首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The novel mononuclear complex PPh(4)-mer-[Fe(III)(bpca)(3)(CN)(3)].H(2)O (1) [PPh(4)(+) = tetraphenylphosphonium cation and bpca = bis(2-pyridylcarbonyl)amidate anion] and ladder-like chain compound [[Fe(III)(bpca)(micro-CN)(3)Mn(II)(H(2)O)(3)] [Fe(III)(bpca)(CN)(3)]].3H(2)O (2) have been prepared and characterized by X-ray diffraction analysis. Compound 1 is a low-spin iron(III) compound with three cyanide ligands in mer arrangement and a tridentate N-donor ligand building a distorted octahedral environment around the iron atom. Compound 2 is an ionic salt made up of cationic ladder-like chains [[Fe(III)(bpca)(micro-CN)(3)Mn(II)(H(2)O)(3)]](+) and uncoordinated anions [Fe(III)(bpca)(3)(CN)(3)](-). The magnetic properties of 2 correspond to those of a ferrimagnetic chain with significant intrachain antiferromagnetic coupling between the low-spin iron(III) centers and the high-spin manganese(II) cations. This compound exhibits ferrimagnetic ordering below 2.0 K.  相似文献   

2.
The new cyano complexes of formulas PPh(4)[Fe(III)(bipy)(CN)(4)] x H(2)O (1), [[Fe(III)(bipy)(CN)(4)](2)M(II)(H(2)O)(4)] x 4H(2)O with M = Mn (2) and Zn (3), and [[Fe(III)(bipy)(CN)(4)](2)Zn(II)] x 2H(2)O (4) [bipy = 2,2'-bipyridine and PPh(4) = tetraphenylphosphonium cation] have been synthesized and structurally characterized. The structure of complex 1 is made up of mononuclear [Fe(bipy)(CN)(4)](-) anions, tetraphenyphosphonium cations, and water molecules of crystallization. The iron(III) is hexacoordinated with two nitrogen atoms of a chelating bipy and four carbon atoms of four terminal cyanide groups, building a distorted octahedron around the metal atom. The structure of complexes 2 and 3 consists of neutral centrosymmetric [[Fe(III)(bipy)(CN)(4)](2)M(II)(H(2)O)(4)] heterotrinuclear units and crystallization water molecules. The [Fe(bipy)(CN)(4)](-) entity of 1 is present in 2 and 3 acting as a monodentate ligand toward M(H(2)O)(4) units [M = Mn(II) (2) and Zn(II) (3)] through one cyanide group, the other three cyanides remaining terminal. Four water molecules and two cyanide nitrogen atoms from two [Fe(bipy)(CN)(4)](-) units in trans positions build a distorted octahedron surrounding Mn(II) (2) and Zn(II) (3). The structure of the [Fe(phen)(CN)(4)](-) complex ligand in 2 and 3 is close to that of the one in 1. The intramolecular Fe-M distances are 5.126(1) and 5.018(1) A in 2 and 3, respectively. 4 exhibits a neutral one-dimensional polymeric structure containing two types of [Fe(bipy)(CN)(4)](-) units acting as bismonodentate (Fe(1)) and trismonodentate (Fe(2)) ligands versus the divalent zinc cations through two cis-cyanide (Fe(1)) and three fac-cyanide (Fe(2)) groups. The environment of the iron atoms in 4 is distorted octahedral as in 1-3, whereas the zinc atom is pentacoordinated with five cyanide nitrogen atoms, describing a very distorted square pyramid. The iron-zinc separations across the single bridging cyanides are 5.013(1) and 5.142(1) A at Fe(1) and 5.028(1), 5.076(1), and 5.176(1) A at Fe(2). The magnetic properties of 1-3 have been investigated in the temperature range 2.0-300 K. 1 is a low-spin iron(III) complex with an important orbital contribution. The magnetic properties of 3 correspond to the sum of two magnetically isolated spin triplets, the antiferromagnetic coupling between the low-spin iron(III) centers through the -CN-Zn-NC- bridging skeleton (iron-iron separation larger than 10 A) being very weak. More interestingly, 2 exhibits a significant intramolecular antiferromagnetic interaction between the central spin sextet and peripheral spin doublets, leading to a low-lying spin quartet.  相似文献   

3.
Two manganese(III) tetradentate Schiff-base dimers to which N,N'-dicyano-1,4-naphthoquinonediiminate (DCNNQI) radicals are attached have been selectively synthesized by varying the solvents used in the reactions: [Mn2(5-MeOsaltmen)2(DCNNQI)2].MeOH (1) and [Mn2(5-MeOsaltmen)(2)(DCNNQI)(2)] x 2CH2Cl2.2CH3CN (2) [5-MeOsaltmen2- = N,N'-(1,1,2,2-tetramethylethylene)bis(5-methoxysalicylideneiminate)]. These two complexes share the same molecular core, [(DCNNQI.-)-Mn(III)-(O)2-Mn(III)-(DCNNQI.-)], where -(O)2- is a biphenolate bridge in the out-of-plane dimerized [Mn(2)(5-MeOsaltmen)2]2+ moiety. However, their packing arrangements are completely different. Whereas complex 1 is found to be relatively isolated, strong intermolecular dimerization of the DCNNQI moieties (with the nearest contact being approximately 3.0 A) is observed in 2, forming a one-dimensional chain of [-Mn(III)-(O)2-Mn(III)-(DCNNQI.-)2-](infinity). The magnetic susceptibility of 1 can be modeled with an [S = 1/2, 2, 2, 1/2] four-spin system including strong antiferromagnetic Mn(III)/DCNNQI radical coupling (J(Mn/rad)/kB = -23 K) and ferromagnetic Mn(III)/Mn(III) coupling through the biphenolate bridge (J(Mn/Mn)/kB = +2.0 K). These interactions lead to an ST = 3 ground state that possesses significant uniaxial anisotropy (D(S=3)/kB = -2.1 K). Low-temperature ac and dc magnetic data of 1 reveal its single-molecule magnet behavior with quantum tunneling of the magnetization. By contrast, 2 possesses the diamagnetic ground state induced by dominating Mn(III)-Mn(III) antiferromagnetic interactions mediated by the diamagnetic DCNNQI dimers and/or pi-pi contact along the b axis.  相似文献   

4.
The hydrolysis of the monomeric five-coordinate (2-BzO-TPP)Mn(III)Cl complex has been investigated.(1) Evidence for the formation of the cyclic trimeric complex [(2-O-TPP)Mn(III)](3) is presented. The (1)H NMR spectroscopic evidence indicates that the trimeric manganese(III) complex has a head-to-tail cyclic trimeric structure with the pyrrolic alkoxide groups forming bridges from one macrocycle to the manganese(III) ion in the adjacent macrocycle PMn-O-PMn-O-PMn-O. The three manganese(III) porphyrin subunits are not equivalent. The characteristic upfield shift of the 3-H pyrrole resonance (-111.5 ppm at 291 K) was determined and considered as the diagnostic feature for the high-spin d(4) manganese(III)-pyrrole alkoxide coordination. The strong upfield shift of the 3-H resonance has been accounted for by the donation of the electron density from the filled orbital of the 2-O atom on the half-occupied d(z)()()2 orbital of the external manganese(III) ion. The other pyrrole resonances produce the complex multiplet at the typical -5 to -40 ppm region. The (1)H NMR spectra of the series of monomeric 2-substituted manganese(III) 5,10,15,20-tetraphenylporphyrin complexes (2-X-TPP)Mn(III)Cl have been obtained and analyzed. The pattern of the assigned seven pyrrole resonances reflects the asymmetry imposed by 2-substitution and has been used as a (1)H NMR spectroscopic probe to map the spin density distribution. The electronic effect is strongly localized at the beta-substituted pyrrole. The upfield shift of the 3-H resonance increases in the order (2-NO(2)-TPP)Mn(III)Cl < (2-BzO-TPP)Mn(III)Cl < (2-OCH(3)-TPP)Mn(III)Cl < (2-OH-TPP)Mn(III)Cl < (2-NH(2)-TPP)Mn(III)Cl < [(2-O-TPP)Mn(III)(OH)](-) following the increasing electron-donating properties of the beta-substituent.  相似文献   

5.
The linear-type heterometallic tetramers, [Mn(III)(2)(5-MeOsaltmen)(2)M(II)(2)(L)(2)](CF(3)SO(3))(2) x 2H(2)O (MII = Cu, 1a; Ni, 2a), where 5-MeOsaltmen(2-) = N,N'-(1,1,2,2-tetramethylethylene) bis(5-methoxysalicylideneiminate), and H(2)L = 3-{2-[(2-hydroxy-benzylidene)-amino]-2-methyl-propylimino}-butan-2-one oxime, have been synthesized and characterized from structural and magnetic points of view. These two compounds are isostructural and crystallize in the same monoclinic P2(1)/n space group. The structure has a [M(II)-NO-Mn(III)-(O)(2)-Mn(III)-ON-M(II)] skeleton, where -NO- is a linking oximato group derived from the non-symmetrical Schiff-base complex [M(II)(L)] and -(O)(2)- is a biphenolato bridge in the out-of-plane [Mn(2)(5-MeOsaltmen)(2)](2+) dimer. The solvent-free compounds, 1b and 2b, have also been prepared by drying of the parent compounds, 1a and 2a, respectively, at 100 degrees C under dried nitrogen. After this treatment, the crystallinity is preserved, and 1b and 2b crystallize in a monoclinic P2(1)/c space group without significant changes in their structures in comparison to 1a and 2a. Magnetic measurements on 1a and 1b revealed antiferromagnetic Mn(III)---Cu(II) interactions via the oximato group and weak ferromagnetic Mn(III)---Mn(III) interactions via the biphenolato bridge leading to an S(T) = 3 ground state. On the other hand, the diamagnetic nature of the square planar Ni(II) center generates an S(T) = 4 ground state for 2a and 2b. At low temperature, these solvated (a) and desolvated (b) compounds display single-molecule magnet behavior modulated by their spin ground state.  相似文献   

6.
Seven cyanide-bridged bimetallic complexes have been synthesized by the reaction of [Fe(1-CH3im)(CN)5]2- with Mn(III) Schiff base complexes. Their crystal structure and magnetic properties have been characterized. Five complexes, [Mn2(5-Brsalen)2Fe(CN)5(1-CH3im)] x H2O (1), [Mn2(5-Clsalen)2(H2O)2Fe(CN)5(1-CH3im)] x H2O (2), [Mn2(5-Clsaltn)2(H2O)2Fe(CN)5(1-CH3im)] (3), [Mn2(5-Clsaltmen)2(H2O)2Fe(CN)5(1-CH3im)] x H2O (4), and [Mn2(5-Brsaltmen)2(H2O)2Fe(CN)5(1-CH3im)] x CH3OH (5), are neutral and trinuclear with two [Mn(SB)]+ (SB2- = Schiff base ligands) and one [Fe(1-CH3im)(CN)5]2-. Complex {[Et4N][Mn(acacen)Fe(CN)5(1-CH3im)]}n x 6nH2O (6) is one-dimensional with alternate [Mn(acacen)]+ and [Fe(CN)5(1-CH3im)]2- units. The two-dimensional complex {[Mn4(saltmen)4Fe(CN)5(1-CH3im)]}n[ClO4]2n x 9nH2O (7) consists of Mn4Fe units which are further connected by the phenoxo oxygen atoms. Magnetic studies show the presence of ferromagnetic Mn(III)-Fe(III) coupling in the trinuclear compounds with the magnetic coupling constant (J) ranging from 4.5 to 6.0 cm-1, based on the Hamiltonian H = -2JSFe(SMn(1) + SMn(2)). Antiferromagnetic interaction has been observed in complex 6, whereas ferromagnetic coupling occurs in complex 7. Complexes 6 and 7 exhibit long-range magnetic ordering with a TN value of 4.0 K for 6 and Tc of 4.8 K for 7. Complex 6 shows metamagnetic behavior at 2 K, and complex 7 possesses a hysteresis loop with a coercive field of 500 Oe, typical of a soft ferromagnet.  相似文献   

7.
Two mixed-valence Mn(III)Mn(II) complexes and a homo-valence Mn(II) trinuclear manganese complex of stoichiometry Mn(III)Mn(II)Mn(III)(5-Cl-Hsaladhp)(2)(AcO)(4)(MeOH)(2).4CH(3)OH (1a), Mn(III)Mn(II)Mn(III) (Hsaladhp)(2)(AcO)(2)(5-Cl-Sal)(2)(thf)(2) (3a) and Mn(II)Mn(II)Mn(II) (AcO)(6)(pybim)(2) (1b) where H(3)saladhp is a tridentate Schiff base ligand and pybim a neutral bidentate donor ligand, have been structurally characterized by using X-ray crystallography. The structurally characterized mixed-valence complexes have strictly 180 degrees Mn(III)-Mn(II)-Mn(III) angles as required by crystallographic inversion symmetry. The complexes are valence trapped with two terminal Mn(III) ions showing Jahn-Teller distortion along the acetate or salicylate-Mn(III)-X axis. The Mn.Mn separation is 3.511 ? and 3.507 ? respectively. The mixed-valence complexes have S = (3)/(2) ground state and the homovalence complex S = (5)/(2), with small antiferromagnetic exchange J couplings, -5.6 and -1.8 cm(-1), respectively, while the powder ESR spectra at 4 K show a broad low field signal with g approximately 4.3 for Mn(III)Mn(II)Mn(III) and a broad temperature-dependent signal at g = 2 for Mn(II)Mn(II)Mn(II). Crystal data for 1a: [C(36)H(60)O(20)N(2)Cl(2)Mn(3)], triclinic, space group P&onemacr;, a = 9.272(7) ?, b = 11.046(8) ?, c = 12.635(9) ?, alpha = 76.78(2) degrees, beta = 81.84(2) degrees, gamma = 85.90(2) degrees, Z = 1. Crystal data for 3a: [C(48)H(56)O(18)N(2)Cl(2)Mn(3)], monoclinic, space group P2(1)/n, a = 8.776(3) ?, b = 22.182(7) ?, c = 13.575(4) ?, beta = 94.44(1) degrees, Z = 2. Crystal data for 1b: [C(36)H(36)O(12)N(6)Mn(3)], triclinic, space group P&onemacr;, a = 13.345(6) ?, b = 8.514(4) ?, c = 9.494(4) ?, alpha = 75.48(1) degrees, beta = 75.83(1) degrees, gamma = 76.42(1) degrees, Z = 1.  相似文献   

8.
The 1H NMR spectra of iron(III) 5-ethynyl-10,15,20-tri(p-tolyl)porphyrin [(ETrTP)Fe(III)X(n)], iron(III) 5-(phenylethynyl)-10,15,20-tri(p-tolyl)porphyrin [(PETrTP)Fe(III)X(n)], iron(III) 5-(phenylbutadiynyl)-10,15,20-tri(p-tolyl)porphyrin [(PBTrTP)Fe(III)X(n)], iron(III) 5,10,15,20-tetra(phenylethynyl)porphyrin [(TPEP)Fe(III)X(n)], iron(III) 1,4-bis-[10,15,20-tri(p-tolyl)porphyrin-5-yl]-1,3-butadiyne {[(TrTP)Fe(III)X(n)]2 B}, and 5,10,15-triphenylporphyrin [(TrPP)Fe(III)X(n)] have been studied to elucidate the impact of meso-ethynyl substitution on the electronic structure and spin density distribution of high-spin (X = Cl-, n = 1) and low-spin (X = CN-, n = 2) derivatives. The meso substituents, i.e., ethynyl, phenylethynyl, and phenylbutadiynyl, provided insight into the efficiency of spin density delocalization along structural elements that are typically applied to transmit electronic effects along multipart polyporphyrinic systems. The positive spin density localized at the meso-carbon of high-spin iron(III) ethynylporphyrins is effectively delocalized along the ethyne or butadiyne fragment as illustrated by the comparison of isotropic shifts of C(meso)-H and -CC-H determined for (TrPP)Fe(III)Cl (-82.6 ppm, 293 K) and (ETrTP)Fe(III)Cl (-49.5 ppm, 298 K). The replacement of the ethynyl hydrogen by phenyl or phenylethynyl provided evidence for the pi spin density distribution around the introduced phenyl ring. An analysis of the isotropic shifts for the low-spin bis-cyanide iron(III) porphyrins series reveals the analogous mechanism of spin density transfer. Treatment of high-spin [(TrTP)Fe(III)Cl]2 B with a base resulted in formation of the cyclic [(TrTP)Fe(III)OFe(III)(TrTP)B]2 complex linked by two mu-oxo bridges. (TPEP)H2 has been characterized by X-ray crystallography as a porphyrin dication where two molecules of trifluoroacetic acid associate with two coordinated trifluoroacetate anions. The X-ray structure of bis-tetrahydrofuran 1,4-bis[10,15,20-tri(p-tolyl)porphyrinatozinc(II)-5-yl]-1,3-butadiyne complex {[(TrTP)Zn(II)(THF)]2 B} reveals two parallel, non-coplanar [(TrTP)Zn(THF)] subunits linked by the linear butadiyne moiety.  相似文献   

9.
The reaction of [Fe(III)L(CN)(3)](-) (L being bpca = bis(2-pyridylcarbonyl)amidate, pcq = 8-(pyridine-2-carboxamido)quinoline) or [Fe(III)(bpb)(CN)(2)](-) (bpb = 1,2-bis(pyridine-2-carboxamido)benzenate) ferric complexes with Mn(III) salen type complexes afforded seven new bimetallic cyanido-bridged Mn(III)-Fe(III) systems: [Fe(pcq)(CN)(3)Mn(saltmen)(CH(3)OH)]·CH(3)OH (1), [Fe(bpca)(CN)(3)Mn(3-MeO-salen)(OH(2))]·CH(3)OH·H(2)O (2), [Fe(bpca)(CN)(3)Mn(salpen)] (3), [Fe(bpca)(CN)(3)Mn(saltmen)] (4), [Fe(bpca)(CN)(3)Mn(5-Me-saltmen)]·2CHCl(3) (5), [Fe(pcq)(CN)(3)Mn(5-Me-saltmen)]·2CH(3)OH·0.75H(2)O (6), and [Fe(bpb)(CN)(2)Mn(saltmen)]·2CH(3)OH (7) (with saltmen(2-) = N,N'-(1,1,2,2-tetramethylethylene)bis(salicylideneiminato) dianion, salpen(2-) = N,N'-propylenebis(salicylideneiminato) dianion, salen(2-) = N,N'-ethylenebis(salicylideneiminato) dianion). Single crystal X-ray diffraction studies were carried out for all these compounds indicating that compounds 1 and 2 are discrete dinuclear [Fe(III)-CN-Mn(III)] complexes while systems 3-7 are heterometallic chains with {-NC-Fe(III)-CN-Mn(III)} repeating units. These chains are connected through π-π and short contact interactions to form extended supramolecular networks. Investigation of the magnetic properties revealed the occurrence of antiferromagnetic Mn(III)···Fe(III) interactions in 1-4 while ferromagnetic Mn(III)···Fe(III) interactions were detected in 5-7. The nature of these Mn(III)···Fe(III) magnetic interactions mediated by a CN bridge appeared to be dependent on the Schiff base substituent. The packing is also strongly affected by the nature of the substituent and the presence of solvent molecules, resulting in additional antiferromagnetic interdinuclear/interchain interactions. Thus the crystal packing and the supramolecular interactions induce different magnetic properties for these systems. The dinuclear complexes 1 and 2, which possess a paramagnetic S(T) = 3/2 ground state, interact antiferromagnetically in their crystal packing. At high temperature, the complexes 3-7 exhibit a one-dimensional magnetic behavior, but at low temperature their magnetic properties are modulated by the supramolecular arrangement: a three-dimensional antiferromagnetic order with a metamagnetic behavior is observed for 3, 4, and 7, and Single-Chain Magnet properties are detected for 5 and 6.  相似文献   

10.
A new tetranuclear cyanide-bridged MnIII–FeIII complex based on manganese(III) Schiff base and hexacyanoferrate(III) units, [Mn(L)(MeOH)2][{Mn(L)}{Fe(CN)6}{Mn(L)(MeOH)}].2MeOH, [H2L?=?N,N′-bis(2-hydroxy-1-naphthalidenato)-1,2-diaminopropane] (1), has been synthesized and characterized by elemental analysis, UV–Vis, FT-IR, PXRD, single crystal X-ray analyses, magnetic and photoluminescence measurements. Complex 1 consist of one trinuclear cyanido-bridged anion, in which [Fe(CN)6]3? anion bridge [Mn(L)]+ and Mn(L)(MeOH)}]+ cations via two C≡N groups in the cis positions, and also one isolated manganese [Mn(L)(MeOH)2]+ cation. DC magnetic susceptibility and magnetization studies showed that complex 1 indicates an antiferromagnetic coupling between low-spin Fe(III) and high-spin Mn(III) through the cyanide bridges. In addition, the complex 1 displays a strong cyan-blue luminescence emission in the solid state condition at room temperature. This behavior might be seen easily from the chromaticity diagram. Thus, the complex may be a good promising cyan-blue OLED developing electroluminescent materials for flatted or curved panel display applications due to the fact that it has such features.  相似文献   

11.
A mixed-valence Mn(III)-Mn(II)-Mn(III) trinuclear complex of stoichiometry MnIIIMnIIMnIII(Hsaladhp)2(Sal)4.2CH3CN (1), where H3saladhp is a tridentate Schiff-base ligand, has been structurally characterized with X-ray crystallography. The Mn(III)Mn(II)Mn(III) angles are strictly 180 degrees as required by crystallographic inversion symmetry. The complex is valence-trapped with two terminal Mn(III) ions in a distorted square pyramidal geometry. The Mn(III)...Mn(II) separation is 3.495 A. The trinuclear complex shows small antiferromagnetic exchange J coupling. The magnetic parameters obtained from the fitting procedure in the temperature range 10-300 K are J1 = -5.7 cm-1, g = 2.02, zJ = -0.19 cm-1, and R = 0.004. The EPR spectrum was obtained at 4 K in CHCl3 and in tetrahydrofuran glasses. The low-field EPR signal is a superposition of two signals, one centered around g = 3.6 and the other, for which hyperfine structure is observed, centered around g = 4.1 indicating an S = 3/2 state. In addition, there is a 19-line signal at g = 2.0. The multiline signal compares well with that observed for the S2 or S0* states of the oxygen-evolving complex. 1H NMR data reveal that the trinuclear compound keeps its integrity into the CHCl3 solution. Crystal data for complex 1: [C54H52N4O18Mn3], M = 1209.82, triclinic, space group P1, a = 10.367(6) A, b = 11.369(6) A, c = 13.967(8) A; alpha = 112.56(1) degree, beta = 93.42(2) degrees, gamma = 115.43(1) degree, Z = 1.  相似文献   

12.
The synthesis and magnetic properties of the oxalate-based molecular soluble magnets with general formula [K(18-crown-6)] 3[M (II) 3(H 2O) 4{M (III)(ox) 3} 3] (M (III) = Cr, Fe; M (II) = Mn, Fe, Ni, Co, Cu; ox = C 2O 4 (2-)) are here described. All the reported compounds are isostructural and built up by 2D bimetallic networks formed by alternating M (III) and M (II) ions connected through oxalate anions. Whereas the Cr (III)M (II) derivatives behave as ferromagnets with critical temperatures up to 8 K, the Fe (III)M (II) present ferri- or weak ferromagnetic ordering up to 26 K.  相似文献   

13.
Three Mn(III)-M(III) (M = Cr and Fe) dinuclear complexes have been obtained by assembling [Mn(III)(SB)(H(2)O)](+) and [M(III)(AA)(CN)(4)](-) ions, where SB is the dianion of the Schiff-base resulting from the condensation of 3-methoxysalicylaldehyde with ethylenediamine (3-MeOsalen(2-)) or 1,2-cyclohexanediamine (3-MeOsalcyen(2-)): [Mn(3-MeOsalen)(H(2)O)(μ-NC)Cr(bipy)(CN)(3)]·2H(2)O (1), [Mn(3-MeOsalen)(H(2)O)(μ-NC)Cr(ampy)(CN)(3)][Mn(3-MeOsalen)(H(2)O)(2)]ClO(4)·2H(2)O (2) and [Mn(3-MeOsalcyen)(H(2)O)(μ-NC)Fe(bpym)(CN)(3)]·3H(2)O (3) (bipy = 2,2'-bipyridine, ampy = 2-aminomethylpyridine and bpym = 2,2'-bipyrimidine). The [M(AA)(CN)(4)](-) unit in 1-3 acts as a monodentate ligand towards the manganese(III) ion through one of its four cyanide groups. The manganese(III) ion in 1-3 exhibits an elongated octahedral stereochemistry with the tetradentate SB building the equatorial plane and a water molecule and a cyanide-nitrogen atom filling the axial positions. Remarkably, the neutral mononuclear complex [Mn(3-MeOsalen)(H(2)O)(2)]ClO(4) co-crystallizes with the heterobimetallic unit in 2. The values of the Mn(III)-M(III) distance across the bridging cyanide are 5.228 (1), 5.505 (2) and 5.265 ? (3). The packing of the neutral heterobimetallic units in the crystal is governed by the self-complementarity of the [Mn(SB)(H(2)O)](+) moieties, which interact each other through hydrogen bonds established between the aqua ligand from one fragment with the set of phenolate- and methoxy-oxygens from the adjacent one. The magnetic properties of the three complexes have been investigated in the temperature range 1.9-300 K. Weak antiferromagnetic interactions between the Mn(III) and M(III) ions across the cyanido bridge were found: J(MnM) = -5.6 (1), -0.63 (2) and -2.4 cm(-1) (3) the Hamiltonian being defined as H = -JS(Mn)·S(M). Theoretical calculations based on density functional theory (DFT) have been used to substantiate both the nature and magnitude of the exchange interactions observed and also to analyze the dependence of the magnetic coupling on the structural parameters within the Mn(III)-N-C-M(III) motif in 1-3.  相似文献   

14.
The synthesis, structure, and physical properties of a novel series of oxalate-based bimetallic magnets obtained by using the Ir(ppy)2(bpy)]+ cation as a template of the bimetallic [M(II)M(III)(ox)3]- network are reported. The compounds can be formulated as [Ir(ppy)2(bpy)][M(II)Cr(III)(ox)3] x 0.5 H2O (M(II) = Ni, Mn, Co, Fe, and Zn) and [Ir(ppy)2(bpy)]-[M(II)Fe(III)(ox)3] x 0.5 H2O (M(II) = Fe, Mn) and crystallize in the chiral cubic space group P4(1)32 or P4(3)32. They show the well-known 3D chiral structure formed by M(II) and M(III) ions connected through oxalate anions with [Ir(ppy)2(bpy)]+ cations and water molecules in the holes left by the oxalate network. The M(II)Cr(III) compounds behave as soft ferromagnets with ordering temperatures up to 13 K, while the Mn(II)Fe(III) and Fe(II)Fe(III) compounds behave as a weak ferromagnet and a ferrimagnet, respectively, with ordering temperatures of 31 and 28 K. These values represent the highest ordering temperatures so far reported in the family of 3D chiral magnets based on bimetallic oxalate complexes.  相似文献   

15.
The reaction of mu-nitrido[((tetraphenylporphyrinato)manganese)(phthalocyaninatoiron)], [(TPP)Mn-N-FePc], with I(2) in THF develops with the formation of two different species, i.e., [(THF)(TPP)Mn-N-FePc(H(2)O)](I(5)).2THF (I) and [(TPP)Mn(IV)-N-Fe(III)Pc](I(3)) (II). On the basis of single-crystal X-ray work and M?ssbauer, EPR, Raman, and magnetic susceptibility data, I, found to be isostructural with the corresponding Fe-Fe complex, is shown to contain a low-spin triatomic Mn(IV)=N=Fe(IV) system (metal-centered oxidation). Data at hand for II (M?ssbauer, EPR, Raman) show, instead, that oxidation takes place at one of the two macrocycles, very likely TPP (ligand-centered oxidation). The same cationic fragment present in I, and containing the Mn(IV)=N=Fe(IV) bond system, is also obtained when (TPP)Mn-N-FePc is allowed to react in THF with (phen)SbCl(6) (molar ratio 1:1). There are indications that the use of (phen)SbCl(6) in excess (2:1 molar ratio), in benzene, probably determines further oxidation with the formation of a species showing the combined presence of the Mn(IV)-Fe(IV) couple and of a pi-cation radical.  相似文献   

16.
The assembling of [Mn(5-MeOsalen)(H2O)]+ and [(Tp)Fe(CN)3]- affords the one-dimensional zigzag chain [(Tp)Fe(CN)3Mn(5-MeOsalen).2CH3OH]n [1; Tp- = hydrotris(pyrazolyl)borate and 5-MeOsalen2- = N,N'-ethylenebis(5-methoxysalicylideneiminate)]. The corroborated experimental and ab initio data indicate ferromagnetic Fe(III)-Mn(III) couplings and D < 0 anisotropy on Mn(III). The field-induced metamagnetic behavior is due to interchain effects.  相似文献   

17.
Two Mn(II) complexes are isolated and X-ray characterized, namely, cis-[(L(2))Mn(II)(Cl)(2)] (1) and [(L(3))Mn(II)Cl(OH(2))](ClO(4)) (2(ClO(4))), where L(2) and L(3) are the well-known tetradentate N,N'-dimethyl-N,N'-bis(2-pyridylmethyl)ethane-1,2-diamine and N,N'-dimethyl-N,N'-bis(2-pyridylmethyl)propane-1,3-diamine ligands, respectively. The crystal structure reveals that whereas the ligand L(2) is in the cis-alpha conformation in complex 1, the ligand L(3) is in the more unusual cis-beta conformation in 2. EPR spectra are recorded on frozen solutions for both complexes and are characteristic of Mn(II) species. Electrochemical behaviors are investigated on acetonitrile solution for both complexes and show that cation 2 exists as closely related Mn(II) species in equilibrium. For both complexes exhaustive bulk electrolyses of acetonitrile solution are performed at oxidative potential in various experimental conditions. In the presence of 2,6-lutidine and after elimination of chloride ligands, the formation of the di-mu-oxo mixed-valent complexes [(L(2))Mn(III)(mu-O)(2)Mn(IV)(L(2))](3+) (3a) and [(L(3))Mn(III)(mu-O)(2)Mn(IV)(L(3))](3+) (4) is confirmed by UV-vis and EPR spectroscopies and cyclic voltammetry. In addition crystals of 4(ClO(4))(3) were isolated, and the X-ray structure reveals the cis-alphaconformation of L(3). In the absence of 2,6-lutidine and without elimination of the exogenous chloride ions, the electrochemical oxidation of 1 leads to the formation of the mononuclear Mn(III) complex, namely, [(L(2))Mn(III)(Cl)(2)](+) (5), as confirmed by UV-vis as well as parallel mode EPR spectroscopy and cyclic voltammetry. In the same conditions, the electrochemical oxidation of complex 2 is more intricate, and a thorough analysis of EPR spectra establishes the formation of the binuclear mono-mu-oxo mixed-valent [(L(3))ClMn(III)(mu-O)Mn(IV)Cl(L(3))](3+) (6) complexes. Electrochemical conversion of Mn(II) complexes into mixed-valent Mn(2)(III,IV) oxo-bridged complexes in the presence of 2,6-lutidine is discussed. The role of the chloride ligands as well as that of L(3) in the building of oxo bridges is discussed. Differences in behavior between L(2) and L(3) are commented on.  相似文献   

18.
High-field and frequency electron paramagnetic resonance (HFEPR) of solid (8,12-diethyl-2,3,7,13,17,18-hexamethylcorrolato)manganese(III), 1, shows that in the solid state it is well described as an S = 2 (high-spin) Mn(III) complex of a trianionic ligand, [Mn(III)C(3)(-)], just as Mn(III) porphyrins are described as [Mn(III)P(2)(-)](+). Comparison among the structural data and spin Hamiltonian parameters reported for 1, Mn(III) porphyrins, and a different Mn(III) corrole, [(tpfc)Mn(OPPh(3))], previously studied by HFEPR (Bendix, J.; Gray, H. B.; Golubkov, G.; Gross, Z. J. Chem. Soc., Chem. Commun. 2000, 1957-1958), shows that despite the molecular asymmetry of the corrole macrocycle, the electronic structure of the Mn(III) ion is roughly axial. However, in corroles, the S = 1 (intermediate-spin) state is much lower in energy than in porphyrins, regardless of axial ligand. HFEPR of 1 measured at 4.2 K in pyridine solution shows that the S = 2 [Mn(III)C(3)(-)] system is maintained, with slight changes in electronic parameters that are likely the consequence of axial pyridine ligand coordination. The present result is the first example of the detection by HFEPR of a Mn(III) complex in solution. Over a period of hours in pyridine solution at ambient temperature, however, the S = 2 Mn(III) spectrum gradually disappears leaving a signal with g = 2 and (55)Mn hyperfine splitting. Analysis of this signal, also observable by conventional EPR, leads to its assignment to a manganese species that could arise from decomposition of the original complex. The low-temperature S = 2 [Mn(III)C(3)(-)] state is in contrast to that at room temperature, which is described as a S = 1 system deriving from antiferromagnetic coupling between an S = (3/2) Mn(II) ion and a corrole-centered radical cation: [Mn(II)C(*)(2-)] (Licoccia, S.; Morgante, E.; Paolesse, R.; Polizio, F.; Senge, M. O.; Tondello, E.; Boschi, T. Inorg. Chem. 1997, 36, 1564-1570). This temperature-dependent valence state isomerization has been observed for other metallotetrapyrroles.  相似文献   

19.
A mixed-valence complex, [Fe(III)Fe(II)L1(μ-OAc)(2)]BF(4)·H(2)O, where the ligand H(2)L1 = 2-{[[3-[((bis(pyridin-2-ylmethyl)amino)methyl)-2-hydroxy-5-methylbenzyl](pyridin-2-ylmethyl)amino]methyl]phenol}, has been studied with a range of techniques, and, where possible, its properties have been compared to those of the corresponding enzyme system purple acid phosphatase. The Fe(III)Fe(II) and Fe(III)(2) oxidized species were studied spectroelectrochemically. The temperature-dependent population of the S = 3/2 spin states of the heterovalent system, observed using magnetic circular dichroism, confirmed that the dinuclear center is weakly antiferromagnetically coupled (H = -2JS(1)·S(2), where J = -5.6 cm(-1)) in a frozen solution. The ligand-to-metal charge-transfer transitions are correlated with density functional theory calculations. The Fe(III)Fe(II) complex is electron paramagnetic resonance (EPR)-silent, except at very low temperatures (<2 K), because of the broadening caused by the exchange coupling and zero-field-splitting parameters being of comparable magnitude and rapid spin-lattice relaxation. However, a phosphate-bound Fe(III)(2) complex showed an EPR spectrum due to population of the S(tot) = 3 state (J= -3.5 cm(-1)). The phosphatase activity of the Fe(III)Fe(II) complex in hydrolysis of bis(2,4-dinitrophenyl)phosphate (k(cat.) = 1.88 × 10(-3) s(-1); K(m) = 4.63 × 10(-3) mol L(-1)) is similar to that of other bimetallic heterovalent complexes with the same ligand. Analysis of the kinetic data supports a mechanism where the initiating nucleophile in the phosphatase reaction is a hydroxide, terminally bound to Fe(III). It is interesting to note that aqueous solutions of [Fe(III)Fe(II)L1(μ-OAc)(2)](+) are also capable of protein cleavage, at mild temperature and pH conditions, thus further expanding the scope of this complex's catalytic promiscuity.  相似文献   

20.
The coordination chemistry of the bidentate bis(imino)bis(amino)phosphate ligands [Me(3)SiN═P{NR}{N(H)R}(2)](-), where R = n-propyl is [L(1)H(2)](-), R = cyclohexyl is [L(2)H(2)](-), and R = tert-butyl is [L(3)H(2)](-), with manganese(II), is described. The bis(imino)bis(amino)phosphate-manganese(II) complexes [(η(5)-Cp)Mn(μ-L(1)H(2))](2) (1), [Mn(L(2)H(2))(2)]·THF (2·THF), and [(η(5)-Cp)Mn(L(3)H(2))] (3) were synthesized by monodeprotonation of the respective pro-ligands by manganocene, Cp(2)Mn. The molecular structures of 1-3 reveal that the steric demands of the ligand N-substituents play a dominant role in determining the aggregation state and overall composition of the manganese(II) complexes. The coordination geometries of the Mn(II) centers are six-coordinate pseudotetrahedral in 1, four-coordinate distorted tetrahedral in 2, and five-coordinate in 3, resulting in formal valence electron counts of 17, 13, and 15, respectively. EPR studies of 1-3 at Q-band reveal high-spin manganese(II) (S = (5)/(2)) in each case. In the EPR spectrum of 1, no evidence of intramolecular magnetic exchange was found. The relative magnitudes of the axial zero-field splitting parameter, D, in 2 and 3 are consistent with the symmetry of the manganese environment, which are D(2d) in 2 and C(2v) in 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号