首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of p-phenylenediamine with excess PCl 3 in the presence of pyridine affords p-C 6H 4[N(PCl 2) 2] 2 ( 1) in good yield. Fluorination of 1 with SbF 3 produces p-C 6H 4[N(PF 2) 2] 2 ( 2). The aminotetra(phosphonites) p-C 6H 4[N{P(OC 6H 4OMe- o) 2} 2] 2 ( 3) and p-C 6H 4[N{P(OMe) 2} 2] 2 ( 4) have been prepared by reacting 1 with appropriate amount of 2-(methoxy)phenol or methanol, respectively, in the presence of triethylamine. The reactions of 3 and 4 with H 2O 2, elemental sulfur, or selenium afforded the tetrachalcogenides, p-C 6H 4[N{P(O)(OC 6H 4OMe- o) 2} 2] 2 ( 5), p-C 6H 4[N{P(S)(OMe) 2} 2] 2 ( 6), and p-C 6H 4[N{P(Se)(OMe) 2} 2] 2 ( 7) in good yield. Reactions of 3 with [M(COD)Cl 2] (M = Pd or Pt) (COD = cycloocta-1,5-diene) resulted in the formation of the chelate complexes, [M 2Cl 4- p-C 6H 4{N{P(OC 6H 4OMe- o) 2} 2} 2] ( 8, M = Pd and 9, M = Pt). The reactions of 3 with 4 equiv of CuX (X = Br and I) produce the tetranuclear complexes, [Cu 4(mu 2-X) 4(NCCH 3) 4- p-C 6H 4{N(P(OC 6H 4OMe- o) 2) 2} 2] ( 10, X = Br; 11, X = I). The molecular structures of 1- 3, 6, 7, and 9- 11 are confirmed by single-crystal X-ray diffraction studies. The weak intermolecular P...P interactions observed in 1 leads to the formation of a 2D sheetlike structure, which is also examined by DFT calculations. The catalytic activity of the Pd(II) 8 has been investigated in Suzuki-Miyaura cross-coupling reactions.  相似文献   

2.
[{Micro-(phthalazine-N2:N3)}Fe2(micro-CO)(CO)6](1) reacts with organolithium reagents, RLi (R = CH3, C6H5, p-CH3C6H4, p-CH3OC6H4, p-CF3C6H4, p-C6H5C6H4), followed by treatment with Me3SiCl to give the novel diiron carbonyl complexes with a saturated N-N six-membered diazane ring ligand, [{C6H4CH(R)NNCH2}Fe2(C=O)(CO)6](2, R = CH3; 3, R = C6H5; 4, R =p-CH3C6H4; 5, R =p-CH3OC6H4; 6, R =p-CF3C6H4; 7, R =p-C6H5C6H4). Compounds 4 and 5 were treated with [(NH4)2Ce(NO3)6] to afford the aryl-substituted phthalazine-coordinated diiron carbonyl compounds [(micro-{1-(p-CH3C6H4)-phthalazine-N2:N3})Fe2(micro-CO)(CO)6](8) and [(micro-{1-(p-CH3OC6H4)-phthalazine-N2:N3})Fe2(micro-CO)(CO)6](9), respectively. The structures of complexes 4 and 9 have been established by X-ray diffraction studies.  相似文献   

3.
Treatment of [Li(L1)]2 (1) or K(L2) (2) with SnX2 in Et2O yielded the heteroleptic beta-diketiminatotin(II) halides Sn(L1)Cl (3a), Sn(L1)Br (3b) or Sn(L2)Cl (4), even when an excess of the alkali metal beta-diketiminate was used [L1={N(R)C(Ph)}2CH, L2={N(R)C(Ph)CHC(But)N(R)}, R = SiMe3]. From and half an equivalent each of SnCl2.2H2O and SnCl2, or one equivalent of SnCl2.2H2O, the product was Sn(L3)Cl (5) or Sn(L4)Cl (6), in which one or both of the N-R bonds of L1 had been hydrolytically cleaved; the compound Sn(L5)Cl (7) was similarly obtained from and an equivalent portion of SnCl2.2H2O [L3={N(R)C(Ph)CHC(But)N(H)}, L4={N(H)C(Ph)CHC(But)N(H)} and L5={N(H)C(Ph)}2CH]. The halide exchange between 3a and 3b, studied by two-dimensional (119)Sn{1H}-NMR spectroscopy, is attributed to implicate a (mu-Cl)(mu-Br)-dimeric intermediate or transition state. The 13C{1H}-NMR spectra of or showed two distinct resonances for each group, which coalesced on heating, corresponding to DeltaG(338 K)= 69.4 (3a) or 72.8 (3b) kJ mol(-1). The chloride ligand of was readily displaced by treatment with NaNR2, CF3SO3H or CH2(COPh)2, yielding Sn(L1)X [X = NR2 (8), O3SCF3 (9) or {OC(Ph)}2CH (10)]. Oxidative addition of sulfur or selenium to gave the tin(IV) terminal chalcogenides Sn(E)(L1)(NR2)[E = S (11) or Se (12)]. The X-ray structures of the cocrystal of 3a/3b and of the crystalline compounds 5, 6, 8, 11 and are presented, as well as multinuclear NMR spectra of each of the new compounds.  相似文献   

4.
2-Aminomethylaniline was converted into the N,N'-bis(pivaloyl) (1) or -bis(trimethylsilyl) (2) derivative, using 2 Bu(t)C(O)Cl or 2 Me(3)SiCl (≡ RCl), respectively, with 2 NEt(3), or for 2 from successively using 2 LiBu(n) and 2 RCl. N,N'-Bis(neopentyl)-2-(aminomethyl)aniline (3) was prepared by LiAlH(4) reduction of 1. From 2 or 3 and 2 LiBu(n), the appropriate dilitiodiamide {2-[{N(Li)R}C(6)H(4){CH(2)N(Li)R}(L)](2) (L absent, 4a; or L = THF, 4b) or the N,N'-bis(neopentyl) analogue (5) of 4a was prepared. Treatment of 4a with 2 Bu(t)NC, 2 (2,6-Me(2)C(6)H(3)NC) or 2 Bu(t)CN (≡ L') furnished the corresponding adduct [2-N{Li(L')R}C(6)H(4){CH(2)N(Li)R}] (4c, 4d or 4e, respectively), whereas 4b with 2 PhCN afforded [2-{N(Li)R}C(6)H(4){CH(2)C(Ph) = NLi(NCPh)}] (6). The dimeric bis(amido)stannylene [Sn{N(R)C(6)H(4)(CH(2)NR)-1,2}](2) (7) was obtained from 4a and [Sn(μ-Cl)NR(2)](2), while the N,N'-bis(neopentyl) analogue 8 of 7 was similarly derived from [Sn(μ-Cl)NR(2)](2) and 5. Reaction of two equivalents of the diamine 2 with Pb(NR(2))(2) yielded 9, the lead homologue of 7. Oxidative addition of sulfur to 7 led to the dimeric bis(diamido)tin sulfide 10. Treatment of 2 successively with 'MgBu(2)' in C(5)H(12) and THF gave [Mg{N(R)C(6)H(4)(CH(2)NR)}(THF)](2) (11a), which by displacement of its THF by an equivalent portion of Bu(t)CN or PhCN produced [Mg{N(R)C(6)H(4)(CH(2)NR)}(CNR')(n)] [R' = Bu(t), n = 1 (11b); R' = Ph, n = 2 (11c)]. The Ca (12), Sr (13) or Ba (14) analogues of the Mg compound 11a were isolated from 2 and either the appropriate compound M(NR(2))(2) (M = Ca, Sr, Ba), or successively 2 LiBu(n) and 2 M(OTos)(2). The new compounds 1-14 were characterized by microanalysis (C, H, N; not for 1, 2, 3, 5), solution NMR spectra, ν(max) (C≡N) (IR for 4c, 4d, 4e, 6, 11b, 11c), selected EI-MS peaks (for 1, 2, 3, 7, 8, 9, 10), and single crystal X-ray diffraction (for 4a, 4b, 11a).  相似文献   

5.
The synthesis and catalysis in the ring-opening polymerisation (ROP) of ε-caprolactone (ε-CL) of aluminium(iii) and tin(ii) complexes supported by quinoline-based N,N,O-tridentate ligands are reported. Reaction of 8-{RC(O)CH(2)P(Ph(2)) = N}C(9)H(6)N (R = Bu(t), 2; R = Ph, 3) with AlMe(3) gave [Al(Me(2)){OCR = CHP(Ph(2)) = N(8-C(9)H(6)N)}] (R = Bu(t), 4; R = Ph, 5). Treatment of 2 and 3 with Sn[N(SiMe(3))(2)](2) generated tin(ii) complexes [Sn{OC(R) = CHP(Ph(2)) = N(8-C(9)H(6)N)}{N(SiMe(3))(2)}] (R = Bu(t), 6; R = Ph, 7). A similar reaction of AlMe(3) with 8-{MeC(O)CH(2)C(Me) = N}C(9)H(6)N gave [Al(Me(2)){OC(Me) = CHC(Me) = NC(9)H(6)N}] (9). Compounds 2-9 were characterised by NMR spectroscopy and elemental analysis. The molecular structures of complexes 4, 6 and 9 were determined by single crystal X-ray diffraction techniques. Investigation of catalysis of complexes 4-7 and 9 in the ROP of ε-CL revealed that the aluminium complexes, 4, 5 and 9, are much more active than the tin(ii) complexes. The kinetic studies for the polymerisation of ε-CL catalysed by complexes 4, 5 and 9 in the presence of benzyl alcohol (BnOH) indicated that the polymerisations proceed with the first-order dependence on monomer concentration. The polymerisation was well controlled and gave a polymer with narrow molecular weight distribution.  相似文献   

6.
Yam VW  Hui CK  Yu SY  Zhu N 《Inorganic chemistry》2004,43(2):812-821
A series of tetraalkynylplatinate(II) complexes, (NBu(4))(2)[Pt(Ctbd1;CR)(4)] (R = C(6)H(4)N-4, C(6)H(4)N-3, and C(6)H(3)N(2)-5), and the diynyl analogues, (NBu(4))(2)[Pt(Ctbd1;CCtbd1;CR)(4)] (R = C(6)H(5) and C(6)H(4)CH(3)-4), have been synthesized. These complexes displayed intense photoluminescence, which was assigned as metal-to-ligand charge transfer (MLCT) transitions. Reaction of (Bu(4)N)(2)[Pt(Ctbd1;CC(5)H(4)N-4)(4)] with 4 equiv of [Pt((t)Bu(3)trpy)(MeCN)](OTf)(2) in methanol did not yield the expected pentanuclear platinum product, [Pt(Ctbd1;CC(5)H(4)N)(4)[Pt((t)Bu(3)trpy)](4)](OTf)(6), but instead afforded a strongly luminescent 4-ethynylpyridine-bridged dinuclear complex, [Pt((t)Bu(3)trpy)(Ctbd1;CC(5)H(4)N)Pt((t)Bu(3)trpy)](PF(6))(3,) which has been structurally characterized. The emission origin is assigned as derived from states of predominantly (3)MLCT [d(pi)(Pt) --> pi((t)Bu(3)trpy)] character, probably mixed with some intraligand (3)IL [pi --> pi(Ctbd1;C)], and ligand-to-ligand charge transfer (3)LLCT [pi(Ctbd1;C) --> pi((t)()Bu(3)trpy)] character. On the other hand, reaction of (Bu(4)N)(2)[Pt(Ctbd1;CCtbd1;CC(6)H(4)CH(3)-4)(4)] with [Ag(MeCN)(4)][BF(4)] gave a mixed-metal aggregate, [Pt(2)Ag(4)(Ctbd1;CCtbd1;CC(6)H(4)CH(3)-4)(8)(THF)(4)]. The crystal structure of [Pt(2)Ag(4)(Ctbd1;CCtbd1;CC(6)H(4)CH(3)-4)(8)(THF)(4)] has also been determined. A comparison study of the spectroscopic properties of the hexanuclear platinum-silver complex with its precursor complex has been made and their spectroscopic origins were suggested.  相似文献   

7.
Reactions of niobium and tantalum pentachlorides with tert-butylamine (>/=6 equiv) in benzene afford the dimeric imido complexes [NbCl(2)(N(t)Bu)(NH(t)Bu)(NH(2)(t)Bu)](2) (90%) and [TaCl(2)(N(t)Bu)(NH(t)Bu)(NH(2)(t)Bu)](2) (79%). The niobium complex exists as two isomers in solution, while the tantalum complex is composed of three major isomers and at least two minor isomers. Analogous treatments with isopropylamine (>/=7 equiv) give the monomeric complexes NbCl(2)(N(i)Pr)(NH(i)Pr)(NH(2)(i)Pr)(2) (84%) and TaCl(2)(N(i)Pr)(NH(i)Pr)(NH(2)(i)Pr)(2) (84%). The monomeric complexes are unaffected by treatment with excess isopropylamine, while the dimeric complexes are cleaved to the monomers MCl(2)(N(t)Bu)(NH(t)Bu)(NH(2)(t)Bu)(2) upon addition of excess tert-butylamine in chloroform solution. Treatment of niobium and tantalum pentachlorides with 2,6-diisopropylaniline affords insoluble precipitates of [NH(3)(2,6-(CH(CH(3))(2))(2)C(6)H(3))](2)[NbCl(5)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))] (100%) and [NH(3)(2,6-(CH(CH(3))(2))(2)C(6)H(3))](2)[TaCl(5)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))] (100%), which react with 4-tert-butylpyridine to afford the soluble complexes [4-t-C(4)H(9)C(5)H(4)NH](2)[NbCl(5)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))] (45%) and [4-t-C(4)H(9)C(5)H(4)NH](2)[TaCl(5)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))] (44%). Sublimation of [NbCl(2)(N(t)Bu)(NH(t)Bu)(NH(2)(t)Bu)](2), MCl(2)(N(i)Pr)(NH(i)Pr)(NH(2)(i)Pr)(2), and [NH(3)(2,6-(CH(CH(3))(2))(2)C(6)H(3))](2)[MCl(5)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))] leads to decomposition to give [MCl(3)(NR)(NH(2)R)](2) as sublimates (32-49%), leaving complexes of the proposed formulation MCl(NR)(2) as nonvolatile residues. By contrast, [TaCl(2)(N(t)Bu)(NH(t)Bu)(NH(2)(t)Bu)](2) sublimes without chemical reaction. Analysis of the organic products obtained from thermal decomposition of [NbCl(2)(N(t)Bu)(NH(t)Bu)(NH(2)(t)Bu)](2) showed isobutylene and tert-butylamine in a 2.2:1 ratio. Mass spectra of [NbCl(2)(N(t)Bu)(NH(t)Bu)(NH(2)(t)Bu)](2), [TaCl(2)(N(t)Bu)(NH(t)Bu)(NH(2)(t)Bu)](2), and [NbCl(3)(N(i)Pr)(NH(2)(i)Pr)](2) showed the presence of dimeric imido complexes, monomeric imido complexes, and nitrido complexes, implying that such species are important gas phase species in CVD processes utilizing these molecular precursors. The crystal structures of [4-t-C(4)H(9)C(5)H(4)NH](2)[NbCl(5)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))], [NbCl(3)(N(i)Pr)(NH(2)(i)Pr)](2), [NbCl(3)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))(NH(2)(2,6-(CH(CH(3))(2))(2)C(6)H(3)))](2), and [TaCl(3)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))(NH(2)(2,6-(CH(CH(3))(2))(2)C(6)H(3)))](2) were determined. [4-t-C(4)H(9)C(5)H(4)NH](2)[NbCl(5)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))] crystallizes in the space group P2(1)/c with a = 12.448(3) ?, b = 10.363(3) ?, c = 28.228(3) ?, beta = 94.92(1) degrees, V = 3628(5) ?(3), and Z = 4. [NbCl(3)(N(i)Pr)(NH(2)(i)Pr)](2) crystallizes in the space group P2(1)/c with a = 9.586(4) ?, b = 12.385(4) ?, c = 11.695(4) ?, beta = 112.89(2) degrees, V = 1279.0(6) ?(3), and Z = 2. [NbCl(3)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))(NH(2)(2,6-(CH(CH(3))(2))(2)C(6)H(3)))](2) crystallizes in the space group P2(1)/n with a = 10.285(3) ?, b = 11.208(3) ?, c = 23.867(6) ?, beta = 97.53 degrees, V = 2727(1) ?(3), and Z = 2. [TaCl(3)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))(NH(2)(2,6-(CH(CH(3))(2))(2)C(6)H(3)))](2) crystallizes in the space group P2(1)/n with a = 10.273(1) ?, b = 11.241(2) ?, c = 23.929(7) ?, beta = 97.69(2) degrees, V = 2695(2) ?(3), and Z = 2. These findings are discussed in the context of niobium and tantalum nitride film depositions from molecular precursors.  相似文献   

8.
Reaction of the amide ligand N-[2-((2-pyridylmethylene)amino)phenyl]pyridine-2-carboxamide (Hcapca) with VCl(3) affords the compound trans-[VCl(2)(capca)] (1), the first example of a vanadium(III) complex containing a vanadium-deprotonated amide nitrogen bond, while reaction of bis(pentane-2,4-dionato)oxovanadium(IV) with the related ligands N-[2-((2-phenolylmethylene)amino)phenyl]pyridine-2-carboxamide (H(2)phepca), 1-(2-hydroxybenzamido)-2-(2-pyridinecarboxamido)benzene (H(3)hypyb), and 1,2-bis(2-hydroxybenzamido)benzene (H(4)hybeb) yields the complexes [VO(phepca)] (2), Na[VO(hypyb)].2CH(3)OH (4.2CH(3)OH), and Na(2)[VO(hybeb)].3CH(3)OH (5.3CH(3)OH) respectively. The preparation of the complex {N-[2-((2-thiophenoylmethylene)amino)phenyl]pyridine-2-carboxamido}oxovanadium(IV) (3) has been achieved by reaction of N-(2-aminophenyl)pyridine-2-carboxamide and 2-mercaptobenzaldehyde with [VO(CH(3)COO)(2)](x)(). Oxidation of complex 5.3CH(3)OH with silver nitrate gives its vanadium(V) analogue (8.CH(3)OH), which is readily converted to its corresponding tetraethylammonium salt (10.CH(2)Cl(2)) by a reaction with Et(4)NCl. The crystal structures of the octahedral 1.CH(3)CN, and the square-pyramidal complexes 3, 4.CH(3)CN, 5.2CH(3)OH, and 10 were demonstrated by X-ray diffraction analysis. Crystal data are as follows: 1.CH(3)CN, C(18)H(13)Cl(2)N(4)OV.CH(3)CN M(r) = 464.23, monoclinic, P2(1)/n, a = 10.5991(7) ?, b = 13.9981(7) ?, c = 14.4021(7) ?, beta = 98.649(2)(o), V = 2112.5(3) A(3), Z = 4, R = 0.0323, and R(w) 0.0335; 3, C(19)H(13)N(3)O(2)SV, M(r) = 398.34, monoclinic, P2(1)/n, a = 12.1108(10) ?, b = 19.4439(18) ?, c = 7.2351(7) ?, beta = 103.012(3) degrees, V = 1660.0(4) ?(3), Z = 4, R = 0.0355, and R(w) = 0.0376; 4.CH(3)CN, C(19)H(12)N(3)O(4)VNa.CH(3)CN, M(r) = 461.31, monoclinic, P2(1)/c, a = 11.528(1) ?, b = 11.209(1) ?, c = 16.512(2) ?, beta = 103.928(4)(o), V = 2071.0(5) ?(3), Z = 4, R = 0.0649, and R(w) = 0.0806; 5.2CH(3)OH, C(20)H(10)N(2)O(5)VNa(2).2CH(3)OH, M(r) = 519.31, triclinic, P1, a = 12.839(1) ?, b = 8.334(1) ?, c = 12.201(1) ?, alpha = 106.492(2) degrees, beta = 105.408(2) degrees, gamma = 73.465(2) degrees, V = 1175.6(3) ?(3), Z = 2, R = 0.0894, and R(w) = 0.1043; 10, C(28)H(32)N(3)O(5)V M(r) = 541.52, monoclinic, P2(1)/c, a = 11.711(3) ?, b = 18.554(5) ?, c = 12.335(3) ?, beta = 95.947(9) degrees, V = 2666(2) ?(3), Z = 4, R = 0.0904, and R(w) = 0.0879. In addition to the synthesis and crystallographic studies, we report the optical, infrared, magnetic, and electrochemical properties of these complexes. Electron paramagnetic resonance [of oxovanadium(IV) species] and (1)H, (13)C{(1)H}, and (51)V nuclear magnetic resonance [of oxovanadium(V) complex] properties are reported as well. This study represents the first systematic study of vanadium(III), V(IV)O(2+), and V(V)O(3+) species containing a vanadium-deprotonated amide nitrogen bond.  相似文献   

9.
The crystalline compounds [Mg(Br)(L)(thf)].0.5Et2O [L = {N(R)C(C6H3Me2-2,6)}2SiR, R = SiMe3] (1), [Mg(L){N=C=C(C(Me)=CH)2CH2}(D)2] [D = NCC6H3Me2-2,6 (2), thf (3)] and [{Mg(L)}2{mu-OSO(CF3)O-[mu}2] (4) were prepared from (a) Si(Br)(R){C(C6H3Me2-2,6)=NR}2 and Mg for (1), (b) [Mg(SiR3)2(thf)2] and 2,6-Me2C6H3CN (5 mol for (2), 3 mol for (3)), and (c) (2) + Me3SiOS(O)2CF3 for (4); a coproduct from (c) is believed to have been the trimethylsilyl ketenimide Me3SiN=C=C{C(Me)=CH}2CH2 (5).  相似文献   

10.
Syntheses and isolations of the tris(amino)stibine and tris(amino)bismuthine E[N(H)(C(6)H(2)(t)Bu(3))](3) (E = Sb, Bi) from ECl(3) and LiN(H)(C(6)H(2)(t)Bu(3)) are described, together with spectroscopic and structural characterization [crystal data for C(54)H(90)N(3)Sb, M = 903.04, space group P&onemacr;, a = 11.491(5) ?, b = 24.652(7) ?, c = 10.002(5) ?, alpha = 98.38(3) degrees, beta = 96.44(5) degrees, gamma = 77.25(3) degrees, V = 2724(2) ?(3), D(c) = 1.101 Mg/m(3), Z = 2, R = 0.0547; crystal data for C(54)H(90)BiN(3), M = 990.27, space group P&onemacr;, a = 11.511(5) ?, b = 24.785(15) ?, c = 9.981(5) ?, alpha = 98.06(5) degrees, beta = 96.50(4) degrees, gamma = 77.40(5) degrees, V = 2742(2) ?(3), D(c) = 1.200 Mg/m(3), Z = 2, R = 0.0619]. The compounds bear the "bulky" 2,4,6-tri-tert-butylphenyl substituent (known as supermesityl or Mes), and their formation is considered in the context of the same reactions for PCl(3) and AsCl(3), which have been previously shown to produce the aminoiminopnictine structures [N(H)(C(6)H(2)(t)Bu(3))]P=N(C(6)H(2)(t)Bu(3)) and [N(H)(C(6)H(2)(t)Bu(3))]As=N(C(6)H(2)(t)Bu(3)). The observations establish the limits of the steric control by the supermesityl substituent and provide qualitative support for the thermodynamic significance of substituent steric strain.  相似文献   

11.
The first reported sodium alkyl(TMP)aluminate reagent to be synthesised and crystallographically characterised, [TMEDA.Na(mu-TMP)(mu-(I)Bu)Al((I)Bu)2], reacts as an amido base towards phenylacetylene to form crystalline [(TMEDA)2.Na(mu-CCPh)(mu-(I)Bu)Al((I)Bu)2]; whereas the congeneric TMEDA-stabilised lithium (TMP)aluminate exhibits dual alkyl/amido basicity in its reaction with N,N-diisopropylbenzamide to form a novel heterobimetallic-heterotrianionic crystalline complex [{PhC(=O)N(iPr)2}.Li{2-[1-C(=O)N(iPr)2]C6H4}{Me2NCH2CH2N(Me)CH2}Al(iBu)2], which, in addition to having an ortho-deprotonated benzamide ligand, also contains a methyl-deprotonated TMEDA ligand and a neutral benzamide molecule ligated to lithium.  相似文献   

12.
Reaction of LRu(III)Cl(3) (L = 1,4,7-trimethyl-1,4,7-triazacyclononane) with 1,2-phenylenediamine (opdaH(2)) in H(2)O in the presence of air affords [LRu(II)(bqdi)(OH(2))](PF(6)) (1), where (bqdi) represents the neutral ligand o-benzoquinone diimine. From an alkaline methanol/water mixture of 1 was obtained the dinuclear species [{LRu(II)(bqdi)}(2)(&mgr;-H(3)O(2))](PF(6))(3) (1a). The coordinated water molecule in 1 is labile and can be readily substituted under appropriate reaction conditions by acetonitrile, yielding [LRu(II)(bqdi)(CH(3)CN)](PF(6))(2) (2), and by iodide and azide anions, affording [LRu(II)(bqdi)I](PF(6)).0.5H(2)O (3) and [LRu(bqdi)(N(3))](PF(6)).H(2)O (4), respectively. Heating of solid 4 in vacuum at 160 degrees C generates N(2) and the dinuclear, nitrido-bridged complex [{LRu(o-C(6)H(4)(NH)(2))}(2)(&mgr;-N)](PF(6))(2) (5). Complex 5 is a mixed-valent, paramagnetic species containing one unpaired electron per dinuclear unit whereas complexes 1-4 are diamagnetic. The crystal structures of 1, 1a.3CH(3)CN, 3, 4.H(2)O, and 5.3CH(3)CN.0.5(toluene) have been determined by X-ray crystallography: 1 crystallizes in the monoclinic space group P2(1)/m, Z = 2, with a = 8.412(2) ?, b = 15.562(3) ?, c = 10.025 ?, and beta = 109.89(2) degrees; 1a.3CH(3)CN, in the monoclinic space group C2/c, Z = 4, with a = 19.858(3) ?, b = 15.483(2) ?, c = 18.192(3) ?, and beta = 95.95(2) degrees; 3, in the orthorhombic space group Pnma, Z = 4, with a = 18.399(4) ?, b = 9.287(2) ?, and c = 12.052(2) ?, 4.H(2)O, in the monoclinic space group P2(1)/c, Z = 4, with a = 8.586(1) ?, b = 15.617(3) ?, c = 16.388(5) ?, and beta = 90.84(2) degrees; and 5.3CH(3)CN.0.5(toluene), in the monoclinic space group P2(1)/c, Z = 4, with a = 15.003(3) ?, b = 16.253(3) ?, c = 21.196(4) ?, and beta = 96.78(3) degrees. The structural data indicate that in complexes 1-4 the neutral o-benzoquinone diimine ligand prevails. In contrast, in 5 this ligand has predominantly o-phenylenediamide character, which would render 5 formally a mixed-valent Ru(IV)Ru(V) species. On the other hand, the Ru-N bond lengths of the Ru-N-Ru moiety at 1.805(5) and 1.767(5) ? are significantly longer than those in other crystallographically characterized Ru(IV)=N=Ru(IV) units (1.72-1.74 ?). It appears that the C(6)H(4)(NH)(2) ligand in 5 is noninnocent and that formal oxidation state assignments to the ligands or metal centers are not possible.  相似文献   

13.
Insertion of MeO(2)C-C[triple bond]C-CO(2)Me (DMAD) into the Pd-C bond of the heterodimetallic complex [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d(dmba-C)] (2) (dppm = Ph(2)PCH(2)PPh(2), dmba-C = metallated dimethylbenzylamine) and [(OC)(3){(MeO)(3)Si}F[upper bond 1 start]e(mu-dppm)P[upper bond 1 end]d(8-mq-C,N)] (3) (8-mq-C,N = cyclometallated 8-methylquinoline) yielded the sigma-alkenyl complexes [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{C(CO(2)Me)=C(CO(2)Me)(o-C(6)H(4)CH(2)NMe(2))}] (7) and [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{C(CO(2)Me)[double bond, length as m-dash]C(CO(2)Me)(CH(2)C(9)H(6)N)}] (8), respectively. The latter afforded the adduct [(OC)(3){(MeO)(3)Si}F[upper bond 1 start]e(mu-dppm)P[upper bond 1 end]d{C(CO(2)Me)=C(CO(2)Me)(CH(2)C(9)H(6)N)}(CNBu(t))] (9) upon reaction with 1 equiv. of Bu(t)NC. The heterodinuclear sigma-butadienyl complexes [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{C(Ph=C(Ph)C(CO(2)Me)=(CO(2)Me)(o-C(6)H(4)CH(2)NMe(2))}] (11) and [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{C(Ph)=C(CO(2)Et)C(Ph)=C(CO(2)Et)(CH(2)C(9)H(6)N)}] (13) have been obtained by reaction of the metallate K[Fe{Si(OMe)(3)}(CO)(3)(dppm-P)] (dppm = Ph(2)PCH(2)PPh(2)) with [P[upper bond 1 start]dCl{C(Ph)=C(Ph)C(CO(2)Me)=C(CO(2)Me)(o-C(6)H(4)CH(2)N[upper bond 1 end]Me(2))}] or [P[upper bond 1 start]dCl{C(Ph)=C(CO(2)Et)C(Ph)=(CO(2)Et)}(CH(2)C(9)H(6)N[upper bond 1 end])], respectively. Monoinsertion of various organic isocyanides RNC into the Pd-C bond of 2 and 3 afforded the corresponding heterometallic iminoacyl complexes. In the case of complexes [(OC)(3){(MeO)(3)Si}F[upper bond 1 start]e(mu-dppm)P[upper bond 1 end][upper bond 1 start]d{C=(NR)(CH(2)C(9)H(6)N[upper bond 1 end])}] (15a R = Ph, 15b R = xylyl), a static six-membered C,N chelate is formed at the Pd centre, in contrast to the situation in [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{C(=NR)(o-C(6)H(4)CH(2)NMe(2))}] (14a R = o-anisyl, 14b R = 2,6-xylyl) where formation of a mu-eta(2)-Si-O bridge is preferred over NMe(2) coordination. The outcome of the reaction of the dimetallic alkyl complex [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]dMe] with RNC depends both on the stoichiometry and the electronic donor properties of the isocyanide employed for the migratory insertion process. In the case of o-anisylisocyanide, the iminoacyl complex [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{C(=N-o-anisyl)Me}] (16) results from the reaction in a 1 : 1 ratio. Addition of three equiv. of o-anisylisocyanide affords the tris(insertion) product [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{[C(=N-o-anisyl)](3)Me}] (18). After addition of a fourth equivalent of o-anisylNC, exclusive formation of the isocyanide adduct [(OC)(3){(MeO)(3)Si}F[upper bond 1 start]e(mu-dppm)P[upper bond 1 end]d{[C(=N-o-anisyl)](3)Me}(CN-o-anisyl)] (19) was spectroscopically evidenced. In the complex [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{[C(=N-o-C(6)H(4)COCH(2))](2)Me}] (20), the sigma-bound diazabutadienyl unit is part of a 12-membered organic macrocyle which results from bis(insertion) of 1,2-bis(2-isocyanophenoxy)ethane into the Pd-Me bond of the precursor complex [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]dMe]. In contrast, addition of two equivalents of tert-butylisocyanide to a solution of the latter afforded [(OC)(3){(MeO)(3)Si}F[upper bond 1 start]Fe(mu-dppm)P[upper bond 1 end]d{C(=NBu(t))Me}(CNBu(t))] (21) in which both a terminal and an inserted isocyanide ligand are coordinated to the Pd centre. In all cases, there was no evidence for competing CO substitution at the Fe(CO)(3) fragment by RNC. The molecular structures of the insertion products 8 x CH(2)Cl(2) and 16 x CH(2)Cl(2) have been determined by X-ray diffraction.  相似文献   

14.
Reaction of aryllithium reagents LiR (R = C(6)H(4)((R)-CH(Me)NMe(2))-2 (1a), C(6)H(3)(CH(2)NMe(2))(2)-2,6 (1b), C(6)H(4)(CH(2)N(Me)CH(2)CH(2)OMe)-2 (1c)) with 1 equiv of sulfur (1/8 S(8)) results in the quantitative formation of the corresponding lithium arenethiolates [Li{SC(6)H(4)((R)-CH(Me)NMe(2))-2}](6) (3), [Li{SC(6)H(3)(CH(2)NMe(2))(2)-2,6}](6) (4), and [Li{SC(6)H(4)(CH(2)N(Me)CH(2)CH(2)OMe)-2}](2) (5). Alternatively, 3 can be prepared by reacting the corresponding arenethiol HSC(6)H(4)((R)-CH(Me)NMe(2))-2 (2) with (n)BuLi. X-ray crystal structures of lithium arenethiolates 3 and 4, reported in abbreviated form, show them to have hexanuclear prismatic and hexanuclear planar structures, respectively, that are unprecedented in lithium thiolate chemistry. The lithium arenethiolate [Li{SC(6)H(4)(CH(2)N(Me)CH(2)CH(2)OMe)-2}](2) (5) is dimeric in the solid state and in solution, and crystals of 5 are monoclinic, space group P2(1)/c, with a = 17.7963(9) ?, b = 8.1281(7) ?, c = 17.1340(10) ?, beta = 108.288(5) degrees, Z = 4, and final R = 0.047 for 4051 reflections with F > 4sigma(F). Hexameric 4 reacts with 1 equiv of lithium iodide and 2 equiv of tetrahydrofuran to form the dinuclear adduct [Li(2)(SAr)(I)(THF)(2)] (6). Crystals of 6 are monoclinic, space group P2(1)/c, with a = 13.0346(10) ?, b = 11.523(3) ?, c = 16.127(3) ?, beta = 94.682(10) degrees, Z = 4, and final R = 0.059 for 3190 reflections with F > 4sigma(F).  相似文献   

15.
Piperidinium 9H-fluorene-9-carbodithioate and its 2,7-di-tert-butyl-substituted analogue [(pipH)(S(2)CCH(C(12)H(6)R(2)-2,7)), R = H (1a), t-Bu (1b)] and 2,7-bis(octyloxy)-9H-fluorene-9-carbodithioic acid [HS(2)CCH(C(12)H(6)(OC(8)H(17))(2)-2,7), 2] and its tautomer [2,7-bis(octyloxy)fluoren-9-ylidene]methanedithiol [(HS)(2)C=C(C(12)H(6)(OC(8)H(17))(2)-2,7), 3] were employed for the preparation of gold complexes with the (fluoren-9-ylidene)methanedithiolato ligand and its substituted analogues. The gold(I) compounds Q(2)[Au(2)(mu-kappa(2)-S,S-S(2)C=C(C(12)H(6)R(2)-2,7))(2)], where Q(+) = PPN(+) or Pr(4)N(+) for R = H (Q(2)4a) or Q(+) = Pr(4)N(+) for R = OC(8)H(17) [(Pr(4)N)(2)4c], were synthesized by reacting Q[AuCl(2)] with 1a or 2 (1:1) and excess piperidine or diethylamine. Complexes of the type [(Au(PR'3))(2)(mu-kappa(2)-S,S-S(2)C=C(C(12)H(6)R(2)-2,7))(2)] with R = H and R' = Me (5a), Et (5b), Ph (5c), and Cy (5d) or R = t-Bu and R' = Me (5e), Et (5f), Ph (5g), and Cy (5h) were obtained by reacting [AuCl(PR'(3))] with 1a,b (1:2) and piperidine. The reactions of 1a,b or 2 with Q[AuCl(4)] (2:1) and piperidine or diethylamine gave Q[Au(kappa(2)-S,S-S(2)C=C(C(12)H(6)R(2)-2,7))(2)] with Q(+) = PPN(+) for R = H [(PPN)6a], Q(+) = PPN(+) or Bu(4)N(+) for R = t-Bu (Q6b), and Q(+) = Bu(4)N(+) for R = OC(8)H(17) [(Bu(4)N)6c]. Complexes Q6a-c reacted with excess triflic acid to give [Au(kappa(2)-S,S-S(2)C=C(C(12)H(6)R(2)-2,7))(kappa(2)-S,S-S(2)CCH(C(12)H(6)R(2)-2,7))] [R = H (7a), t-Bu (7b), OC(8)H(17) (7c)]. By reaction of (Bu(4)N)6b with PhICl(2) (1:1) the complex Bu(4)N[AuCl(2)(kappa(2)-S,S-S(2)C=C(C(12)H(6)(t-Bu)(2)-2,7))] [(Bu(4)N)8b] was obtained. The dithioato complexes [Au(SC(S)CH(C(12)H(8)))(PCy(3))] (9) and [Au(n)(S(2)CCH(C(12)H(8)))(n)] (10) were obtained from the reactions of 1a with [AuCl(PCy(3))] or [AuCl(SMe(2))], respectively (1:1), in the absence of a base. Charge-transfer adducts of general composition Q[Au(kappa(2)-S,S-S(2)C=C(C(12)H(6)R(2)-2,7))(2)].1.5TCNQ.xCH(2)Cl(2) [Q(+) = PPN(+), R = H, x = 0 (11a); Q(+) = PPN(+), R = t-Bu, x = 2 (11b); Q(+) = Bu(4)N(+), R = OC(8)H(17), x = 0 (11c)] were obtained from Q6a-c and TCNQ (1:2). The crystal structures of 5c.THF, 5e.(2)/(3)CH(2)Cl(2), 5g.CH(2)Cl(2), (PPN)6a.2Me(2)CO, and 11b were solved by X-ray diffraction studies. All the gold(I) complexes here described are photoluminescent at 77 K, and their emissions can be generally ascribed to LMMCT (Q(2)4a,c, 5a-h, 10) or LMCT (9) excited states.  相似文献   

16.
The silyl ethers 3-But-2-(OSiMe3)C6H3CH=NR (2a-e) have been prepared by deprotonation of the known iminophenols (1a-e) and treatment with SiClMe3 (a, R = C6H5; b, R = 2,6-Pri2C6H3; c, R = 2,4,6-Me3C6H2; d, R = 2-C6H5C6H4; e, R = C6F5). 2a-c react with TiCl4 in hydrocarbon solvents to give the binuclear complexes [Ti{3-But-2-(O)C6H3CH=N(R)}Cl(mu-Cl3)TiCl3] (3a-c). The pentafluorophenyl species 2e reacts with TiCl4 to give the known complex Ti{3-But-2-(O)C6H3CH=N(R)}2Cl2. The mononuclear five-coordinate complex, Ti{3-But-2-(O)C6H3CH=N(2,4,6-Me3C6H2)}Cl3 (4c), was isolated after repeated recrystallisation of 3c. Performing the dehalosilylation reaction in the presence of tetrahydrofuran yields the octahedral, mononuclear complexes Ti{3-But-2-(O)C6H3CH=N(R)}Cl3(THF) (5a-e). The reaction with ZrCl4(THF)2 proceeds similarly to give complexes Zr{3-But-2-(O)C6H3CH=N(R)}Cl3(THF) (6b-e). The crystal structures of 3b, 4c, 5a, 5c, 5e, 6b, 6d, 6e and the salicylaldehyde titanium complex Ti{3-But-2-(O)C6H3CH=O}Cl3(THF) (7) have been determined. Activation of complexes 5a-e and 6b-e with MAO in an ethene saturated toluene solution gives polyethylene with at best high activity depending on the imine substituent.  相似文献   

17.
The reaction between Na, t BuPCl 2 , and PCl 3 in thf gives Na[ cyclo -( t Bu 4 P 5 )] ( 1 ). 1 reacts with PCl 3 to yield ( cyclo - t Bu 3 P 4 ) t BuPCl ( 2 ), and with a proton source, such as HCl, NH 4 Cl, or t BuCl, to give cyclo - t Bu 4 P 5 H ( 3 ). The reaction of 1 with [MCl 2 (PRR' 2 ) 2 ] (M = Ni; R = R' = Et; M = Pd, Pt, R = Ph, R' = Me) gives [Ni{ cyclo -( t Bu 3 P 5 )}(PEt 3 ) 2 ] ( 4 ), [Pd{ cyclo -( t Bu 4 P 5 )} 2 ] ( 5 ), and [PtCl{ cyclo -( t Bu 3 P 4 ) t BuP}(PPhMe 2 )] ( 6 ). 1-6 were characterized by 31 P{ 1 H} NMR spectroscopy, and 1 and 4-6 were also characterized by X-ray crystallography.  相似文献   

18.
Using a unique three-solvent biphasic method, we have prepared and characterized three new fully conjugated, chalcogen-rich, bridged copper(II) complexes for the preparation of molecular conductors and magnetic materials, having the general formula (Bu(4)N)(2){tto[Cu(L)](2)} (tto = C(2)S(4)(2)(-) = tetrathiooxalato; L = mnt = C(4)N(2)S(2)(2)(-) = 1,2-dicyanoethene-1,2-dithiolato for complex 2, dsit = C(3)Se(2)S(3)(2)(-) = 2-thioxo-1,3-dithiole-4,5-diselenolato for complex 3, dmid = C(3)OS(4)(2)(-) = 2-oxo-1,3-dithiole-4,5-dithiolato for complex 4a). The single-crystal X-ray structures of 2 and 3 have been determined: 2, (Bu(4)N)(2){tto[Cu(mnt)](2)}, monoclinic, space group C2/m, a = 19.549(4) ?, b = 13.519(3) ?, c = 10.162(2) ?, beta = 90.33(1) degrees, Z = 2; 3, (Bu(4)N)(2){tto[Cu(dsit)](2)}, monoclinic, space group P2(1)/c, a = 9.903(1) ?, b = 15.589(1) ?, c = 18.218(1) ?, beta = 90.40(1) degrees, Z = 2. Complex 2 displays perfect planarity, while 3 shows a slight tetrahedral distortion at the metal centers, resulting in a dihedral angle of 24.86(3) degrees. Cyclic voltammetry of (Bu(4)N)(2){tto[Cu(mnt)](2)} (2), (Bu(4)N)(2){tto[Cu(dsit)](2)} (3), and (Bu(4)N)(2){tto[Cu(dmid)](2)} (4a) shows each complex to exhibit two reversible redox processes which can be attributed to {tto[Cu(L)](2)}(2)(-) right arrow over left arrow tto[Cu(L)](2)}(-) and {tto[Cu(L)](2)}(1)(-) right arrow over left arrow {tto[Cu(L)](2)}(0) couples. The structural and electronic properties of 2, 3, and 4a will be compared to those of the recently communicated analogous complex (Bu(4)N)(2){tto[Cu(dmit)](2)} (1).  相似文献   

19.
Titanium-phosphorus frustrated Lewis pairs (FLPs) based on titanocene-phosphinoaryloxide complexes have been synthesised. The cationic titanium(IV) complex [Cp(2)TiOC(6)H(4)P((t)Bu)(2)][B(C(6)F(5))(4)] 2 reacts with hydrogen to yield the reduced titanium(III) complex [Cp(2)TiOC(6)H(4)PH((t)Bu)(2)][B(C(6)F(5))(4)] 5. The titanium(III)-phosphorus FLP [Cp(2)TiOC(6)H(4)P((t)Bu)(2)] 6 has been synthesised either by chemical reduction of [Cp(2)Ti(Cl)OC(6)H(4)P((t)Bu)(2)] 1 with [CoCp*(2)] or by reaction of [Cp(2)Ti{N(SiMe(3))(2)}] with 2-C(6)H(4)(OH){P((t)Bu)(2)}. Both 2 and 6 catalyse the dehydrogenation of Me(2)HN·BH(3).  相似文献   

20.
The reaction between {(Me3Si)2CH}PCl2 and one equivalent of [C10H6-8-NMe2]Li, followed by in situ reduction with LiAlH4, gives the secondary phosphane {(Me3Si)2CH}(C10H6-8-NMe2)PH(1) in good yield as a colourless crystalline solid. Metalation of 1 with Bu(n)Li in diethyl ether gives the lithium phosphanide [{[{(Me3Si)2CH}(C10H6-8-NMe2)P]Li}2(OEt2)](2), which undergoes metathesis with either NaOBu(t) or KOBu(t) to give the heavier alkali metal derivatives [[{(Me3Si)2CH}(C10H6-8-NMe2)P]-Na(tmeda)](3) and [[{(Me3Si)2CH}(C10H6-8-NMe2)P]K(pmdeta)](4), after recrystallisation in the presence of the corresponding amine co-ligand [tmeda = N,N,N',N'-tetramethylethylenediamine, pmdeta = N,N,N',N",N"-pentamethyldiethylenetriamine]. Compounds 2-4 have been characterised by 1H, 13C{1H} and 31P{1H} NMR spectroscopy, elemental analyses and X-ray crystallography. Dinuclear 2 crystallises with the phosphanide ligands arranged in a head-to-head fashion and is subject to dynamic exchange in toluene solution; in contrast, compounds 3 and 4 crystallise as discrete monomers which exhibit no dynamic behaviour in solution. DFT calculations on the model compound [{[(Me)(C10H6-8-NMe2)P]Li},(OMe2)] (2a) indicate that the most stable head-to-head form is favoured by 15.0 kcal mol(-1) over the corresponding head-to-tail form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号