ion is present in these structures, the electroneutrality being achieved by three uncoordinated perchlorate (1) or hexafluorophosphate (2) anions. The lanthanide cations are eight-coordinate with a pseudo-square-antiprismatic environment formed by carbonyl oxygen atoms from two [Cu(apox)] and two Cu(apox)(H(2)O)] (1) and one [Cu(apox)] and three [Cu(apox)(H(2)O)] (2) bidentate ligands. The temperature dependence of the magnetic susceptibility of complexes 1-4 was investigated in the range 1.8-300 K. The ligand-field effect, as well as the mixing of the free-ion states in Dy(III) and Ho(III), make extremely difficult the analysis of the overall antiferromagnetic interaction which is observed for complexes 1 and 2. The magnetic susceptibility data for complexes 3 and 4 have shown that the ground-state spin for the [Gd(III)Cu(II)(4)] unit is S = 11/2, the Gd(III)-Cu(II) interaction being ferromagnetic with an interaction parameter J(GdCu) = 0.85 cm(-)(1) (the interaction Hamiltonian is of the form H = -JS(A).S(B)). The field dependence of the magnetization at 2 K of 3 and 4 confirms the nature of the ground state and of the Gd(III)-Cu(II) interaction. The influence of the topology and of the type of bridging ligand on the nature and magnitude of the magnetic interaction in the Gd(III)-Cu(II) pair is analyzed and discussed in light of available magnetostructural data.  相似文献   

7.
Two new copper 2-pyrazinecarboxylate (2-pzc) coordination polymers incorporating [Mo(8)O(26)](4-) and [V(10)O(28)H(4)](2-) anions were synthesized and structurally characterized: Cu(4)(2-pzc)(4))(H(2)O)(8)(Mo(8)O(26)).2H(2)O (1) and Cu(3)(2-pzc)(4)(H(2)O)(2)(V(10)O(28)H(4)).6.5H(2)O (2). Crystal data: 1, monoclinic, space group P2(1)/n, a = 11.1547(5) A, b = 13.4149(6) A, c = 15.9633(7) A, beta = 90.816(1) degrees; 2, triclinic, space group P1, a = 10.5896(10) A, b = 10.7921(10) A, c = 13.5168(13) A, alpha = 104.689(2) degrees, beta = 99.103(2) degrees, gamma = 113.419(2) degrees. Compound 1 contains [Cu(2-pzc)(H(2)O)(2)] chains charge-balanced by [Mo(8)O(26)](4-) anions. In compound 2, layers of [Cu(3)(2-pzc)(4)(H(2)O)(2)] form cavities that are filled with [V(10)O(28)H(4)](2-) anions. The magnetic properties of both compounds are described.  相似文献   

8.
The reaction of Mn(O(2)CPh)(2).2H(2)O and PhCO(2)H in EtOH/MeCN with NBu(n)(4)MnO(4) gives (NBu(n)(4))[Mn(4)O(2)(O(2)CPh)(9)(H(2)O)] (4) in high yield (85-95%). Complex 4 crystallizes in monoclinic space group P2(1)/c with the following unit cell parameters at -129 degrees C: a = 17.394(3) ?, b = 19.040(3) ?, c = 25.660(5) ?, beta = 103.51(1) degrees, V = 8262.7 ?(3), Z = 4; the structure was refined on F to R (R(w)) = 9.11% (9.26%) using 4590 unique reflections with F > 2.33sigma(F). The anion of 4 consists of a [Mn(4)(&mgr;(3)-O)(2)](8+) core with a "butterfly" disposition of four Mn(III) atoms. In addition to seven bridging PhCO(2)(-) groups, there is a chelating PhCO(2)(-) group at one "wingtip" Mn atom and terminal PhCO(2)(-) and H(2)O groups at the other. Complex 4 is an excellent steppingstone to other [Mn(4)O(2)]-containing species. Treatment of 4 with 2,2-diethylmalonate (2 equiv) leads to isolation of (NBu(n)(4))(2)[Mn(8)O(4)(O(2)CPh)(12)(Et(2)mal)(2)(H(2)O)(2)] (5) in 45% yield after recrystallization. Complex 5 is mixed-valent (2Mn(II),6Mn(III)) and contains an [Mn(8)O(4)](14+) core that consists of two [Mn(4)O(2)](7+) (Mn(II),3Mn(III)) butterfly units linked together by one of the &mgr;(3)-O(2)(-) ions in each unit bridging to one of the body Mn atoms in the other unit, and thus converting to &mgr;(4)-O(2)(-) modes. The Mn(II) ions are in wingtip positions. The Et(2)mal(2)(-) groups each bridge two wingtip Mn atoms from different butterfly units, providing additional linkage between the halves of the molecule. Complex 5.4CH(2)Cl(2) crystallizes in monoclinic space group P2(1)/c with the following unit cell parameters at -165 degrees C: a = 16.247(5) ?, b = 27.190(8) ?, c = 17.715(5) ?, beta = 113.95(1) degrees, V = 7152.0 ?(3), Z = 4; the structure was refined on F to R (R(w)) = 8.36 (8.61%) using 4133 unique reflections with F > 3sigma(F). The reaction of 4 with 2 equiv of bpy or picolinic acid (picH) yields the known complex Mn(4)O(2)(O(2)CPh)(7)(bpy)(2) (2), containing Mn(II),3Mn(III), or (NBu(n)(4))[Mn(4)O(2)(O(2)CPh)(7)(pic)(2)] (6), containing 4Mn(III). Treatment of 4 with dibenzoylmethane (dbmH, 2 equiv) gives the mono-chelate product (NBu(n)(4))[Mn(4)O(2)(O(2)CPh)(8)(dbm)] (7); ligation of a second chelate group requires treatment of 7 with Na(dbm), which yields (NBu(n)(4))[Mn(4)O(2)(O(2)CPh)(7)(dbm)(2)] (8). Complexes 7 and 8 both contain a [Mn(4)O(2)](8+) (4Mn(III)) butterfly unit. Complex 7 contains chelating dbm(-) and chelating PhCO(2)(-) at the two wingtip positions, whereas 8 contains two chelating dbm(-) groups at these positions, as in 2 and 6. Complex 7.2CH(2)Cl(2) crystallizes in monoclinic space group P2(1) with the following unit cell parameters at -170 degrees C: a = 18.169(3) ?, b = 19.678(4) ?, c = 25.036(4) ?, beta = 101.49(1) degrees, V = 8771.7 ?(3), Z = 4; the structure was refined on F to R (R(w)) = 7.36% (7.59%) using 10 782 unique reflections with F > 3sigma(F). Variable-temperature magnetic susceptibility studies have been carried out on powdered samples of complexes 2 and 5 in a 10.0 kG field in the 5.0-320.0 K range. The effective magnetic moment (&mgr;(eff)) for 2 gradually decreases from 8.61 &mgr;(B) per molecule at 320.0 K to 5.71 &mgr;(B) at 13.0 K and then increases slightly to 5.91 &mgr;(B) at 5.0 K. For 5, &mgr;(eff) gradually decreases from 10.54 &mgr;(B) per molecule at 320.0 K to 8.42 &mgr;(B) at 40.0 K, followed by a more rapid decrease to 6.02 &mgr;(B) at 5.0 K. On the basis of the crystal structure of 5 showing the single Mn(II) ion in each [Mn(4)O(2)](7+) subcore to be at a wingtip position, the Mn(II) ion in 2 was concluded to be at a wingtip position also. Employing the reasonable approximation that J(w)(b)(Mn(II)/Mn(III)) = J(w)(b)(Mn(III)/M(III)), where J(w)(b) is the magnetic exchange interaction between wingtip (w) and body (b) Mn ions of the indicated oxidation state, a theoretical chi(M) vs T expression was derived and used to fit the experimental molar magnetic susceptibility (chi(M)) vs T data. The obtained fitting parameters were J(w)(b) = -3.9 cm(-)(1), J(b)(b) = -9.2 cm(-)(1), and g = 1.80. These values suggest a S(T) = (5)/(2) ground state spin for 2, which was confirmed by magnetization vs field measurements in the 0.5-50.0 kG magnetic field range and 2.0-30.0 K temperature range. For complex 5, since the two bonds connecting the two [Mn(4)O(2)](7+) units are Jahn-Teller elongated and weak, it was assumed that complex 5 could be treated, to a first approximation, as consisting of weakly-interacting halves; the magnetic susceptibility data for 5 at temperatures >/=40 K were therefore fit to the same theoretical expression as used for 2, and the fitting parameters were J(w)(b) = -14.0 cm(-)(1) and J(b)(b) = -30.5 cm(-)(1), with g = 1.93 (held constant). These values suggest an S(T) = (5)/(2) ground state spin for each [Mn(4)O(2)](7+) unit of 5, as found for 2. The interactions between the subunits are difficult to incorporate into this model, and the true ground state spin value of the entire Mn(8) anion was therefore determined by magnetization vs field studies, which showed the ground state of 5 to be S(T) = 3. The results of the studies on 2 and 5 are considered with respect to spin frustration effects within the [Mn(4)O(2)](7+) units. Complexes 2 and 5 are EPR-active and -silent, respectively, consistent with their S(T) = (5)/(2) and S(T) = 3 ground states, respectively.  相似文献   

9.
A series of heterobimetallic complexes of the type [Fe(III)M(II)L(&mgr;-OAc)(OAc)(H(2)O)](ClO(4)).nH(2)O (2-5) and [{Fe(III)Co(III)L(&mgr;-OAc)(OAc)}(2)(&mgr;-O)](ClO(4))(2).3H(2)O (6) where H(2)L is a tetraaminodiphenol macrocyclic ligand and M(II) = Zn(2), Ni(3), Co(4), and Mn(5) have been synthesized and characterized. The (1)H NMR spectrum of 6 exhibits all the resonances between 1 and 12 ppm. The IR and UV-vis spectra of 2-5 indicate that in all the cases the metal ions have similar coordination environments. A disordered crystal structure determined for 3 reveals the presence of a (&mgr;-acetate)bis(&mgr;-phenoxide)-Ni(II)Fe(III) core, in which the two metal ions have 6-fold coordination geometry and each have two amino nitrogens and two phenolate oxygens as the in-plane donors; aside from the axial bridging acetate, the sixth coordination site of nickel(II) is occupied by the unidentate acetate and that of iron(III) by a water molecule. The crystal structure determination of 6 shows that the two heterobinuclear Co(III)Fe(III) units are bound by an Fe-O-Fe linkage. 6 crystallizes in the orthorhombic space group Ibca with a = 17.577(4) ?, b = 27.282(7) ?, c = 28.647(6) ?, and Z = 8. The two iron(III) centers in 6 are strongly antiferromagnetically coupled, J = -100 cm(-1) (H = -2JS(1).S(2)), whereas the other two S(1) = S(2) = (5)/(2) systems, viz. [Fe(2)(III)(HL)(2)(&mgr;-OH)(2)](ClO(4))(2) (1) and the Fe(III)Mn(II) complex (5), exhibit weak antiferromagnetic exchange coupling with J = -4.5 cm(-1) (1) and -1.8 cm(-1) (5). The Fe(III)Ni(II) (3) and Fe(III)Co(II) (4) systems, however, exhibit weak ferromagnetic behavior with J = 1.7 cm(-1) (3) and 4.2 cm(-1) (4). The iron(III) center in 2-5 exhibits quasi-reversible redox behavior between -0.44 and -0.48 V vs Ag/AgCl associated with reduction to iron(II). The oxidation of cobalt(II) in 4 occurs quasi-reversibly at 0.74 V, while both nickel(II) and manganese(II) in 3 and 5 undergo irreversible oxidation at 0.85 V. The electrochemical reduction of 6 leads to the generation of 4.  相似文献   

10.
The reactions of the singly deprotonated di-2-pyridylmethanediol ligand (dpmdH(-)) with copper(II) and bismuth(III) have been investigated. A new dinuclear bismuth(III) complex Bi(2)(dpmdH)(2)(O(2)CCF(3))(4)(THF)(2), 1, has been obtained by the reaction of BiPh(3) with di-2-pyridyl ketone in the presence of HO(2)CCF(3) in tetrahydrofuran (THF). The reaction of Cu(OCH(3))(2) with di-2-pyridyl ketone, H(2)O, and acetic acid in a 1:2:2:2 ratio yielded a mononuclear complex Cu[(2-Py)(2)CO(OH)](2)(HO(2)CCH(3))(2), 2, while the reaction of Cu(OAC)(2)(H(2)O) with di-2-pyridyl ketone and acetic acid in a 2:1:1 ratio yielded a tetranuclear complex Cu(4)[(2-Py)(2)CO(OH)](2)(O(2)CCH(3))(6)(H(2)O)(2), 3. The structures of these complexes were determined by single-crystal X-ray diffraction analyses. Three different bonding modes of the dpmdH(-) ligand were observed in compounds 1-3. In 2, the dpmdH(-) ligand functions as a tridentate chelate to the copper center and forms a hydrogen bond between the OH group and the noncoordinating HO(2)CCH(3) molecule. In 1 and 3, the dpmdH(-) ligand functions as a bridging ligand to two metal centers through the oxygen atom. The two pyridyl groups of the dpmdH(-) ligand are bound to one bismuth(III) center in 1, while in 3 they are bound two copper(II) centers, respectively. Compound 3 has an unusual one dimensional hydrogen bonded extended structure. The intramolecular magnetic interaction in 3 has been found to be dominated by ferromagnetism. Crystal data: 1, C(38)H(34)N(4)O(14)F(12)Bi(2), triclinic P&onemacr;, a = 11.764(3) ?, b = 11.949(3) ?, c = 9.737(1) ?, alpha =101.36(2) degrees, beta = 105.64(2) degrees, gamma = 63.79(2) degrees, Z = 1; 2, C(26)H(26)N(4)O(8)Cu/CH(2)Cl(2), monoclinic C2/c, a = 25.51(3) ?, b = 7.861(7) ?, c = 16.24(2) ?, beta = 113.08(9) degrees, Z = 4; 3, C(34)H(40)N(4)O(18)Cu(4)/CH(2)Cl(2), triclinic P&onemacr;, a = 10.494(2) ?, b = 13.885(2) ?, c = 7.900(4) ?, alpha =106.52(2) degrees, beta = 90.85(3) degrees, gamma = 94.12(1) degrees, Z = 1.  相似文献   

11.
The microwave-mediated self-assembly of [W(V)(CN)(8)](3-) with Cu(II) in the presence of pyrazole ligand resulted in the formation of three novel assemblies: Cu(II)(2)(Hpyr)(5)(H(2)O)[W(V)(CN)(8)](NO(3))·H(2)O (1), {Cu(II)(5)(Hpyr)(18)[W(V)(CN)(8)](4)}·[Cu(II)(Hpyr)(4)(H(2)O)(2)]·9H(2)O (2), and Cu(II)(4)(Hpyr)(10)(H(2)O)[W(V)(CN)(8)](2)(HCOO)(2)·4.5H(2)O (3) (Hpyr =1H-pyrazole). Single-crystal X-ray structure of 1 consists of cyanido-bridged 1-D chains of vertex-sharing squares topology. The structure of 2 reveals 2-D hybrid inorganic layer topology with large coordination spaces occupied by {Cu(Hpyr)(2)(H(2)O)(4)}(2+) ions. Compound 3 contains two types of cyanido-bridged 1-D chains of vertex-sharing squares linked together by formate ions in two directions forming hybrid inorganic-organic 3-D framework (I(1)O(2)). The magnetic measurements for 1-3 reveal a weak ferromagnetic coupling through Cu(II)-NC-W(V) bridges.  相似文献   

12.
The reaction of W(2)(OOCCF(3))(4) with (CO)(9)Co(3)CCOOH and Na[OOCCF(3)] in a nonpolar solvent mixture leads to the formation of the cluster of clusters {[Na][W(2){OOCCCo(3)(CO)(9)}(2)(OOCCF(3))(4)(THF)(2)]}(2), 1, in 40% yield. The structure of 1.3C(6)H(5)CH(3) in the solid state corresponds to a dimer of W(2) dinuclear complexes (monoclinic P2(1)/c, a = 15.234(6) ?, b = 23.326(11) ?, c = 20.658(7) ?, beta = 102.46(3) degrees; V = 7,168(5) ?(3); Z = 4; R(F)() = 8.39%). Each W(2) unit is bridged by two cis cluster carboxylates, and the remaining four equatorial sites are occupied by monodentate [OOCCF(3)](-) ligands. The axial positions contain coordinated THF. The W(2) carboxylate is opened up (W-W distance of 2.449(2) ?) so that the free ends of the [OOCCF(3)](-) ligands on both W(2) carboxylate units can cooperate in chelating two Na(+) ions thereby forming a dimer of W(2) complexes. A distinctive EPR spectrum with g = 2.08 is consistent with each W(2) carboxylate being a mixed-valent W(II)-W(III) species. The reaction of W(2)(OOCCF(3))(4) with (CO)(9)Co(3)CCOOH in THF in the absence of Na[OOCCF(3)] leads to the expected diamagnetic W(II)-W(II) cluster carboxylate W(2){OOCCCo(3)(CO)(9)}(3)(OOCCF(3))(THF)(2), 3.  相似文献   

13.
A new copper(II) acetate, [Na(2)Cu(CH(3)COO)(4)(H(2)O)].H(2)O (1), has been crystallized from an aqueous solution containing sodium acetate and copper(II) acetate monohydrate in a 4:1 ratio and the structure determined by X-ray crystallography. 1 crystallizes in the monoclinic space group P2(1)/c, with a = 16.638(3) A, b = 11.781(2) A, c = 15.668(3) A, beta = 90.11(3) degrees, V = 3071.0(11) A(3), and Z = 4. In the asymmetric unit, sodium ions bridge two crystallographically unique square planar [Cu(CH(3)COO)(4)](2-) units to their symmetry-generated neighbors to form corrugated 2D sheets of Na(2)Cu(CH(3)COO)(4), which are held together by H-bonding interactions involving the waters of crystallization. In contrast, the structures of known sodium copper acetates are better described as 3D frameworks. The metal centers are bridged by a number of acetates in novel coordination modes. The square planar Cu(II) geometry generated by oxygen atoms from four different acetates is an unexpected feature given the weak ligand field provided by the acetate ligands.  相似文献   

14.
The reactions of the binuclear oxomolybdenum(V) complex [Cl(2)(O)Mo(&mgr;-OEt)(2)(&mgr;-HOEt)Mo(O)Cl(2)] (1) with Me(3)Si(allyl) and SbF(3) produce the compounds [Mo(6)O(6)Cl(6)(&mgr;(3)-O)(2)(&mgr;(2)-OEt)(6)(&mgr;(2)-Cl)(2)] (2) and [Mo(8)O(8)Cl(6)(&mgr;(3)-O)(4)(OH)(2)(&mgr;(2)-OH)(4)(&mgr;(2)-OEt)(4)(HOEt)(4)] (3), respectively. Treatment of 1 with the Lewis base PMe(3) affords the tetrameric complex [Mo(4)O(4)Cl(4)(&mgr;(2)-OEt)(4)(HOEt)(2)(&mgr;(3)-O)(2)] (4), which represents another link in the chain of clusters produced by the reactions of 1 and simulating the build-up of polymeric molybdenum oxides by sol-gel methods. The crystal structure of 4 has been determined [C(12)H(32)Cl(4)Mo(4)O(12), triclinic, P&onemacr;, a = 7.376(2) ?, b = 8.807(3) ?, c = 11.467(4) ?, alpha = 109.61(1) degrees, beta = 92.12(3) degrees, gamma = 103.75(2) degrees, Z = 1]. By contrast, reaction of 1 with the nitrogen base NEt(3), followed by treatment with [PPN]Cl.2H(2)O ([PPN](+) = [Ph(3)P=N=PPh(3)](+)), gives the complex [PPN](+)[Et(3)NH](+)[Cl(2)(O)Mo(&mgr;(2)-O)(2)Mo(O)Cl(2)](2)(-) (6) in 90% yield. Its crystal structure [C(36)H(30)Cl(4)MoNOP(2), triclinic, Pna2(1), a = 21.470(6) ?, b = 16.765(2) ?, c = 9.6155(14) ?, alpha = 90 degrees, beta = 90 degrees, gamma = 90 degrees, Z = 16] includes the anion [Cl(2)(O)Mo(&mgr;(2)-O)(2)Mo(O)Cl(2)](2)(-), which is a charged derivative of the species forming the gels in sol-gel processes starting from chloromolybdenum ethoxides. Furthermore, compound 1 is found to be catalytically active in esterification and dehydration reactions of alcohols.  相似文献   

15.
Four heterotrinuclear Re(IV)(2)M(II) compounds of general formula (NBu(4))(2)[{Re(IV)Br(4)(μ-ox)}(2)M(II)(Him)(2)] [NBu(4)(+) = tetra-n-butylammonium cation, ox = oxalate, Him = imidazole; M = Mn (1), Co (2), Ni (3), and Cu (4)] have been synthesized by using the novel mononuclear complex [Re(IV)Br(4)(ox)](2-) as a ligand toward divalent first-row transition metal ions in the presence of imidazole. Compounds 1-4 are isostructural complexes whose structure contains discrete trinuclear [{Re(IV)Br(4)(μ-ox)}(2)M(II)(Him)(2)](2-) anions and bulky NBu(4)(+) cations. The Re and M atoms are six-coordinated: four peripheral bromo and two oxalate-oxygens (at Re), and two cis-coordinated imidazole molecules and four oxygen atoms from two oxalate ligands (at M), build distorted octahedral surroundings. Two peripheral [ReBr(4)(ox)](2-) units act as bidentate ligands through the oxalate group toward the central [M(II)(Him)(2)] fragment affording the trinuclear entities. The values of the intramolecular Re···M separation are 5.62(1) (1), 5.51(1) (2), 5.46(1) (3), and 5.55(1) ? (4). Magnetic susceptibility measurements on polycrystalline samples of 1-4 in the temperature range of 1.9-300 K show the occurrence of intramolecular antiferro- [J = -1.1 cm(-1) (1)] and ferromagnetic interactions [J = +3.9 (2), +19.7 (3), and +14.4 cm(-1) (4)], the Hamiltonian being defined as H? = -J [S?(M)(S?(Re1) + S?(Re2))]. The larger spin delocalization on the oxalato bridge in 1-4 when compared to the trinuclear Re(IV)(2)M(II) complexes with chloro instead of bromo as peripheral ligands (1'-4') accounts for the strengthening of the magnetic interactions in 1-4 [J = -0.35 (1'), +14.2 (3'), and +7.7 cm(-1) (4')]. An incipient frequency dependence of the out-of-phase ac signals of 3 at very low temperatures is reminiscent of a system with slow relaxation of the magnetization, a phenomenon characteristic of single-molecule magnet behavior.  相似文献   

16.
Single crystals of [pyH(+)](2)[CuNb(2)(py)(4)O(2)F(10)](2)(-) and CuNb(py)(4)OF(5) were synthesized in a (HF)(x)().pyridine/pyridine/water solution (150 degrees C, 24 h, autogeneous pressure) using CuO and Nb(2)O(5) as reagents. The compound [pyH(+)](2)[CuNb(2)(py)(4)O(2)F(10)](2)(-) contains clusters of [CuNb(2)(py)(4)O(2)F(10)](2)(-) anions linked through N-H(+).F hydrogen bonds to the [pyH(+)] cations. In contrast CuNb(py)(4)OF(5) is a unidimensional compound consisting only of chains, perpendicular to the c axis, of alternating [Cu(py)(4)(O/F)(2/2)](0.5+) and [NbF(4)(O/F)(2/)(2)](0.5)(-) octahedra. The chains change direction between the [110] and [1&onemacr;0] every c/2. Crystal data for [pyH(+)](2)[CuNb(2)(py)(4)O(2)F(10)](2)(-): tetragonal, space group I4(1)22 (No. 98),with a = 11.408(3) ?, c = 30.36(1) ?, and Z = 4. Crystal data for CuNb(py)(4)OF(5): monoclinic, space group C2/c (No. 15), with a = 10.561(3) ?, b = 13.546(6) ?, c = 16.103(4) ?, beta = 97.77(2) degrees, and Z = 4.  相似文献   

17.
Oxidative addition of diorganyl diselenides to the coordinatively unsaturated, low-valent transition-metal-carbonyl fragment [Mn(CO)(5)](-) produced cis-[Mn(CO)(4)(SeR)(2)](-). The complex cis-[PPN][Mn(CO)(4)(SePh)(2)] crystallized in triclinic space group P&onemacr; with a = 10.892(8) ?, b = 10.992(7) ?, c = 27.021(4) ?, alpha = 101.93(4) degrees, beta = 89.79(5) degrees, gamma = 116.94(5) degrees, V = 2807(3) ?(3), and Z = 2; final R = 0.085 and R(w) = 0.094. Thermolytic transformation of cis-[Mn(CO)(4)(SeMe)(2)](-) to [(CO)(3)Mn(&mgr;-SeMe)(3)Mn(CO)(3)](-) was accomplished in high yield in THF at room temperature. Crystal data for [Na-18-crown-6-ether][(CO)(3)Mn(&mgr;-SeMe)(3)Mn(CO)(3)]: trigonal space group R&thremacr;, a = 13.533(3) ?, c = 32.292(8) ?, V = 5122(2) ?(3), Z = 6, R = 0.042, R(w) = 0.041. Oxidation of Co(2+) to Co(3+) by diphenyl diselenide in the presence of chelating metallo ligands cis-[Mn(CO)(4)(SePh)(2)](-) and cis-[Mn(CO)(4)(TePh)(2)](-), followed by a bezenselenolate ligand rearranging to bridge two metals and a labile carbonyl shift from Mn to Co, led directly to [(CO)(4)Mn(&mgr;-TePh)(2)Co(CO)(&mgr;-SePh)(3)Mn(CO)(3)]. Crystal data: triclinic space group P&onemacr;, a = 11.712(3) ?, b = 12.197(3) ?, c = 15.754(3) ?, alpha = 83.56(2) degrees, beta = 76.13(2) degrees, gamma = 72.69(2) degrees, V = 2083.8(7) ?(3), Z = 2, R = 0.040, R(w) = 0.040. Addition of fac-[Fe(CO)(3)(SePh)(3)](-) to fac-[Mn(CO)(3)(CH(3)CN)(3)](+) resulted in formation of (CO)(3)Mn(&mgr;-SePh)(3)Fe(CO)(3). This neutral heterometallic complex crystallized in monoclinic space group P2(1)/n with a = 8.707(2) ?, b = 17.413(4) ?, c = 17.541(4) ?, beta = 99.72(2) degrees, V = 2621(1) ?(3), and Z = 4; final R = 0.033 and R(w) = 0.030.  相似文献   

18.
The condensation reactions of the dimer [ClP(micro-NR)](2) with organic diacids [LL(H)(2)], possessing linear orientations of their organic groups, result in the formation of phospha(III)zane macrocyles of the type [{P(mu-NR)}(2)(LL)](n) of various sizes. The series of macrocycles [{P(mu-N(t)Bu)}(2){1,5-(NH)(2)C(10)H(6)}](3), [{P(mu-NCy)}(2)(1,5-O(2)C(10)H(6))](n) [n = 3; n = 4], [{P(mu-N(t)Bu)}(2){1,4-(NH)(2)C(6)H(4)}](4), [{P(mu-N(t)Bu)}(2)(1,4-O(2)C(6)H(4))], [{P(mu-NCy)}(2)(1,4-O(2)C(6)H(4))](3) and [{P(mu-N(t)Bu)}(2){(NH)C(6)H(4)OC(6)H(4)(NH)}](2) can be related to classical organic frameworks, like calixarenes.  相似文献   

19.
Hydrothermal reaction of Cu(NO(3))(2).3H(2)O, Cd(OH)(2) or Zn(OH)(2) with benzene-1,2,3-tricarboxylic acid (H(3)btb, hemimellitic acid) produced the 2D coordination polymer (MOF) [Cu(2)(mu(5)-btb)(mu-OH)(mu-H(2)O)] () and the 2D hydrogen-bonded complexes [Cd(H(2)btb)(2)(H(2)O)(4)].2H(2)O () and [Zn(H(2)O)(6)](H(2)btb)(2).4H(2)O () which are characterized by single-crystal X-ray diffraction, X-ray powder diffraction and thermoanalysis. Magnetic susceptibility measurements between 1.9-300 K for revealed three magnetic active exchange pathways that link the copper(ii) ions through a long mu-aqua bridge, an anti-syn carboxylate bridge [j(2) = 0.161(1) cm(-1)], and through a mixed mu-hydroxo + syn-syn carboxylate bridge [J = 83(1) cm(-1)]. At temperatures higher than 30 K the system behaves as isolated Cu(2) units with strong ferromagnetic Cu-Cu coupling through the mu-hydroxo and syn-syn carboxylate bridge. The strong ferromagnetic coupling is explained with Hoffmann's approach by means of the concept of counter-complementarity introduced by Nishida et al.[Chem. Lett., 1983, 1815-1818].  相似文献   

20.
Mondal A  Li Y  Khan MA  Ross JH  Houser RP 《Inorganic chemistry》2004,43(22):7075-7082
The self-assembly of supramolecular copper "tennis balls" that possess unusual magnetic properties using a small pyridyl amide ligand is described. Copper(II) complexes of N-(2-pyridylmethyl)acetamide (HL) were synthesized in methanol. In the absence of base, the mononuclear complex [Cu(HL)(2)](ClO(4))(2) (1) was prepared. The structure of 1, determined by X-ray crystallography, contains a copper(II) ion surrounded by bidentate HL ligands coordinated via the pyridyl N atom and the carbonyl O atom in a trans, square planar arrangement. Reactions carried out in the presence of triethylamine resulted in cluster complexes [Cu(8)L(8)(OH)(4)](ClO(4))(4) and [Cu(8)L(8)(OH)(4)](CF(3)SO(3))(4) [2(ClO(4))(4) and 2(OTf)(4), respectively]. The cationic portions of 2(ClO(4))(4) and 2(OTf)(4) are isostructural, containing eight copper(II) ions, eight deprotonated ligands (L(-)), and four mu(3)-hydroxide ligands. The top and bottom halves of the cluster are related by a pseudo-S(4) symmetry operation and are held together by bridging L(-) ligands. Solutions of 2(ClO(4))(4) and 2(OTf)(4), which were shown to contain the full [Cu(8)L(8)(OH)(4)](4+) fragment by electrospray mass spectrometry and conductance experiments, are EPR silent. Magnetic susceptibility measurements for 2(ClO(4))(4) as a function of temperature and magnetic field showed the Cu ions all to exhibit magnetic moments in the range expected for the d(9) configuration. At low temperatures, the magnetization was reduced due to predominantly antiferromagnetic interactions between ions. Analysis showed that partially frustrated interactions among the four Cu ions making up each half of the cluster gave good agreement with the data once a large molecular anisotropy was taken into account, with J(c) = 106 cm(-1), D = 27 cm(-1), and g = 2.17.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号