首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Oxidative addition of diorganyl diselenides to the coordinatively unsaturated, low-valent transition-metal-carbonyl fragment [Mn(CO)(5)](-) produced cis-[Mn(CO)(4)(SeR)(2)](-). The complex cis-[PPN][Mn(CO)(4)(SePh)(2)] crystallized in triclinic space group P&onemacr; with a = 10.892(8) ?, b = 10.992(7) ?, c = 27.021(4) ?, alpha = 101.93(4) degrees, beta = 89.79(5) degrees, gamma = 116.94(5) degrees, V = 2807(3) ?(3), and Z = 2; final R = 0.085 and R(w) = 0.094. Thermolytic transformation of cis-[Mn(CO)(4)(SeMe)(2)](-) to [(CO)(3)Mn(&mgr;-SeMe)(3)Mn(CO)(3)](-) was accomplished in high yield in THF at room temperature. Crystal data for [Na-18-crown-6-ether][(CO)(3)Mn(&mgr;-SeMe)(3)Mn(CO)(3)]: trigonal space group R&thremacr;, a = 13.533(3) ?, c = 32.292(8) ?, V = 5122(2) ?(3), Z = 6, R = 0.042, R(w) = 0.041. Oxidation of Co(2+) to Co(3+) by diphenyl diselenide in the presence of chelating metallo ligands cis-[Mn(CO)(4)(SePh)(2)](-) and cis-[Mn(CO)(4)(TePh)(2)](-), followed by a bezenselenolate ligand rearranging to bridge two metals and a labile carbonyl shift from Mn to Co, led directly to [(CO)(4)Mn(&mgr;-TePh)(2)Co(CO)(&mgr;-SePh)(3)Mn(CO)(3)]. Crystal data: triclinic space group P&onemacr;, a = 11.712(3) ?, b = 12.197(3) ?, c = 15.754(3) ?, alpha = 83.56(2) degrees, beta = 76.13(2) degrees, gamma = 72.69(2) degrees, V = 2083.8(7) ?(3), Z = 2, R = 0.040, R(w) = 0.040. Addition of fac-[Fe(CO)(3)(SePh)(3)](-) to fac-[Mn(CO)(3)(CH(3)CN)(3)](+) resulted in formation of (CO)(3)Mn(&mgr;-SePh)(3)Fe(CO)(3). This neutral heterometallic complex crystallized in monoclinic space group P2(1)/n with a = 8.707(2) ?, b = 17.413(4) ?, c = 17.541(4) ?, beta = 99.72(2) degrees, V = 2621(1) ?(3), and Z = 4; final R = 0.033 and R(w) = 0.030.  相似文献   

2.
The dicyanodicarbonyliron(II) thiolate complexes trans,cis-[(CN)(2)(CO)(2)Fe(S,S-C-R)](-) (R = OEt (2), N(Et)(2) (3)) were prepared by the reaction of [Na][S-C(S)-R] and [Fe(CN)(2)(CO)(3)(Br)](-) (1). Complex 1 was obtained from oxidative addition of cyanogen bromide to [Fe(CN)(CO)(4)](-). In a similar fashion, reaction of complex 1 with [Na][S,O-C(5)H(4)N], and [Na][S,N-C(5)H(4)] produced the six-coordinate trans,cis-[(CN)(2)(CO)(2)Fe(S,O-C(5)H(4)N)](-) (6) and trans,cis-[(CN)(2)(CO)(2)Fe(S,N-C(5)H(4))](-) (7) individually. Photolysis of tetrahydrofuran (THF) solution of complexes 2, 3, and 7 under CO led to formation of the coordinatively unsaturated iron(II) dicyanocarbonyl thiolate compounds [(CN)(2)(CO)Fe(S,S-C-R)](-) (R = OEt (4), N(Et)(2) (5)) and [(CN)(2)(CO)Fe(S,N-C(5)H(4))](-) (8), respectively. The IR v(CN) stretching frequencies and patterns of complexes 4, 5, and 8 have unambiguously identified two CN(-) ligands occupying cis positions. In addition, density functional theory calculations suggest that the architecture of five-coordinate complexes 4, 5, and 8 with a vacant site trans to the CO ligand and two CN(-) ligands occupying cis positions serves as a conformational preference. Complexes 2, 3, and 7 were reobtained when the THF solution of complexes 4, 5, and 8 were exposed to CO atmosphere at 25 degrees C individually. Obviously, CO ligand can be reversibly bound to the Fe(II) site in these model compounds. Isotopic shift experiments demonstrated the lability of carbonyl ligands of complexes 2, 3, 4, 5, 7, and 8. Complexes [(CN)(2)(CO)Fe(S,S-C-R)](-) and NiA/NiC states [NiFe] hydrogenases from D. gigas exhibit a similar one-band pattern in the v(CO) region and two-band pattern in the v(CN) region individually, but in different positions, which may be accounted for by the distinct electronic effects between [S,S-C-R](-) and cysteine ligands. Also, the facile formations of five-coordinate complexes 4, 5, and 8 imply that the strong sigma-donor, weak pi-acceptor CN(-) ligands play a key role in creating/stabilizing five-coordinate iron(II) [(CN)(2)(CO)Fe(S,S-C-R)](-) complexes with a vacant coordination site trans to the CO ligand.  相似文献   

3.
A reinvestigation of the redox behavior of the [Fe(3)(&mgr;(3)-S)(CO)(9)](2)(-) dianion led to the isolation and characterization of the new [Fe(5)S(2)(CO)(14)](2)(-), as well as the known [Fe(6)S(6)(CO)(12)](2)(-) dianion. As a corollary, new syntheses of the [Fe(3)S(CO)(9)](2)(-) dianion are also reported. The [Fe(5)S(2)(CO)(14)](2)(-) dianion has been obtained by oxidative condensation of [Fe(3)S(CO)(9)](2)(-) induced by tropylium and Ag(I) salts or SCl(2), or more straightforwardly through the reaction of [Fe(4)(CO)(13)](2)(-) with SCl(2). The [Fe(6)S(6)(CO)(12)](2)(-) dianion has been isolated as a byproduct of the synthesis of [Fe(3)S(CO)(9)](2)(-) and [Fe(5)S(2)(CO)(14)](2)(-) or by reaction of [Fe(4)(CO)(13)](2)(-) with elemental sulfur. The structures of [N(PPh(3))(2)](2)[Fe(5)S(2)(CO)(14)] and [N(PPh(3))(2)](2)[Fe(6)S(6)(CO)(12)] were determined by single-crystal X-ray diffraction analyses. Crystal data: for [N(PPh(3))(2)](2)[Fe(5)S(2)(CO)(14)], monoclinic, space group P2(1)/c (No. 14), a = 24.060(5), b = 14.355(6), c = 23.898(13) ?, beta = 90.42(3) degrees, Z = 4; for [N(PPh(3))(2)](2)[Fe(6)S(6)(CO)(12)], monoclinic, space group C2/c (No. 15), a = 34.424(4), b = 14.081(2), c = 19.674(2) ?, beta = 115.72(1) degrees, Z = 4. The new [Fe(5)S(2)(CO)(14)](2)(-) dianion shows a "bow tie" arrangement of the five metal atoms. The two Fe(3) triangles sharing the central Fe atom are not coplanar and show a dihedral angle of 55.08(3) degrees. Each Fe(3) moiety is capped by a triply bridging sulfide ligand. The 14 carbonyl groups are all terminal; two are bonded to the unique central atom and three to each peripheral iron atom. Protonation of the [Fe(5)S(2)(CO)(14)](2)(-) dianion gives reversibly rise to the corresponding [HFe(5)S(2)(CO)(14)](-) monohydride derivative, which shows an (1)H-NMR signal at delta -21.7 ppm. Its further protonation results in decomposition to mixtures of Fe(2)S(2)(CO)(6) and Fe(3)S(2)(CO)(9), rather than formation of the expected H(2)Fe(5)S(2)(CO)(14) dihydride. Exhaustive reduction of [Fe(5)S(2)(CO)(14)](2)(-) with sodium diphenyl ketyl progressively leads to fragmentation into [Fe(3)S(CO)(9)](2)(-) and [Fe(CO)(4)](2)(-), whereas electrochemical, as well as chemical oxidation with silver or tropylium tetrafluoroborate, in dichloromethane, generates the corresponding [Fe(5)S(2)(CO)(14)](-) radical anion which exhibits an ESR signal at g = 2.067 at 200 K. The electrochemical studies also indicated the existence of a subsequent one-electron anodic oxidation which possesses features of chemical reversibility in dichloromethane but not in acetonitrile solution. A reexamination of the electrochemical behavior of the [Fe(3)S(CO)(9)](2)(-) dianion coupled with ESR monitoring enabled the spectroscopic characterization of the [Fe(3)S(CO)(9)](-) radical monoanion and demonstrated its direct involvement in the generation of the [Fe(5)S(2)(CO)(14)](n)()(-) (n = 0, 1, 2) system.  相似文献   

4.
In the search for complexes modeling the [Fe(CN)(2)(CO)(cysteinate)(2)] cores of the active centers of [NiFe] hydrogenases, the complex (NEt(4))(2)[Fe(CN)(2)(CO)('S(3)')] (4) was found ('S(3)'(2-)=bis(2-mercaptophenyl)sulfide(2-)). Starting complex for the synthesis of 4 was [Fe(CO)(2)('S(3)')](2) (1). Complex 1 formed from [Fe(CO)(3)(PhCH=CHCOMe)] and neutral 'S(3)'-H(2). Reactions of 1 with PCy(3) or DPPE (1,2-bis(diphenylphosphino)ethane) yielded diastereoselectively [Fe(CO)(2)(PCy(3))('S(3)')] (2) and [Fe(CO)(dppe)('S(3)')] (3). The diastereoselective formation of 2 and 3 is rationalized by the trans influence of the 'S(3)'(2-) thiolate and thioether S atoms which act as pi donors and pi acceptors, respectively. The trans influence of the 'S(3)'(2-) sulfur donors also rationalizes the diastereoselective formation of the C(1) symmetrical anion of 4, when 1 is treated with four equivalents of NEt(4)CN. The molecular structures of 1, 3 x 0.5 C(7)H(8), and (AsPh(4))(2)[Fe(CN)(2)(CO)('S(3)')] x acetone (4 a x C(3)H(6)O) were determined by X-ray structure analyses. Complex 4 is the first complex that models the unusual 2:1 cyano/carbonyl and dithiolate coordination of the [NiFe] hydrogenase iron site. Complex 4 can be reversibly oxidized electrochemically; chemical oxidation of 4 by [Fe(Cp)(2)PF(6)], however, led to loss of the CO ligand and yielded only products, which could not be characterized. When dissolved in solvents of increasing proton activity (from CH(3)CN to buffered H(2)O), complex 4 exhibits drastic nu(CO) blue shifts of up to 44 cm(-1), and relatively small nu(CN) red shifts of approximately 10 cm(-1). The nu(CO) frequency of 4 in H(2)O (1973 cm(-1)) is higher than that of any hydrogenase state (1952 cm(-1)). In addition, the nu(CO) frequency shift of 4 in various solvents is larger than that of [NiFe] hydrogenase in its most reduced or oxidized state. These results demonstrate that complexes modeling properly the nu(CO) frequencies of [NiFe] hydrogenase probably need a [Ni(thiolate)(2)] unit. The results also demonstrate that the nu(CO) frequency of [Fe(CN)(2)(CO)(thiolate)(2)] complexes is more significantly shifted by changing the solvent than the nu(CO) frequency of [NiFe] hydrogenases by coupled-proton and electron-transfer reactions. The "iron-wheel" complex [Fe(6)[Fe('S(3)')(2)](6)] (6) resulting as a minor by-product from the recrystallization of 2 in boiling toluene could be characterized by X-ray structure analysis.  相似文献   

5.
Reaction of LRu(III)Cl(3) (L = 1,4,7-trimethyl-1,4,7-triazacyclononane) with 1,2-phenylenediamine (opdaH(2)) in H(2)O in the presence of air affords [LRu(II)(bqdi)(OH(2))](PF(6)) (1), where (bqdi) represents the neutral ligand o-benzoquinone diimine. From an alkaline methanol/water mixture of 1 was obtained the dinuclear species [{LRu(II)(bqdi)}(2)(&mgr;-H(3)O(2))](PF(6))(3) (1a). The coordinated water molecule in 1 is labile and can be readily substituted under appropriate reaction conditions by acetonitrile, yielding [LRu(II)(bqdi)(CH(3)CN)](PF(6))(2) (2), and by iodide and azide anions, affording [LRu(II)(bqdi)I](PF(6)).0.5H(2)O (3) and [LRu(bqdi)(N(3))](PF(6)).H(2)O (4), respectively. Heating of solid 4 in vacuum at 160 degrees C generates N(2) and the dinuclear, nitrido-bridged complex [{LRu(o-C(6)H(4)(NH)(2))}(2)(&mgr;-N)](PF(6))(2) (5). Complex 5 is a mixed-valent, paramagnetic species containing one unpaired electron per dinuclear unit whereas complexes 1-4 are diamagnetic. The crystal structures of 1, 1a.3CH(3)CN, 3, 4.H(2)O, and 5.3CH(3)CN.0.5(toluene) have been determined by X-ray crystallography: 1 crystallizes in the monoclinic space group P2(1)/m, Z = 2, with a = 8.412(2) ?, b = 15.562(3) ?, c = 10.025 ?, and beta = 109.89(2) degrees; 1a.3CH(3)CN, in the monoclinic space group C2/c, Z = 4, with a = 19.858(3) ?, b = 15.483(2) ?, c = 18.192(3) ?, and beta = 95.95(2) degrees; 3, in the orthorhombic space group Pnma, Z = 4, with a = 18.399(4) ?, b = 9.287(2) ?, and c = 12.052(2) ?, 4.H(2)O, in the monoclinic space group P2(1)/c, Z = 4, with a = 8.586(1) ?, b = 15.617(3) ?, c = 16.388(5) ?, and beta = 90.84(2) degrees; and 5.3CH(3)CN.0.5(toluene), in the monoclinic space group P2(1)/c, Z = 4, with a = 15.003(3) ?, b = 16.253(3) ?, c = 21.196(4) ?, and beta = 96.78(3) degrees. The structural data indicate that in complexes 1-4 the neutral o-benzoquinone diimine ligand prevails. In contrast, in 5 this ligand has predominantly o-phenylenediamide character, which would render 5 formally a mixed-valent Ru(IV)Ru(V) species. On the other hand, the Ru-N bond lengths of the Ru-N-Ru moiety at 1.805(5) and 1.767(5) ? are significantly longer than those in other crystallographically characterized Ru(IV)=N=Ru(IV) units (1.72-1.74 ?). It appears that the C(6)H(4)(NH)(2) ligand in 5 is noninnocent and that formal oxidation state assignments to the ligands or metal centers are not possible.  相似文献   

6.
The new iron carbonyl cyanide trans-[Fe(CN)(2)(CO)(3)](2)(-), [2](2)(-), forms in high yield via photosubstitution of Fe(CO)(5) with 2 equiv of Et(4)NCN. Protonation of [2](2)(-) generated [HFe(CN)(2)(CO)(3)](-), [2H](-), the first H-Fe-CN-CO species. Further protonation gives dihydrogen. This simple system provides insights into hydrogen evolution by the hydrogenase enzymes, which also feature H-Fe-CN-CO centers.  相似文献   

7.
Ethylenediamine (en) solutions of [eta(4)-P(7)M(CO)(3)](3)(-) ions [M = W (1a), Mo (1b)] react under one atmosphere of CO to form microcrystalline yellow powders of [eta(2)-P(7)M(CO)(4)](3)(-) complexes [M = W (4a), Mo (4b)]. Compounds 4 are unstable, losing CO to re-form 1, but are highly nucleophilic and basic. They are protonated with methanol in en solvent giving [eta(2)-HP(7)M(CO)(4)](2)(-) ions (5) and are alkylated with R(4)N(+) salts in en solutions to give [eta(2)-RP(7)M(CO)(4)](2)(-) complexes (6) in good yields (R = alkyl). Compounds 5 and 6 can also be prepared by carbonylations of the [eta(4)-HP(7)M(CO)(3)](2)(-) (3) and [eta(4)-RP(7)M(CO)(3)](2)(-) (2) precursors, respectively. The carbonylations of 1-3 to form 4-6 require a change from eta(4)- to eta(2)-coordination of the P(7) cages in order to maintain 18-electron configurations at the metal centers. Comparative protonation/deprotonation studies show 4 to be more basic than 1. The compounds were characterized by IR and (1)H, (13)C, and (31)P NMR spectroscopic studies and microanalysis where appropriate. The [K(2,2,2-crypt)](+) salts of 5 were characterized by single crystal X-ray diffraction. For 5, the M-P bonds are very long (2.71(1) ?, average). The P(7)(3)(-) cages of 5 are not displaced by dppe. The P(7) cages in 4-6 have nortricyclane-like structures in contrast to the norbornadiene-type geometries observed for 1-3. (31)P NMR spectroscopic studies for 5-6 show C(1) symmetry in solution (seven inequivalent phosphorus nuclei), consistent with the structural studies for 5, and C(s)() symmetry for 4 (five phosphorus nuclei in a 2:2:1:1:1 ratio). Crystallographic data for [K(2,2,2-crypt)](2)[eta(2)-HP(7)W(CO)(4)].en: monoclinic, space group C2/c, a = 23.067(20) ?, b = 12.6931(13) ?, c = 21.433(2) ?, beta = 90.758(7) degrees, V = 6274.9(10) ?(3), Z = 4, R(F) = 0.0573, R(w)(F(2)) = 0.1409. For [K(2,2,2-crypt)](2)[eta(2)-HP(7)Mo(CO)(4)].en: monoclinic, space group C2/c, a = 22.848(2) ?, b = 12.528(2) ?, c = 21.460(2) ?, beta = 91.412(12) degrees, V = 6140.9(12) ?(3), Z = 4, R(F) = 0.0681, R(w)(F(2)) = 0.1399.  相似文献   

8.
The reaction of bismuth(III) chloride with [PhCH(2)NMe(3)](2)[Fe(CO)(4)] at a ratio of 2:1 in acetonitrile yields the iron carbonyl-bismuth chloride adduct [PhCH(2)NMe(3)](2)[Bi(2)Cl(4)(&mgr;-Cl)(2){&mgr;-Fe(CO)(4)}] cleanly in high yield. The complex consists of two BiCl(3) groups bridged by an [Fe(CO)(4)](2)(-) unit. Two chloride ligands are shared between the Bi atoms, producing square-pyramidal coordination at bismuth and octahedral coordination at the iron center. The production of this complex represents the synthesis of a stable adduct of a highly nucleophilic metal carbonyl anion with a strongly Lewis acidic main group halide. The compound C(24)H(32)N(2)O(4)Bi(2)Cl(6)Fe crystallizes in the orthorhombic space group Pba2 (No. 32) with cell parameters a = 14.624(3) ?, b = 17.010(3) ?, c = 7.1990(10) ?, V = 1790.8(5) ?(3), and Z = 2.  相似文献   

9.
The cyano carbonyl complexes [(99)Tc(CN)(3)(CO)(3)]2- and [Re(CN)(3)(CO)(3)]2- were synthesized and fully characterized. These complexes are additional members of the well-known d(6) transition metal complex series [M(CN)(3)(CO)(3)](n-). The analytical data obtained in this study thus offer a unique opportunity to study similarities and differences of cyanide and carbonyl binding in transition metal complexes.  相似文献   

10.
Five-coordinated trithiotungsten complexes (PPh(4))[(dmsp)W(S)(3)] (1a) and (PPh(4))[(dpsp)W(S)(3)] (1b) (R(2)PCH(2)CH(2)S(-); R = Me (dmsp-)), Ph (dpsp-))) were synthesized by addition of Hdmsp and Hdpsp to a THF solution of (PPh(4))[(EtS)W(S)(3)]. Treatment of 1a with CuBr in the presence of PPh(3) in CH(3)CN afforded a WCu(2) cluster (dmsp)WS(3)Cu(2)(PPh(3))(2)Br (2). The reaction of 1a with 1 equiv of FeCl(2) went smoothly to generate a 1:1 adduct (PPh(4))[(dmsp)WS(3)(FeCl(2))] (3), while 3 did not react further with excess FeCl(2). On the other hand, 3 was found to react with [Fe(CH(3)CN)(6)](ClO(4))(2), giving rise to an unusual tetranuclear cluster, [(dmsp)WS(3)](2)Fe(2)Cl (4), while the reaction of 1a with 2 equiv of [Fe(CH(3)CN)(6)](ClO(4))(2) led to a cyclic octanuclear cluster [(dmsp)WS(3)Fe](4) (5). Although the oxidation states of W(VI), Cu(I), and Fe(II) are retained in 2 and 3, reduction of the metal ions occurs in the formation of 4 and 5. All the complexes reported in this paper were structurally characterized by X-ray analysis. It is anticipated that the new type of trithiotungsten complexes, 1a and 1b, will serve as potential synthons for various heterometallic sulfide clusters.  相似文献   

11.
Mononuclear [Ru(II)(tptz)(acac)(CH3CN)]ClO4 ([1]ClO4) and mixed-valent dinuclear [(acac)2Ru(III){(mu-tptz-Eta+)-}Ru(II)(acac)(CH3CN)]ClO4 ([5]ClO4; acac = acetylacetonate) complexes have been synthesized via the reactions of Ru(II)(acac)2(CH3CN)2 and 2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz), in 1:1 and 2:1 molar ratios, respectively. In [1]ClO4, tptz binds with the Ru(II) ion in a tridentate N,N,N mode (motif A), whereas in [5]ClO4, tptz bridges the metal ions unsymmetrically via the tridentate neutral N,N,N mode with the Ru(II) center and cyclometalated N,C- state with the Ru(III) site (motif F). The activation of the coordinated nitrile function in [1]ClO4 and [5]ClO4 in the presence of ethanol and alkylamine leads to the formation of iminoester ([2]ClO4 and [7]ClO4) and amidine ([4]ClO4) derivatives, respectively. Crystal structure analysis of [2]ClO4 reveals the formation of a beautiful eight-membered water cluster having a chair conformation. The cluster is H-bonded to the pendant pyridyl ring N of tptz and also with the O atom of the perchlorate ion, which, in turn, makes short (C-H- - - - -O) contacts with the neighboring molecule, leading to a H-bonding network. The redox potentials corresponding to the Ru(II) state in both the mononuclear {[(acac)(tptz)Ru(II)-NC-CH3]ClO4 ([1]ClO4) > [(acac)(tptz)Ru(II)-NH=C(CH3)-OC2H5]ClO4 ([2]ClO4) > [(acac)(tptz)Ru(II)-NH2-C6H4(CH3)]ClO4 ([3]ClO4) > [(acac)(tptz)Ru(II)-NH=C(CH3)-NHC2H5]ClO4 ([4]ClO4)} and dinuclear {[(acac)2Ru(III){(mu-tptz-H+)-}Ru(II)(acac)(NC-CH3)]ClO4 ([5]ClO4), [(acac)2Ru(III){(mu-tptz-H+(N+-O-)2)-}Ru(II)(acac)(NC-CH3)]ClO4 ([6]ClO4), [(acac)2Ru(III){(mu-tptz-H+)-}Ru(II)(acac)(NH=C(CH3)-OC2H5)]ClO4 ([7]ClO4), and [(acac)2Ru(III){(mu-tptz-Eta+)-}Ru(II)(acac)(NC4H4N)]ClO4 ([8]ClO(4))} complexes vary systematically depending on the electronic nature of the coordinated sixth ligands. However, potentials involving the Ru(III) center in the dinuclear complexes remain more or less invariant. The mixed-valent Ru(II)Ru(III) species ([5]ClO4-[8]ClO4) exhibits high comproportionation constant (Kc) values of 1.1 x 10(12)-2 x 10(9), with substantial contribution from the donor center asymmetry at the two metal sites. Complexes display Ru(II)- and Ru(III)-based metal-to-ligand and ligand-to-metal charge-transfer transitions, respectively, in the visible region and ligand-based transitions in the UV region. In spite of reasonably high K(c) values for [5]ClO4-[8]ClO4, the expected intervalence charge-transfer transitions did not resolve in the typical near-IR region up to 2000 nm. The paramagnetic Ru(II)Ru(III) species ([5]ClO4-[8]ClO4) displays rhombic electron paramagnetic resonance (EPR) spectra at 77 K (g approximately 2.15 and Deltag approximately 0.5), typical of a low-spin Ru(III) ion in a distorted octahedral environment. The one-electron-reduced tptz complexes [Ru(II)(tptz.-)(acac)(CEta3CN)] (1) and [(acac)2Ru(III){(mu-tptz-Eta+).2-}Ru(II)(acac)(CH3CN)] (5), however, show a free-radical-type EPR signal near g = 2.0 with partial metal contribution.  相似文献   

12.
The first example of a mononuclear diphosphanidoargentate, bis[bis(trifluoromethyl)phosphanido]argentate, [Ag[P(CF(3))(2)](2)](-), is obtained via the reaction of HP(CF(3))(2) with [Ag(CN)(2)](-) and isolated as its [K(18-crown-6)] salt. When the cyclic phosphane (PCF(3))(4) is reacted with a slight excess of [K(18-crown-6)][Ag[P(CF(3))(2)](2)], selective insertion of one PCF(3) unit into each silver phosphorus bond is observed, which on the basis of NMR spectroscopic evidence suggests the [Ag[P(CF(3))P(CF(3))(2)](2)](-) ion. On treatment of the phosphane complexes [M(CO)(5)PH(CF(3))(2)] (M = Cr, W) with [K(18-crown-6)][Ag(CN)(2)], the analogous trinuclear argentates, [Ag[(micro-P(CF(3))(2))M(CO)(5)](2)](-), are formed. The chromium compound [K(18-crown-6)][Ag[(micro-P(CF(3))(2))Cr(CO)(5)](2)] crystallizes in a noncentrosymmetric space group Fdd2 (No. 43), a = 2970.2(6) pm, b = 1584.5(3) pm, c = 1787.0(4), V = 8.410(3) nm(3), Z = 8. The C(2) symmetric anion, [Ag[(micro-P(CF(3))(2))Cr(CO)(5)](2)](-), shows a nearly linear arrangement of the P-Ag-P unit. Although the bis(pentafluorophenyl)phosphanido compound [Ag[P(C(6)F(5))(2)](2)](-) has not been obtained so far, the synthesis of its trinuclear counterpart, [K(18-crown-6)][Ag[(micro-P(C(6)F(5))(2))W(CO)(5)](2)], was successful.  相似文献   

13.
Smith DM  Park CW  Ibers JA 《Inorganic chemistry》1996,35(23):6682-6687
2.2.2-Cryptand(1+) salts of the [Sb(2)Se(4)](2)(-), [As(2)S(4)](2)(-), [As(10)S(3)](2)(-), and [As(4)Se(6)](2)(-) anions have been synthesized from the reduction of binary chalcogenide compounds by K in NH(3)(l) in the presence of the alkali-metal-encapsulating ligand 2.2.2-cryptand (4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane), followed by recrystallization from CH(3)CN. The [Sb(2)Se(4)](2)(-) anion, which has crystallographically imposed symmetry 2, consists of two discrete edge-sharing SbSe(3) pyramids with terminal Se atoms cis to each other. The Sb-Se(t) bond distance is 2.443(1) ?, whereas the Sb-Se(b) distance is 2.615(1) ? (t = terminal; b = bridge). The Se(b)-Sb-Se(t) angles range from 104.78(4) to 105.18(5) degrees, whereas the Se(b)-Sb-Se(b) angles are 88.09(4) and 88.99(4) degrees. The (77)Se NMR data for this anion in solution are consistent with its X-ray structure (delta 337 and 124 ppm, 1:1 intensity, -30 degrees C, CH(3)CN/CD(3)CN). Similar to this [Sb(2)Se(4)](2)(-) anion, the [As(2)S(4)](2)(-) anion consists of two discrete edge-sharing AsS(3) pyramidal units. The As-S(t) bond distances are 2.136(7) and 2.120(7) ?, whereas the As-S(b) distances range from 2.306(7) to 2.325(7) ?. The S(b)-As-S(t) angles range from 106.2(3) to 108.2(3) degrees, and the S(b)-As-S(b) angles are 88.3(2) and 88.9(2) degrees. The [As(10)S(3)](2)(-) anion has an 11-atom As(10)S center composed of six five-membered edge-sharing rings. One of the three waist positions is occupied by a S atom, and the other two waist positions feature As atoms with exocyclic S atoms attached, making each As atom in the structure three-coordinate. The As-As bond distances range from 2.388(3) to 2.474(3) ?. The As-S(t) bond distances are 2.181(5) and 2.175(4) ?, and the As-S(b) bond distance is 2.284(6) ?. The [As(4)Se(6)](2)(-) anion features two AsSe(3) units joined by Se-Se bonds with the two exocyclic Se atoms trans to each other. The average As-Se(t) bond distance is 2.273(2) ?, whereas the As-Se(b) bond distances range from 2.357(3) to 2.462(2) ?. The Se(b)-As-Se(t) angles range from 101.52(8) to 105.95(9) degrees, and the Se(b)-As-Se(b) angles range from 91.82(7) to 102.97(9) degrees. The (77)Se NMR data for this anion in solution are consistent with its X-ray structure (delta 564 and 317 ppm, 3:1 intensity, 25 degrees C, DMF/CD(3)CN).  相似文献   

14.
The new cyano complexes of formulas PPh(4)[Fe(III)(bipy)(CN)(4)] x H(2)O (1), [[Fe(III)(bipy)(CN)(4)](2)M(II)(H(2)O)(4)] x 4H(2)O with M = Mn (2) and Zn (3), and [[Fe(III)(bipy)(CN)(4)](2)Zn(II)] x 2H(2)O (4) [bipy = 2,2'-bipyridine and PPh(4) = tetraphenylphosphonium cation] have been synthesized and structurally characterized. The structure of complex 1 is made up of mononuclear [Fe(bipy)(CN)(4)](-) anions, tetraphenyphosphonium cations, and water molecules of crystallization. The iron(III) is hexacoordinated with two nitrogen atoms of a chelating bipy and four carbon atoms of four terminal cyanide groups, building a distorted octahedron around the metal atom. The structure of complexes 2 and 3 consists of neutral centrosymmetric [[Fe(III)(bipy)(CN)(4)](2)M(II)(H(2)O)(4)] heterotrinuclear units and crystallization water molecules. The [Fe(bipy)(CN)(4)](-) entity of 1 is present in 2 and 3 acting as a monodentate ligand toward M(H(2)O)(4) units [M = Mn(II) (2) and Zn(II) (3)] through one cyanide group, the other three cyanides remaining terminal. Four water molecules and two cyanide nitrogen atoms from two [Fe(bipy)(CN)(4)](-) units in trans positions build a distorted octahedron surrounding Mn(II) (2) and Zn(II) (3). The structure of the [Fe(phen)(CN)(4)](-) complex ligand in 2 and 3 is close to that of the one in 1. The intramolecular Fe-M distances are 5.126(1) and 5.018(1) A in 2 and 3, respectively. 4 exhibits a neutral one-dimensional polymeric structure containing two types of [Fe(bipy)(CN)(4)](-) units acting as bismonodentate (Fe(1)) and trismonodentate (Fe(2)) ligands versus the divalent zinc cations through two cis-cyanide (Fe(1)) and three fac-cyanide (Fe(2)) groups. The environment of the iron atoms in 4 is distorted octahedral as in 1-3, whereas the zinc atom is pentacoordinated with five cyanide nitrogen atoms, describing a very distorted square pyramid. The iron-zinc separations across the single bridging cyanides are 5.013(1) and 5.142(1) A at Fe(1) and 5.028(1), 5.076(1), and 5.176(1) A at Fe(2). The magnetic properties of 1-3 have been investigated in the temperature range 2.0-300 K. 1 is a low-spin iron(III) complex with an important orbital contribution. The magnetic properties of 3 correspond to the sum of two magnetically isolated spin triplets, the antiferromagnetic coupling between the low-spin iron(III) centers through the -CN-Zn-NC- bridging skeleton (iron-iron separation larger than 10 A) being very weak. More interestingly, 2 exhibits a significant intramolecular antiferromagnetic interaction between the central spin sextet and peripheral spin doublets, leading to a low-lying spin quartet.  相似文献   

15.
The compound [(CH(3))C(NH(2))(2)](4)[Re(6)Se(8)(CN)(6)] has been synthesized by the reaction at 200 degrees C for 3 days of Re(4)Te(4)(TeCl(2))(4)Cl(8), KSeCN, and NH(4)Cl in superheated acetonitrile. This compound crystallizes in the space group C2/c of the monoclinic system with four formula units in a cell of dimensions a = 20.3113(14) A, b = 10.1332(7) A, c = 19.9981(14) A, beta = 106.754(1) degrees, V = 3941.3(5) A(3) (T = 153 K). The [Re(6)Se(8)(CN)(6)](4-) anion comprises an Re(6) octahedron face capped by mu(3)-Se atoms, with each Re atom liganded by a CN group. The anions and cations are connected by an extensive network of hydrogen bonds. The conversion of a Re(IV) tetrahedral cluster to a Re(III) octahedral cluster appears to be unprecedented.  相似文献   

16.
The heterocumulenes carbon dioxide (CO(2)), carbonyl sulfide (OCS), and carbon disulfide (CS(2)) were treated with bis(2,2,5,5-tetramethyl-2,5-disila-1-azacyclopent-1-yl)tin {[(CH(2))Me(2)Si](2)N}(2)Sn, an analogue of the well-studied bis[bis(trimethylsilyl)amido]tin species [(Me(3)Si)(2)N](2)Sn, to yield an unexpectedly diverse product slate. Reaction of {[(CH(2))Me(2)Si](2)N}(2)Sn with CO(2) resulted in the formation of 2,2,5,5-tetramethyl-2,5-disila-1-oxacyclopentane, along with Sn(4)(μ(4)-O){μ(2)-O(2)CN[SiMe(2)(CH(2))(2)]}(4)(μ(2)-N═C═O)(2) as the primary organometallic Sn-containing product. The reaction of {[(CH(2))Me(2)Si](2)N}(2)Sn with CS(2) led to formal reduction of CS(2) to [CS(2)](2-), yielding [{[(CH(2))Me(2)Si](2)N}(2)Sn](2)CS(2){[(CH(2))Me(2)Si](2)N}(2)Sn, in which the [CS(2)](2-) is coordinated through C and S to two tin centers. The product [{[(CH(2))Me(2)Si](2)N}(2)Sn](2)CS(2){[(CH(2))Me(2)Si](2)N}(2)Sn also contains a novel 4-membered Sn-Sn-C-S ring, and exhibits a further bonding interaction through sulfur to a third Sn atom. Reaction of OCS with {[(CH(2))Me(2)Si](2)N}(2)Sn resulted in an insoluble polymeric material. In a comparison reaction, [(Me(3)Si)(2)N](2)Sn was treated with OCS to yield Sn(4)(μ(4)-O)(μ(2)-OSiMe(3))(5)(η(1)-N═C═S). A combination of NMR and IR spectroscopy, mass spectrometry, and single crystal X-ray diffraction were used to characterize the products of each reaction. The oxygen atoms in the final products come from the facile cleavage of either CO(2) or OCS, depending on the reacting carbon dichalogenide.  相似文献   

17.
The reactions of the singly deprotonated di-2-pyridylmethanediol ligand (dpmdH(-)) with copper(II) and bismuth(III) have been investigated. A new dinuclear bismuth(III) complex Bi(2)(dpmdH)(2)(O(2)CCF(3))(4)(THF)(2), 1, has been obtained by the reaction of BiPh(3) with di-2-pyridyl ketone in the presence of HO(2)CCF(3) in tetrahydrofuran (THF). The reaction of Cu(OCH(3))(2) with di-2-pyridyl ketone, H(2)O, and acetic acid in a 1:2:2:2 ratio yielded a mononuclear complex Cu[(2-Py)(2)CO(OH)](2)(HO(2)CCH(3))(2), 2, while the reaction of Cu(OAC)(2)(H(2)O) with di-2-pyridyl ketone and acetic acid in a 2:1:1 ratio yielded a tetranuclear complex Cu(4)[(2-Py)(2)CO(OH)](2)(O(2)CCH(3))(6)(H(2)O)(2), 3. The structures of these complexes were determined by single-crystal X-ray diffraction analyses. Three different bonding modes of the dpmdH(-) ligand were observed in compounds 1-3. In 2, the dpmdH(-) ligand functions as a tridentate chelate to the copper center and forms a hydrogen bond between the OH group and the noncoordinating HO(2)CCH(3) molecule. In 1 and 3, the dpmdH(-) ligand functions as a bridging ligand to two metal centers through the oxygen atom. The two pyridyl groups of the dpmdH(-) ligand are bound to one bismuth(III) center in 1, while in 3 they are bound two copper(II) centers, respectively. Compound 3 has an unusual one dimensional hydrogen bonded extended structure. The intramolecular magnetic interaction in 3 has been found to be dominated by ferromagnetism. Crystal data: 1, C(38)H(34)N(4)O(14)F(12)Bi(2), triclinic P&onemacr;, a = 11.764(3) ?, b = 11.949(3) ?, c = 9.737(1) ?, alpha =101.36(2) degrees, beta = 105.64(2) degrees, gamma = 63.79(2) degrees, Z = 1; 2, C(26)H(26)N(4)O(8)Cu/CH(2)Cl(2), monoclinic C2/c, a = 25.51(3) ?, b = 7.861(7) ?, c = 16.24(2) ?, beta = 113.08(9) degrees, Z = 4; 3, C(34)H(40)N(4)O(18)Cu(4)/CH(2)Cl(2), triclinic P&onemacr;, a = 10.494(2) ?, b = 13.885(2) ?, c = 7.900(4) ?, alpha =106.52(2) degrees, beta = 90.85(3) degrees, gamma = 94.12(1) degrees, Z = 1.  相似文献   

18.
Formation kinetics of the metal-metal bonded [(CN)(5)PtTl(CN)(3)](3)(-) complex from Pt(CN)(4)(2)(-) and Tl(CN)(4)(-) has been studied in the pH range of 5-10, using standard mix-and-measure spectrophotometric technique at pH 5-8 and stopped-flow method at pH > 8. The overall order of the reaction, Pt(CN)(4)(2)(-) + Tl(CN)(4)(-) right harpoon over left harpoon [(CN)(5)PtTl(CN)(3)](3)(-), is 2 in the slightly acidic region and 3 in the alkaline region, which means first order for the two reactants in both cases and also for CN(-) at high pH. The two-term rate law corresponds to two different pathways via the Tl(CN)(3) and Tl(CN)(4)(-) complexes in acidic and alkaline solution, respectively. The two complexes are in fast equilibrium, and their actual concentration ratio is controlled by the concentration of free cyanide ion. The following expression was derived for the pseudo-first-order rate constant of the overall reaction: k(obs) = (k(1)(a)[Tl(CN)(4)(-) + (k(1)(a)/K(f)))(1/(1 + K(p)[H(+)]))[CN(-)](free) + k(1)(b)[Tl(CN)(4)(-)] + (k(1)(b)/K(f)), where k(1)(a) and k(1)(b) are the forward rate constants for the alkaline and slightly acidic paths, K(f) is the stability constant of [(CN)(5)PtTl(CN)(3)](3)(-), and K(p) is the protonation constant of cyanide ion. k(1)(a) = 143 +/- 13 M(-)(2) s(-)(1), k(1)(b) = 0.056 +/- 0.004 M(-)(1) s(-)(1), K(f) = 250 +/- 54 M(-)(1), and log K(p) = 9.15 +/- 0.05 (I = 1 M NaClO(4), T = 298 K). Two possible mechanisms were postulated for the overall reaction in both pH regions, which include a metal-metal bond formation step and the coordination of the axial cyanide ion to the platinum center. The alternative mechanisms are different in the sequence of these steps.  相似文献   

19.
The symmetrically ligated complexes 1, 2, and 3 with a (mu-oxo)bis(mu-acetato)diferric core can be one-electron oxidized electrochemically or chemically with aminyl radical cations [*NR3][SbCl6] in acetonitrile yielding complexes which contain the mixed-valent [(mu-oxo)bis(mu-acetato)iron(IV)iron(III)]3+ core: [([9]aneN3)(2FeIII2)(mu-O)(mu-CH3CO2)2](ClO4)2 (1(ClO4)2), [(Me3[9]aneN3)(2FeIII2)(mu-O)(mu-CH3CO2)2](PF6)2 (2(PF6)(2)), and [(tpb)(2FeIII2)(mu-O)(mu-CH3CO2)2] (3) where ([9]aneN3) is the neutral triamine 1,4,7-triazacyclononane and (Me3[9]aneN3) is its tris-N-methylated derivative, and (tpb)(-) is the monoanion trispyrazolylborate. The asymmetrically ligated complex [(Me3[9]aneN3)FeIII(mu-O)(mu-CH3CO2)2FeIII(tpb)](PF6) (4(PF6)) and its one-electron oxidized form [4ox]2+ have also been prepared. Finally, the known heterodinuclear species [(Me3[9]aneN3)CrIII(mu-O)(mu-CH3CO2)2Fe([9]aneN3)](PF6)2 (5(PF6)(2)) can also be one-electron oxidized yielding [5ox]3+ containing an iron(IV) ion. The structure of 4(PF6).0.5CH3CN.0.25(C2H5)2O has been determined by X-ray crystallography and that of [5ox]2+ by Fe K-edge EXAFS-spectroscopy (Fe(IV)-O(oxo): 1.69(1) A; Fe(IV)-O(carboxylato) 1.93(3) A, Fe(IV)-N 2.00(2) A) contrasting the data for 5 (Fe(III)-O(oxo) 1.80 A; Fe(III)-O(carboxylato) 2.05 A, Fe-N 2.20 A). [5ox]2+ has an St = 1/2 ground state whereas all complexes containing the mixed-valent [FeIV(mu-O)(mu-CH3CO2)2FeIII]3+ core have an St = 3/2 ground state. M?ssbauer spectra of the oxidized forms of complexes clearly show the presence of low spin FeIV ions (isomer shift approximately 0.02 mm s(-1), quadrupole splitting approximately 1.4 mm s(-1) at 80 K), whereas the high spin FeIII ion exhibits delta approximately 0.46 mm s(-1) and DeltaE(Q) approximately 0.5 mm s(-1). M?ssbauer, EPR spectral and structural parameters have been calculated by density functional theoretical methods at the BP86 and B3LYP levels. The exchange coupling constant, J, for diiron complexes with the mixed-valent FeIV-FeIII core (H = -2J S1.S2; S(1) = 5/2; S2 = 1) has been calculated to be -88 cm(-1) (intramolecular antiferromagnetic coupling) and for the reduced diferric form of -75 cm(-1) in reasonable agreement with experiment (J = -120 cm(-1)).  相似文献   

20.
A series of new heterometallic coordination polymers has been prepared from the reaction of metal-ligand cations and KAg(CN)(2) units. Many of these contain silver-silver (argentophilic) interactions, analogous to gold-gold interactions, which serve to increase supramolecular structural dimensionality. Compared to [Au(CN)(2)](-) analogues, these polymers display new trends specific to [Ag(CN)(2)](-), including the formation of [Ag(2)(CN)(3)](-) and the presence of Ag...N interactions. [Cu(en)(2)][Ag(2)(CN)(3)][Ag(CN)(2)] (1, en = ethylenediamine) forms 1-D chains of alternating [Ag(CN)(2)](-) and [Ag(2)(CN)(3)](-) units via argentophilic interactions of 3.102(1) A. These chains are connected into a 2-D array by strong cyano(N)-Ag interactions of 2.572(3) A. [Cu(dien)Ag(CN)(2)](2)[Ag(2)(CN)(3)][Ag(CN)(2)] (2, dien = diethylenetriamine) forms a 1-D chain of alternating [Cu(dien)](2+) and [Ag(CN)(2)](-) ions with the Cu(II) atoms connected in an apical/equatorial fashion. These chains are cross-linked by [Ag(2)(CN)(3)](-) units via argentophilic interactions of 3.1718(8) A and held weakly in a 3-D array by argentophilic interactions of 3.2889(5) A between the [Ag(CN)(2)](-) in the 2-D array and the remaining free [Ag(CN)(2)](-). [Ni(en)][Ni(CN)(4)].2.5H(2)O (4) was identified as a byproduct in the reaction to prepare the previously reported [Ni(en)(2)Ag(2)(CN)(3)][Ag(CN)(2)] (3). In [Ni(tren)Ag(CN)(2)][Ag(CN)(2)] (5, tren = tris(2-aminoethyl)amine), [Ni(tren)](2+) cations are linked in a cis fashion by [Ag(CN)(2)](-) anions to form a 1-D chain similar to the [Au(CN)(2)](-) analogue. [Cu(en)Cu(CN)(2)Ag(CN)(2)] (6) is a trimetallic polymer consisting of interpenetrating (6,3) nets stabilized by d(10)-d(10) interactions between Cu(I)-Ag(I) (3.1000(4) A). Weak antiferromagnetic coupling has been observed in 2, and a slightly stronger exchange has been observed in 6. The Ni(II) complexes, 4 and 5, display weak antiferromagnetic interactions as indicated by their relatively larger D values compared to that of 3. Magnetic measurements on isostructural [Ni(tren)M(CN)(2)][M(CN)(2)] (M = Ag, Au) show that Ag(I) is a more efficient mediator of magnetic exchange as compared to Au(I). The formation of [Ni(CN)(4)](2)(-), [Ag(2)(CN)(3)](-), and [Cu(CN)(2)](-) are all attributed to secondary reactions of the dissociation products of the labile KAg(CN)(2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号