首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The novel copper iodide clusters [Cu3(μ‐I)(μ3‐I)2(PH2BH2·NMe3)3] ( 2 ) and [Cu4(μ‐I)23‐I)2(PH2BH2·NMe3)3] ( 3 ) were synthesized by treating CuI with the primary phosphine (H2PBH2·NMe3). The novel features of both compounds, which have been characterized by X‐ray crystallography, are the unsymmetrical constitution of the copper iodide core due to the influence of the monodentate phosphorus ligand. This results in copper atoms with different coordination numbers within the compound. Complex 2 , the major product of the reaction, contains a distorted octahedral Cu3I3‐core, in which one vertex is missing. Complex 3 was isolated as a by‐product and is composed of a Cu4I4‐core in a distorted octahedral coordination.  相似文献   

2.
An attempt to synthesize a complex between copper(I) cyanide and thioacetamide (ta) by a direct combination in aqueous solution, surprisingly, produced instead Cu(4)(S(2)O(3))(2)(ta)(10).ta (1), a complex lacking cyanide but including thiosulfate. We know of no precedent for the production of thiosulfate from an aqueous solution of ta. Using a new synthetic approach, a complex of CuCN and ta was subsequently prepared-(CuCN)(ta), 2. In the new method, which has been found to be widely applicable to water-soluble ligands, CuCN is made "available" for coordination by dissolving it in aqueous sodium thiosulfate. Complex 1 crystallizes in the triclinic space group P&onemacr; (No. 2) with unit cell dimensions a = 10.139(3) ?, b = 12.230(4) ?, c = 12.665(4) ?, alpha = 85.20(2) degrees, beta = 67.32(2) degrees, gamma = 68.47(2) degrees, V = 1345(2) ?(3), and Z = 2. Complex 2 crystallizes in the orthorhombic space group Pna2(1) (No. 33) with unit cell dimensions a = 6.993(9) ?, b = 8.744(3) ?, c = 9.372(6) ?, V = 573(1) ?(3), and Z = 4. Some possible pathways for the production of thiosulfate are discussed.  相似文献   

3.
The reaction of [(Ph3P)2CuCl]2 with 4‐amino‐6‐methyl‐1,2,4‐triazine‐thione‐5‐one (AMTTO, 1 ) in methanol and further recrystallization from methanol/acetone solution gives [(C4H4N3SON(=CMe2)Cu(PPh3)2Cl] ( 2 ) as a neutral complex. [(C4H4N3SON(=CMe2)Ag(PPh3)2]NO3 ( 4 ) can be obtained in excellent yield by the reaction of [(AMTTO)2Ag]NO3 ( 3 ) with triphenylphosphane in methanol/acetone. Both complexes were characterized by infrared spectroscopy, elemental analyses as well as by X‐ray diffraction studies. Crystal data for 2 at –80 °C: space group P1 with a = 1233.8(1), b = 1389.7(1), c = 1417.1(1) pm, α = 89.36(1)°; β = 65.10(1)°, γ = 65.95(1)°, Z = 2, R1 = 0.0582 and for 4 at –80 °C: space group P1, with a = 1193.3(1), b = 1308.5(1), c = 1385.3(1) pm, α = 94.69(1)°, β = 109.14(1)°, γ = 93.42(1)°, Z = 2, R1 = 0.0716.  相似文献   

4.
Mechanism of electroreduction of copper(I) cyanide complexes from aqueous electrolytic solutions is studied within a quantum-chemical method of a density functional and a quantum-mechanical theory of charge transfer in polar environment. The electrochemically active form directly participating in an elementary electroreduction act is shown to be the [Cu(CN)2] complex. Modeling calculations of the activation energy for an elementary charge transfer act reveal for the first time that the transfer of heavy particles along an adiabatic potential energy curve is a more probable mechanism of electroreduction of copper(I) cyanocomplexes than an outer-sphere electron transfer.  相似文献   

5.
The valence electronic structures of [Cu(hfac)L] (hfac = CF(3)C(O)CHC(O)CF(3); L = PMe(3), CNMe), [Ag(hfac)(PMe(3))], and [Ag(fod)(PEt(3))] (fod = t-BuC(O)CHC(O)C(3)F(7)) have been studied by recording their photoelectron spectra and by performing Xalpha-SW calculations on the model compounds [M(dfm)(PH(3))] (dfm = HC(O)CHC(O)H; M = Cu, Ag) and [Cu(dfm)(CNH)]. For the copper complexes, the spectra were recorded between 21 and 160 eV using He I, He II and synchrotron radiation; while, for the silver complexes, He I and He II, spectra were recorded. Assignments were made by comparison of experimental and calculated values of band energies, and, for the copper complexes, by similar comparison of experimental and theoretical branching ratios as a function of photon energy. For the silver complexes, a more limited comparison of band intensities in the He I and He II spectra was made. In analogous compounds, it is shown that the binding energies follow the sequence Ag 4d > Cu 3d, with an energy difference of almost 2 eV.  相似文献   

6.
分别以3-(2-吡啶基)-4-(4-甲基苯基)-5-(2-喹啉基)-1,2,4-三氮唑(L1)和3-(2-吡啶基)-4-(4-氟苯基)-5-(2-喹啉基)-1,2,4-三氮唑(L2)作为配体,合成了2个新的单核铜配合物:trans-[Cu(L12(NO3)(H2O)]NO3·H2O(1)和trans-[Cu(L22(NO3)(H2O)]NO3·H2O(2),对其进行了红外、元素分析和单晶结构表征。2个配合物都属于三斜晶系,P1空间群。单晶结构表明,配合物12中的铜离子均处于一个扭曲的八面体配位环境[CuN4O2],轴向上各有一个水分子和一个硝酸根配位。配体的吡啶氮原子和三氮唑的一个氮原子参与配位,而喹啉的氮原子不配位。配合物晶体中存在O-H…O、C-H…O、C-H…N氢键和C-H…π相互作用,从而连接单核配合物形成三维网络。  相似文献   

7.
分别以3-(2-吡啶基)-4-苯基-5-(2-噻吩基)-1,2,4-三氮唑(L1)和3-(2-吡啶基)-4-(4-氯苯基)-5-(2-噻吩基)-1,2,4-三氮唑(L2)作为配体,合成了2个新的单核铜配合物:trans-[Cu(L1)2(MeOH)2](ClO4)2(1)和trans-[Cu(L2)2(ClO4)2]·...  相似文献   

8.
分别以3-(2-吡啶基)-4-苯基-5-(2-噻吩基)-1,2,4-三氮唑(L1)和3-(2-吡啶基)-4-(4-氯苯基)-5-(2-噻吩基)-1,2,4-三氮唑(L2)作为配体,合成了2个新的单核铜配合物:trans-[Cu (L12(MeOH)2](ClO421)和trans-[Cu (L22(ClO42]·2MeCN (2),并对其进行了红外、元素分析、单晶结构和粉末X射线衍射表征。2个配合物都属于单斜晶系,P21/c空间群。单晶结构分析表明,配合物12中的铜离子均处于一个扭曲的八面体配位环境[CuN4O2],其中1的轴向由2个甲醇分子配位,而2的轴向由2个高氯酸根配位。处于赤道面的配体的吡啶N原子和三氮唑的一个N原子采用螯合双齿模式参与配位,而噻吩不配位。配合物2含2个乙腈客体分子,乙腈与三氮唑环之间存在ππ堆积作用。配合物12中存在O-H…O、C-H…O、C-H…N氢键和C-H…π相互作用,从而连接单核配合物形成三维网络。  相似文献   

9.
The crystals of [(CH2)6N4(C3H5)]Cu2Cl3 (I), [(CH2)6N4(C3H5)]Cu2Cl3 (II), and [(CH2)6N4(C3H5)]CuCl2 (III) complexes were electrochemically synthesized (ac) from CuCl2 · 2H2O and N-allylhexamethylenetetraminium chloride in ethanol solutions at pH 6, 4.5, and 3. Their structures were determined using X-ray diffraction analysis (DARCh diffractometer, MoK radiation, /2 scan mode). Complex Icrystallizes in the monoclinic system: space group A2/a, a = 24.812(6) Å, b = 8.855(3) Å, c = 12.080(2) Å, = 89.21(3)°, and Z = 8. Complex II crystallizes in the triclinic system: space group P , a = 7.618(2) Å, b = 7.048(2) Å, c = 13.150(3) Å, = 97.50(2)°, = 92.70(2)°, = 100.74(2)°, and Z = 2. The crystals of complex III are orthorhombic: space group Pmn21, a = 7.478(2) Å, b = 8.827(2) Å, c = 9.662(3) Å, Z = 2. The organic cation in complex I acts as a tridentate ,,-ligand; that in complex II, as a bidentate ,-ligand. In complex III, the organic cation is involved in coordination with the copper(I) atom only through one nitrogen atom.  相似文献   

10.
夏军  张明  赵斌  程鹏 《无机化学学报》2006,22(8):1406-1410
本文分别用N,N′-二(2-吡啶基)-2,6-吡啶二酰胺(H2L)和2-吡啶酸得到了2种具有一维链结构的铜配合物。通过X-射线单晶衍射,测定了晶体的结构。配合物1,{Cu3L2(C4H4O4)·10H2O}n,属于三斜晶系,空间群是P1,晶胞参数如下:a=0.706(1) nm,b=1.113(8) nm,c=1.288(7) nm,α=110.810(5)°,β=90.422(6)°,γ=101.183(6)°,V=0.926 2(2) nm3Z=1。配合物2,{Cu(pic)2·2H2O}n,也属于三斜晶系,空间群是P1,晶胞参数如下:a=0.513(6) nm,b=0.765(0) nm,c=0.924(6) nm,α=74.839(4)°,β=84.386(5)°,γ=71.401(5)°,V=0.332 3(0) nm3Z=1。通过分子中未配位的水分子的氢键作用,配合物1构成了1个三维结构;而配合物2通过弱配位键作用形成了一维的链状结构。CCDC:603470,1;608265,2。  相似文献   

11.
两种含氨基吡啶衍生物铜(Ⅱ)配合物的合成和晶体结构   总被引:1,自引:1,他引:1  
氨基吡啶与铜等金属离子所形成的配合物具备良好的磁学性质和结构的多样性,特别是在存在桥基的铜配合物中[1],对其结构的研究有助于理解发生在Cu-Cu原子间的磁交换作用,并揭示结构与磁学性质的相互关系[2,3].  相似文献   

12.
以取代苄氯(1a~1c)为起始原料,与咪唑经氮烷基化反应制得苄基咪唑氯盐(2a~2c); 2a~2c与氧化银经原位去质子化反应合成了3种新型的氮杂环卡宾银配合物--(NHC)AgCl[NHC: 1,3-二(4-甲氧基苄基)咪唑-2-亚基(3a), 1,3-二(3-甲氧基苄基)咪唑-2-亚基(3b)]和[(NHC)AgCl]2[NHC=1,3-二(4-氯苄基)咪唑-2-亚基(3c)],其结构经1H NMR, 13C NMR, IR,元素分析和X-射线单晶衍射表征。3a~3c单晶结构均属单斜晶系,3a为P21/n空间群,3b和3c为P21/c空间群,3a和3b为单核银配合物,3c为双核银配合物。  相似文献   

13.
Reaction of 4-amino-5-methyl-1,2,4-triazol-3(2H)-thione (AMTT) and 4-amino-6-methyl-3-thio-3,4-dihydro-1,2,4-triazin-5(2H)-one (AMTTO) with 2-hydroxybenzaldehyde led to the synthesis of corresponding Schiff base ligands [(Z)-4-((2-hydroxybenzylidene)amino)-3-methyl-1H-1,2,4-triazole-5(4H)-thione ( L1 ) and (Z)-4-((2-hydroxybenzylidene)amino)-6-methyl-3-thioxo-3,4-dihydro-1,2,4-triazin-5(2H)-one ( L2 )]. Treatment of synthesized Schiff base ligands with CuCl provided the complexes [Cu(L1)3Cl] ( 1 ) and [Cu(L2)2Cl] ( 2 ). Synthesized complexes were characterized by elemental analyses, IR spectroscopy and X-ray diffraction studies. Complex 1 consists of a metal ion coordinated with one chloride ion and three Schiff base ligands via sulfur atoms in a distorted tetrahedral environment, whereas 2 consists of a metal ion coordinated with one chloride ion and two sulfur atoms from two different Schiff base ligands in a trigonal planar arrangement. Crystal data for 1 at –153 °C revealed an orthorhombic space group Fdd2, a = 34.8088(7), b = 33.8156(8), c = 11.6142(2) Å, Z = 16, R1 = 0.0357; for 2 at –178 °C the symmetry was triclinic, space group P1 , a = 7.27520(10), b = 15.4620(2), c = 23.7985(4) Å, α = 72.1964(13), β = 86.5208(12), γ = 89.8597(11)°, Z = 4, R1 = 0.0359.  相似文献   

14.
15.
16.
Several new copper(I) complexes of a group of bidentate bithiazole ligands have been isolated. The compounds prepared are bis(2,2′-dimethyl-4,4′-bithiazole)copper(I) perchlorate ([Cu(me-b)2]ClO4), bis(4,4′-dimethyl-2,2′-bithiazole)copper(I) perchlorate ([Cu(me-i)2]ClO4), bis(2,2′-diphenyl-4,4′-bithiazole) copper(I) perchlorate ([Cu(ph-b)2]ClO4), bis(4,4′-diphenyl-2,2′-bithiazole)copper(I) perchlorate ([Cu(ph-i)2]ClO4), bis(4,4′,5,5′-tetraphenyl-2,2′-bithiazole)-copper(I) perchlorate ([Cu(ph4-i)2]ClO4, bis(2,2′-bithiazole)copper(l) perchlorate ([Cu(i)2]CIO4), 2,2′-bithiazolecopper(I) perchlorate ([Cu(i)ClO4), (2,2′-bithiazole)bis(triphenylphosphinesulfide)copper(I) perchlorate ([Cu(i)(SPph3)2]ClO4,(2,2′-bithiazole)bis-( triphenylphosphine)copper(I) perchlorate ([Cu(i)(Pph3)2]ClO4), and (4,4′-bithiazole)bis(triphenylphosphine) copper(I) perchlorate ([Cu(b)(Pph3)2]ClO4). Several synthetic techniques were required including one developed in this work which involved the conversion of [Cu(Pph3)4]ClO4 into the thiophosphine complex by reaction with sulfur and subsequent use of this as a labile precursor complex. Optical spectra of the complexes indicate extensive solution dissociation. Several of the complexes ([Cu(ph-b)2]ClO4, [Cu(ph-i)2]CIO4, and [Cu(i)(Pph3]ClO4) were photoluminescent in the solid; one ([Cu(ph-b)2]ClO4) showed extensive loss of emission during irradiation. Most of the complexes prepared here appear to bind through the thiazole nitrogen atoms. However, infrared evidence suggests that in two of the complexes thiazole sulfur atoms participate in the bonding.  相似文献   

17.
1 INTRODUCTION The chemistry of copper compounds has been extensively investigated and the relationship be- tween structure and reactivity, ranging from indus- trial catalysis to biochemistry activity, is of major importance. For binuclear copper(II) complexes equa- torially bridged by pair of hydroxide[1] or alkoxide[2, 3] groups, satisfactory linear correlation is found be- tween the Cu–O–Cu bridging angle and spin coupling between the metal centers. However, for binuclear copper(I…  相似文献   

18.
The mononuclear copper(Ⅱ) complex [Cu(L)(2-AP)] 1 and binuclear copper(Ⅱ)complex [Cu(L)(py)]2 2 (L = C1oH1 1O5NS, taurine o-vanillin, py = prydine, 2-AP = 2-aminopyridine)with mixed ligand have been synthesized and characterized by X-ray diffraction method. Crystal data for 1: orthorhombic, space group Pbca with a = 11.921(4), b = 15.816(6), c = 17.076(6) (A), V=3219.7(19) (A)3, C15H17CuN3O5S, Z = 8, Mr = 414.92, Dc = 1.712 g/cm3,μ(MoKα) = 1.520 mm-1,F(000) = 1704, the final R = 0.0300 and wR = 0.0705 for 2840 observed reflections with I > 2σ(I);and crystal data for 2: monoclinic, space group P21/c with a = 7.929(3), b = 17.038(5), c = 11.734(4)(A), β = 98.162(6)°, V = 1569.1 (9) (A)3, C15H16CuN2O5S, Z = 4, Mr = 399.90, Dc = 1.693 g/cm3, F(000)= 820,μ(MoKα) = 1.554 mm-1, the final R = 0.0351 and wR = 0.0848 for 2767 observed reflections (I > 2o(I)). The molecular structure of complex 1 consists of one tetra-coordinated Cu(Ⅱ) atom generating a slightly distorted square plane, and a one-dimensional chain structure is formed by intermolecular hydrogen bonds. Complex 2 consists of a diphenolic hydroxyl O-bridged binuclear copper(Ⅱ) structure. The crystal structures of complexes 1 and 2 reveal that the coordinate copper centers are bound to both nitrogen and oxygen atom donors. The usual N,O-trans arrangement of ligands is observed in both cases.  相似文献   

19.
Reaction of two equivalents of the bulky 1,3-bis(2,6-diethylphenyl)thiourea ligand (L) with MX (being M = Cu+, Ag+; and X = Cl, Br, I) in acetonitrile afforded neutral complexes of the type [MXL2] [CuClL2].2CH3CN (1a); [CuBrL2].2CH3CN (1b); [CuIL2] (1c): [AgClL2] (2a); [AgBrL2] (2b) and [AgIL2] (2c). The two aromatic groups in free ligand were found to be trans with respect to the thiourea unit, which was a reason to link the ligand molecules via intermolecular hydrogen bonding. Intramolecular hydrogen bonding was observed in all metal complexes. The copper complexes 1a and 1b are acetonitrile solvated and show not only intra- but also intermolecular hydrogen bonding between the coordinated thiourea and the solvated acetonitrile molecules. Silver complexes reported here are the first examples of structurally characterized tricoordinated thiourea-stabilized monomeric silver(I) halides. Molecular docking studies were carried out to analyze the binding modes of the metal complexes inside the active site of the human insulin (HI) protein. Analysis of the docked conformations revealed that the electrostatic and aromatic interactions of the protein N-terminal residues (i.e., Phe and His) may assist in anchoring and stabilizing the metal complexes inside the active site. According to the results of docking studies, the silver complexes exhibited the strongest inhibitory capability against the HI protein, which possesses a deactivating group, directly bonded to silver. All compounds were fully characterized by elemental analysis, NMR spectroscopy, and molecular structures of the ligand, and five out of six metal complexes were also confirmed by single-crystal X-ray diffraction.  相似文献   

20.
Two heterospin complexes [Cu(NIT3Py)(cda)H2O] · H2O ( 1 ) and [Cu(NIT2Py)(cda)H2O] · H2O · CH3OH ( 2 ) with CuII ions and pyridyl‐substituted nitronyl nitroxide radicals (NITxPy = 2‐(x′‐pyridyl)‐4,4,5,5‐tetramethyl‐imidazoline‐1‐oxyl‐3‐oxide, x = 3, 2; H2cda = 4‐hydroxy‐pyridine‐2,6‐dicarboxylic acid) were synthesized and characterized structurally and magnetically. The single crystal structures show that the two complexes are both two‐spin complexes, in which the different radicals make the two complexes have different hydrogen bonding interactions to form 2D and 1D supramolecular network for complexes 1 and 2 , respectively. The magnetic measurements indicate that complexes 1 and 2 both exhibit antiferromagnetic interactions between CuII and radicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号