首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 52 毫秒
1.
Five-coordinate oxotechnetium(V) mixed-ligand complexes [TcO(SES)(S-p-C6H4-OMe)], where SES is a tridentate dithiolato fragment of the type -S(CH2)2E(CH2)2S- (E = O, 1; E = S, 2; E = NMe, 3) are converted via reduction-substitution reactions in the presence of PMe2Ph into the corresponding five-coordinate Tc(III) complexes [Tc(SES)(S-p-C6H4-OMe)(PMe2Ph)] (E = O, 4; E = S, 5; E = NMe, 6). Rearrangement of the original square pyramidal "3 + 1" oxo species to the trigonal bipyramidal "3 + 1 + 1" Tc(III) complexes occurs by placing the three thiolate donors on the basal plane, the phosphine phosphorus, and the heteroatom of the tridentate ligand at the apexes of the bipyramid. These Tc(III) complexes are diamagnetic species, thereby allowing multinuclear NMR characterization in solution, which confirm their structures to be identical to those observed in the solid state via X-ray determinations.  相似文献   

2.
A new series of mixed-ligand oxorhenium complexes 4-9, with ligands 1-3 (L1H2) containing the SNN donor set and monodentate thiols as coligands (L2H), is reported. All complexes were synthesized using ReOCl3(PPh3)2 as precursor. They were isolated as crystalline products and characterized by elemental analysis and IR and NMR spectroscopy. The ligands 1 and 2 (general formula RCH2CH2NHCH2CH2SH, where R = N(C2H5)2 in 1 and pyrrolidin-1-yl in 2) act as tridentate SNN chelates to the ReO3+ core, leaving one open coordination site cis to the oxo group. The fourth coordination site is occupied by a monodentate aromatic thiol which acts as a coligand. Thus, three new "3 + 1" [SNN][S] oxorhenium complexes 4-6 (general formula ReO[RCH2CH2NCH2CH2S][SX], where R = N(C2H5)2 and X = phenyl in 4, R = N(C2H5)2 and X = p-methylphenyl in 5, and R = pyrrolidinlyl and X = p-methylphenyl in 6) were prepared in high yield. Complex 4 adopts an almost perfect square pyramidal geometry (tau = 0.07), while 6 forms a distorted square pyramidal geometry (tau = 0.24). In both complexes 4 and 6, the basal plane is formed by the SNN donor set of the tridentate ligand and the S of the monodentate thiol. On the other hand, the ligand 3, [(CH3)2CH]2NCH2CH2NHCH2CH2SH, acts as a bidentate ligand, probably due to steric hindrance, and it coordinates to the ReO3+ core through the SN atoms, leaving two open coordination sites cis to the oxo group. These two vacant positions are occupied by two molecules of the monodentate thiol coligand, producing a novel type of "2 + 1 + 1" [SN][S][S] oxorhenium mixed-ligand complexes 7-9 (general formula ReO[[(CH3)2CH]2NCH2CH2NHCH2CH2S][SX][SX], where X = phenyl in 7, p-methylphenyl in 8, and benzyl in 9). The coordination sphere about rhenium in 7 and 8 consists of the SN donor set of ligand 3, two sulfurs of the two monodentate thiols, and the doubly bonded oxygen atom in a trigonally distorted square pyramidal geometry (tau = 0.44 and 0.45 for 7 and 8, respectively). Detailed NMR assignments were determined for complexes 5 and 8.  相似文献   

3.
Rhenium and technetium are known for their useful applications in nuclear medicine with similar properties. In this study, new diamido dipyridino (N(4)) water-soluble ligands (2-C(5)H(4)NCH(2)NHCO)(2)CH(2), 1 (L(1)H2), (2-C(5)H(4)NNHNHCO)(2)CH(2), 2, and [2-C(5)H(4)N(+)(O)(-)CH(2)NHCO](2)CH(2), 3, were synthesized. Reaction of L(1)H2 with ReOCl(3)(PPh(3))(2) resulted in the novel six-coordinated rhenium(V) complex, trans-ReO(L(1))(OEt), 4. The complex was characterized by spectroscopic methods, and its X-ray crystallographic analysis revealed that rhenium is coordinated to four nitrogen atoms of the ligand and to two oxygen atoms from the deprotonated ethanol and the oxo group respectively in a distorted octahedral geometry. In solution, complex 4 was transformed to a new complex 5, which was proved to be the dinuclear complex mu-oxo [ReO(L(1))](2)O. Reaction of 1 with [n-Bu(4)N][ReOCl(4)] resulted in the neutral complex 6, trans-[ReO(L(1))]Cl. Similarly, when ligand 1 was reacted with [n-Bu(4)N][(99g)TcOCl(4)], the neutral trans-[(99)TcO(L(1))]Cl complex 7 was formed, which upon dissolution transformed into a cationic complex 8, trans-[(99)TcO(L(1))(OH(2))](+)Cl(-). The single-crystal X-ray structure of 8 reveals that the coordination sphere about technetium is a distorted octahedron with four nitrogen atoms in the equitorial plane, while doubly bonded oxygen and coordinated water occupy the apical positions. Further dissolution of 8 resulted in the formation of dinuclear mu-oxo [TcO(L(1))](2)O, 9. This study shows that Tc and Re have similar metal core structures in solution for diamido dipyridino systems, besides similarity in geometrical structure, proved by the X-ray structures on the same ligands.  相似文献   

4.
Attempts to prepare tris(ligand) metal complexes of technetium in intermediate oxidation states with potentially bidentate oxazoline- and thiazoline-containing ligands were unsuccessful; when pertechnetate was reduced in the presence of excess ligand, TcO(2).xH(2)O was produced. Instead, by reaction with preformed M.O cores, a series of oxotechnetium(V) and oxorhenium(V) complexes of the formula MOXL(2) (M = Re, X = Br; M = Tc, X = Cl) and HL = 2-(2'-hydroxyphenyl)-2-oxazoline (Hoz), 2-(2'-hydroxy-3'-methylphenyl)-2-oxazoline (Hmoz), 2-(2'-hydroxyphenyl)-2-thiazoline (Hthoz), and 2-(2'-hydroxyphenyl)-2-benzoxazoline (Hhbo) have been prepared. These compounds have been characterized by a variety of techniques including single-crystal X-ray diffraction. Crystals of Hthoz (C(9)H(9)NOS) are monoclinic, with space group P2(1)/n, a = 7.5342(6) ?, b = 12.2187(6) ?, c = 9.3942(8) ?, beta = 94.233(7) degrees, and Z = 4; those of TcOCl(thoz)(2) (C(18)H(16)ClN(2)O(3)S(2)Tc) are monoclinic, with space group P2(1)/n, a = 16.506(1) ?, b = 7.664(1) ?, c = 16.3216(6) ?, beta = 111.154(4) degrees, and Z = 4; those of ReOBr(oz)(2) (C(18)H(16)BrN(2)O(5)Re) are orthorhombic, with space group Pbca, a = 12.864(2) ?, b = 25.369(2) ?, c = 11.025(2) ?, and Z = 8. The structures were solved by direct (Hthoz) or Patterson (metal complexes) methods and were refined by full-matrix least-squares procedures to R = 0.033, 0.032, and 0.028 for 1600, 3152, and 2651 reflections with I >/= 3sigma(I), respectively. In the two complexes, the geometry around the metals is distorted octahedral with the halide ligands in each bound cis, and one phenolate oxygen from one ligand in each bound trans to the metal-oxo linkage. In ReOBr(oz)(2), the two oxazoline nitrogens are coordinated trans to one another; in TcOCl(thoz)(2), the two thiazoline nitrogens are found cis to one another.  相似文献   

5.
The stabilization of unsupported Ti-M (M = Fe, Ru, Co) heterodinuclear complexes has been achieved by use of amidotitanium building blocks containing tripodal amido ligands. Salt metathesis of H(3)CC(CH(2)NSiMe(3))(3)TiX (1) and C(6)H(5)C(CH(2)NSiMe(3))(3)TiX (2) as well as HC{SiMe(2)N(4-CH(3)C(6)H(4))}(3)TiX (3) (X = Cl, a; Br, b) with K[M(CO)(2)Cp] (M = Fe, Ru) and Na[Co(CO)(3)(PR(3))] (R = Ph, Tol) gave the corresponding stable heterobimetallic complexes of which H(3)CC(CH(2)NSiMe(3))(3)Ti-M(CO)(2)Cp (M = Fe, 6; Ru, 7) and HC{SiMe(2)N(4-CH(3)C(6)H(4))}(3)Ti-M(CO)(2)Cp (M = Fe, 12; Ru, 13) have been characterized by X-ray crystallography. 6: monoclinic, P2(1)/n, a = 15.496(3) ?, b = 12.983(3) ?, c = 29.219(3) ?, beta = 104.52(2) degrees, Z = 8, V = 5690.71 ?(3), R = 0.070. 7: monoclinic, P2(1)/c, a = 12.977(3) ?, b = 12.084(3) ?, c = 18.217(3) ?, beta = 91.33(2) degrees, Z = 4, V = 2855.91 ?(3), R = 0.048. 12: monoclinic, I2/c, a = 24.660(4) ?, b = 15.452(3) ?, c = 20.631(4) ?, beta = 103.64(3) degrees, Z = 8, V = 7639.65 ?(3), R = 0.079. 13: monoclinic, I2/c, a = 24.473(3) ?, b = 15.417(3) ?, c = 20.783(4) ?, beta = 104.20(2) degrees, Z = 8, V = 7601.84 ?(3), R = 0.066. (1)H- and (13)C-NMR studies in solution indicate free internal rotation of the molecular fragments around the Ti-M bonds. Fenske-Hall calculations performed on the idealized system HC(CH(2)NH)(3)Ti-Fe(CO)(2)Cp (6x) have revealed a significant degree of pi-donor-acceptor interaction between the two metal fragments reinforcing the Ti-Fe sigma-bond. Due to the availability of energetically low-lying pi-acceptor orbitals at the Ti center this partial multiple bonding is more pronounced that in the tin analogue HC(CH(2)NH)(3)Sn-Fe(CO)(2)Cp (15x) in which an N-Sn sigma-orbital may act as pi-acceptor orbital.  相似文献   

6.
Reactions of niobium and tantalum pentachlorides with tert-butylamine (>/=6 equiv) in benzene afford the dimeric imido complexes [NbCl(2)(N(t)Bu)(NH(t)Bu)(NH(2)(t)Bu)](2) (90%) and [TaCl(2)(N(t)Bu)(NH(t)Bu)(NH(2)(t)Bu)](2) (79%). The niobium complex exists as two isomers in solution, while the tantalum complex is composed of three major isomers and at least two minor isomers. Analogous treatments with isopropylamine (>/=7 equiv) give the monomeric complexes NbCl(2)(N(i)Pr)(NH(i)Pr)(NH(2)(i)Pr)(2) (84%) and TaCl(2)(N(i)Pr)(NH(i)Pr)(NH(2)(i)Pr)(2) (84%). The monomeric complexes are unaffected by treatment with excess isopropylamine, while the dimeric complexes are cleaved to the monomers MCl(2)(N(t)Bu)(NH(t)Bu)(NH(2)(t)Bu)(2) upon addition of excess tert-butylamine in chloroform solution. Treatment of niobium and tantalum pentachlorides with 2,6-diisopropylaniline affords insoluble precipitates of [NH(3)(2,6-(CH(CH(3))(2))(2)C(6)H(3))](2)[NbCl(5)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))] (100%) and [NH(3)(2,6-(CH(CH(3))(2))(2)C(6)H(3))](2)[TaCl(5)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))] (100%), which react with 4-tert-butylpyridine to afford the soluble complexes [4-t-C(4)H(9)C(5)H(4)NH](2)[NbCl(5)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))] (45%) and [4-t-C(4)H(9)C(5)H(4)NH](2)[TaCl(5)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))] (44%). Sublimation of [NbCl(2)(N(t)Bu)(NH(t)Bu)(NH(2)(t)Bu)](2), MCl(2)(N(i)Pr)(NH(i)Pr)(NH(2)(i)Pr)(2), and [NH(3)(2,6-(CH(CH(3))(2))(2)C(6)H(3))](2)[MCl(5)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))] leads to decomposition to give [MCl(3)(NR)(NH(2)R)](2) as sublimates (32-49%), leaving complexes of the proposed formulation MCl(NR)(2) as nonvolatile residues. By contrast, [TaCl(2)(N(t)Bu)(NH(t)Bu)(NH(2)(t)Bu)](2) sublimes without chemical reaction. Analysis of the organic products obtained from thermal decomposition of [NbCl(2)(N(t)Bu)(NH(t)Bu)(NH(2)(t)Bu)](2) showed isobutylene and tert-butylamine in a 2.2:1 ratio. Mass spectra of [NbCl(2)(N(t)Bu)(NH(t)Bu)(NH(2)(t)Bu)](2), [TaCl(2)(N(t)Bu)(NH(t)Bu)(NH(2)(t)Bu)](2), and [NbCl(3)(N(i)Pr)(NH(2)(i)Pr)](2) showed the presence of dimeric imido complexes, monomeric imido complexes, and nitrido complexes, implying that such species are important gas phase species in CVD processes utilizing these molecular precursors. The crystal structures of [4-t-C(4)H(9)C(5)H(4)NH](2)[NbCl(5)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))], [NbCl(3)(N(i)Pr)(NH(2)(i)Pr)](2), [NbCl(3)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))(NH(2)(2,6-(CH(CH(3))(2))(2)C(6)H(3)))](2), and [TaCl(3)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))(NH(2)(2,6-(CH(CH(3))(2))(2)C(6)H(3)))](2) were determined. [4-t-C(4)H(9)C(5)H(4)NH](2)[NbCl(5)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))] crystallizes in the space group P2(1)/c with a = 12.448(3) ?, b = 10.363(3) ?, c = 28.228(3) ?, beta = 94.92(1) degrees, V = 3628(5) ?(3), and Z = 4. [NbCl(3)(N(i)Pr)(NH(2)(i)Pr)](2) crystallizes in the space group P2(1)/c with a = 9.586(4) ?, b = 12.385(4) ?, c = 11.695(4) ?, beta = 112.89(2) degrees, V = 1279.0(6) ?(3), and Z = 2. [NbCl(3)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))(NH(2)(2,6-(CH(CH(3))(2))(2)C(6)H(3)))](2) crystallizes in the space group P2(1)/n with a = 10.285(3) ?, b = 11.208(3) ?, c = 23.867(6) ?, beta = 97.53 degrees, V = 2727(1) ?(3), and Z = 2. [TaCl(3)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))(NH(2)(2,6-(CH(CH(3))(2))(2)C(6)H(3)))](2) crystallizes in the space group P2(1)/n with a = 10.273(1) ?, b = 11.241(2) ?, c = 23.929(7) ?, beta = 97.69(2) degrees, V = 2695(2) ?(3), and Z = 2. These findings are discussed in the context of niobium and tantalum nitride film depositions from molecular precursors.  相似文献   

7.
The structures of novel Tc(V) complexes trans-[TcO(2)(py)(4)]Cl·2H(2)O (1a), trans-[TcO(2)(pic)(4)]Cl·2H(2)O (2a), and trans-[TcO(2)(pic)(4)]BPh(4) (2b) were determined by X-ray crystallography, and their spectroscopic characteristics were investigated by emission spectroscopy and atomic scale calculations. The cations adopt a tetragonally distorted octahedral geometry, with a trans orientation of the apical oxo groups. trans-[TcO(2)(pic)(4)]BPh(4) has an inversion center located on technetium; however, for trans-[TcO(2)(py)(4)]Cl·2H(2)O and trans-[TcO(2)(pic)(4)]Cl·2H(2)O, a strong H bond formed by only one of the oxo substituents introduces an asymmetry in the structure, resulting in inequivalent trans Tc-N and Tc═O distances. Upon 415 nm excitation at room temperature, the complexes exhibited broad, structureless luminescences with emission maxima at approximately 710 nm (1a) and 750 nm (2a, 2b). Like the Re(V) analogs, the Tc(V) complexes luminesce from a (3)E(g) excited state. Upon cooling the samples from 278 to 8 K, distinct vibronic features appear in the spectra of the complexes along with increases in emission intensities. The low temperature emission spectra display the characteristic progressions of the symmetric O═Tc═O and the Tc-L stretching modes. Lowest-energy, triplet excited-state distortions calculated using a time-dependent theoretical approach are in good agreement with the experimental spectra. The discovery of luminescence from the trans-dioxotechnetium(V) complexes provides the first opportunity to directly compare fundamental luminescence properties of second- and third-row d(2) metal-oxo congeners.  相似文献   

8.
The substitution chemistry of TcCl(3)(PPh(3))(2)(CH(3)CN) is rather facile relative to the analogous rhenium complex, since both the chloride and phosphine ligands are easily substituted for various pyridine ligands. Consequently a series of Tc(III) complexes with amine, pyridine, and polypyridyl ligands were prepared and characterized by (1)H NMR and cyclic voltammetry. In addition, the zinc reduction of TcCl(4)(py)(2) in the presence of pyridine results in TcCl(2)(py)(4). Structural and spectroscopic data indicate that this Tc(II) complex exhibits strong metal-pyridine interactions characteristic of low-valent amine complexes of Re(II) and Os(II). For example, a decrease of 0.04 and 0.06 ? is observed for the trans-Tc-N bond length in TcCl(2)(py)(4 )relative to mer-TcCl(3)(pic)(3) and [TcCl(2)(py)(3)(PPh(3))](+), respectively. This ability of pyridine to function both as a strong sigma-donor and moderate pi-acid ligand has resulted in the isolation of technetium complexes in various oxidation states with similar ligand environments. As a result, a structural comparison of [TcCl(2)(py)(3)(PPh(3))](+), TcCl(2)(py)(4), TcCl(tpy)(py)(2), and other known Tc(III) and Tc(II) pyridine complexes is presented. Crystals of [TcCl(2)(py)(3)(PPh(3))]PF(6) are triclinic, with space group P&onemacr;, Z = 2, and lattice parameters a = 12.677(4) ?, b = 13.064(4) ?, c = 13.103(5) ?, alpha = 110.14(3) degrees, beta = 101.12(3) degrees, gamma = 96.61 degrees, V = 1959 ?(3), and R = 0.0615 (R(w) = 0.1148). Crystals of TcCl(2)(py)(4) are tetragonal, with space group I4(1)/acd, Z = 8, and lattice parameters a = 15.641(4) ?, c = 16.845(6) ?, V = 4121 ?(3), and R = 0.0373 (R(w) = 0.0290). Crystals of TcCl(tpy)(py)(2) are orthorhombic, with space group C222(1), Z = 4, and lattice parameters a = 9.359(3) ?, b = 16.088(6) ?, c = 18.367(4) ?, V = 2765 ?(3), and R = 0.0499 (R(w) = 0.0599).  相似文献   

9.
The reaction of 2-(2'-pyridyl)benzothiazole, [NN], with the ReO(V)(3+) and TcO(V)(3+) cores in the presence of thiophenols, [S] (RC(6)H(4)SH, R = H, 4-CH(3), 4-OCH(3)), as coligands led to the isolation of hexacoordinated complexes of the MO[NN][S](3) type (M = Re, Tc). In all cases, two geometric mer isomers were formed, as evidenced by NMR spectroscopy and confirmed by X-ray crystallography. In both isomers, the coordination geometry about the metal ion is a distorted octahedral defined by the two nitrogen atoms of the bidentate ligand, the three sulfur atoms of the monodentate thiols, and the oxygen atom of the oxo group. The apical positions of the octahedron are occupied by the oxygen of the oxo group and, in one of the isomers, the nitrogen of the pyridyl moiety of 2-(2'-pyridyl)benzothiazole, while, in the second isomer, the imine nitrogen of 2-(2'-pyridyl)benzothiazole. The complexes are stable, neutral, and lipophilic. Complete (1)H and (13)C NMR assignments are reported for all complexes. The synthetic reaction was also successfully transferred at the technetium-99m tracer level by ligand exchange reaction using (99m)Tc-glucoheptonate as precursor in the presence of 2-(2'-pyridyl)benzothiazole and 4-CH(3)C(6)H(4)SH. The structure of the technetium-99m complex was established by high-performance liquid chromatographic comparison with the analogous oxotechnetium and oxorhenium complexes. The 2-(2'-pyridyl)benzothiazole ligand serves as a preliminary model for 2-(4-aminophenyl)benzothiazole, which possesses interesting properties for the development of technetium and rhenium radiopharmaceuticals for tumor imaging and/or radiotherapy as well as in vivo diagnosis of Alzheimer's disease.  相似文献   

10.
The synthesis and characterization of oxotechnetium and oxorhenium mixed-ligand complexes of the general formula MO[NN][S](3) (M = (99)Tc and Re), where NN represents the bidentate ligand 2,2'-bipyridine and S represents a monodentate thiophenol, is reported. The complexes were prepared by ligand exchange reactions using (99)Tc-gluconate and ReOCl(3)(PPh(3))(2) as precursors for the oxotechnetium and oxorhenium complexes, respectively. Compound 1 (M = (99)Tc, S = 4-methylthiophenol) crystallizes in the monoclinic space group P2(1)/a, a = 23.12(1) A, b = 14.349(6) A, c = 8.801(4) A, beta = 94.81(2) degrees, V = 2918(2) A(3), Z = 4. Compound 3 (M = Re, S = 4-methylthiophenol) crystallizes in the monoclinic space group P2(1)/a, a = 23.018(9) A, b = 14.421(5) A, c = 8.775(3) A, beta = 94.78(1) degrees, V = 2903(2) A(3), Z = 4. Compound 4 (M = Re, S = 4-methoxythiophenol) crystallizes in the orthorhombic space group Pbca, a = 16.32(1) A, b = 24.55(2) A, c = 16.94(1) A, V = 6788(9) A(3), Z = 8. In all cases, the coordination geometry around the metal is distorted octahedral with the equatorial plane being defined by the three sulfur atoms of the thiophenols and one nitrogen atom of 2,2'-bipyridine, while the apical positions are occupied by the second nitrogen atom of 2,2'-bipyridine and the oxygen of the M=O core. The complexes are stable, neutral, and lipophilic. Complete (1)H and (13)C NMR assignments are reported for all complexes. The analogous oxotechnetium complexes have been also synthesized at tracer level ((99m)Tc) by mixing the 2,2'-bipyridine and the corresponding thiol with Na(99m)TcO(4) generator eluate using NaBH(4) as reducing agent. Their structure was established by chromatographic comparison with authentic oxotechnetium and oxorhenium complexes using high performance liquid chromatography techniques.  相似文献   

11.
The platinum(II) complexes trans-[PtCl(2)(RR'C=NOH)(2)], where R = R' = Me, RR' = (CH(2))(4) and (CH(2))(5), react with m-chloroperoxybenzoic acid in Me(2)CO to give the platinum(IV) complexes [PtCl(2)(OCMe(2)ON=CRR')(2)] in 50-60% yields. The complexes [PtCl(2)(OCMe(2)ON=CRR')(2)] were characterized by elemental analysis, EI-MS, and IR and Raman spectroscopies; X-ray structure analyses were performed for both trans-[PtCl(2)(OCMe(2)ON=CC(4)H(8))(2)] and trans-[PtCl(2)(OCMe(2)ON=CC(5)H(10))(2)]. The former compound crystallizes in the triclinic space group P&onemacr; with a = 8.088(2) ?, b = 8.327(2) ?, c = 8.475(2) ?, alpha = 103.54(3) degrees, beta = 102.15(3) degrees, gamma = 108.37(3) degrees, V = 501.0(2) ?(3), Z = 1, and rho(calcd) = 1.917 g cm(-)(3). The latter complex crystallizes in the monoclinic space group C2/c with a = 12.5260(10) ?, b = 9.3360(10) ?, c = 18.699(2) ?, beta = 98.320(10) degrees, V = 2163.7(4) ?(3), Z = 4, and rho(calcd) = 1.862 g cm(-)(3). The structures of [PtCl(2)(OCMe(2)ON=CC(4)H(8))(2)] and [PtCl(2)(OCMe(2)ON=CC(5)H(10))(2)] show an octahedron of Pt where two Cl atoms and two chelate ligands are mutually trans, respectively.  相似文献   

12.
The simultaneous action of the tridentate ligand (C(2)H(5))(2)NCH(2)CH(2)N(CH(2)CH(2)SH)(2) and the monodentate coligand HSC(6)H(4)OCH(3) on a suitable ReO(3+) precursor results in a mixture of syn- and anti-oxorhenium complexes, ReO[(C(2)H(5))(2)NCH(2)CH(2)N(CH(2)CH(2)S)(2)] [SC(6)H(4)OCH(3)], in a ratio of 25/1. The complexes are prepared by a ligand exchange reaction using ReO(eg)(2) (eg = ethylene glycol), ReOCl(3)(PPh(3))(2), or Re(V)-citrate as precursor. Both complexes have been characterized by elemental analysis, FT-IR, UV-vis, X-ray crystallography, and NMR spectroscopy. The syn isomer C(17)H(29)N(2)O(2)S(3)Re crystallizes in the monoclinic space group P2(1)/n, a = 14.109(4) ?, b = 7.518(2) ?, c = 20.900(5) ?, beta = 103.07(1) degrees, V = 2159.4(9) ?(3), Z = 4. The anti isomer C(17)H(29)N(2)O(2)S(3)Re crystallizes in P2(1)/n, a = 9.3850(7) ?, b = 27.979(2) ?, c = 8.3648(6) ?, beta = 99.86(1) degrees, V = 2163.9(3) ?(3), Z = 4. Complete NMR studies show that the orientation of the N substituent chain with respect to the Re=O core greatly influences the observed chemical shifts. Complexes were also prepared at the tracer ((186)Re) level by using (186)Re-citrate as precursor. Corroboration of the structure at tracer level was achieved by comparative HPLC studies.  相似文献   

13.
Gold(I) complexes of imidazole and thiazole-based diphos type ligands were prepared and their potential as chemotherapeutics investigated. Depending on the ligands employed and the reaction conditions complexes [L(AuCl)(2)] and [L(2)Au]X (X = Cl, PF(6)) are obtained. The ligands used are diphosphanes with azoyl substituents R(2)P(CH(2))(2)PR(2) {R = 1-methylimidazol-2-yl (1), 1-methylbenzimidazol-2-yl (4), thiazol-2-yl (5) and benzthiazol-2-yl (6)} as well as the novel ligands RPhP(CH(2))(2)PRPh {R = 1-methylimidazol-2-yl (3)} and R(2)P(CH(2))(3)PR(2) {R = 1-methylimidazol-2-yl (2)}. The cytotoxic activity of the complexes was assessed against three human cancer cell lines and a rat hepatoma cell line and correlated to the lipophilicity of the compounds. The tetrahedral gold complexes [(3)(2)Au]PF(6) and [(5)(2)Au]PF(6) with intermediate lipophilicity (logD(7.4) = 0.21 and 0.25) showed significant cytotoxic activity in different cell lines. Both compounds induce apoptosis and inhibit the enzymes thioredoxin reductase and glutathione reductase.  相似文献   

14.
(alpha-Imino acidato)ruthenium(II) complexes, [Ru(II){N(R(1))=C(R(2))CO(2)}L(2)](+) (R(1) = R(2) = Me or R(1) = R(2) = -(CH(2))(3)-; L = 2,2'-bipyridine (=bpy) or 1,10-phenanthroline (=phen)), were obtained by anodic oxidation at a constant potential of the corresponding (alpha-amino acidato)ruthenium(II) complexes, N-methylalaninato or prolinato complexes, in good to excellent yields. (alpha-Imino acidato)ruthenium(II) complexes are stable in neutral or acidic aqueous solution. The half-wave potentials of alpha-imino acidato complexes are 0.73-0.78 V (vs SCE), which are more positive than those of the corresponding alpha-amino acidato complexes, 0.55-0.59 V. The crystal structure of [Ru(pro-H(2))(bpy)(2)]ClO(4).3H(2)O (pro-H(2) = 1,2-didehydroprolinato) has been determined by single-crystal X-ray analysis. Crystallographic data: space group C2/c, a = 21.73(1) ?, b = 19.33(1) ?, c = 14.58(1) ?, beta = 114.91(5) degrees, Z = 8, R = 0.0352. The length of the C=N double bond of the alpha-imino acidate moiety is 1.294(5) ?, and Ru-N(imino nitrogen) = 2.042(3) ?. The chelate ring of the alpha-imino acidato ligand is planar.  相似文献   

15.
X-ray crystal structures are reported for the following complexes: [Ru(2)Cl(3)(tacn)(2)](PF(6))(2).4H(2)O (tacn = 1,4,7-triazacyclononane), monoclinic P2(1)/n, Z = 4, a = 14.418(8) ?, b = 11.577(3) ?, c = 18.471(1) ?, beta = 91.08(5) degrees, V = 3082 ?(3), R(R(w)) = 0.039 (0.043) using 4067 unique data with I > 2.5sigma(I) at 293 K; [Ru(2)Br(3)(tacn)(2)](PF(6))(2).2H(2)O, monoclinic P2(1)/a, Z = 4, a = 13.638(4) ?, b = 12.283(4) ?, c = 18.679(6) ?, beta = 109.19(2) degrees, V = 3069.5 ?(3), R(R(w)) = 0.052 (0.054) using 3668 unique data with I > 2.5sigma(I) at 293 K; [Ru(2)I(3)(tacn)(2)](PF(6))(2), cubic P2(1)/3, Z = 3, a = 14.03(4) ?, beta = 90.0 degrees, V = 2763.1(1) ?(3), R (R(w)) = 0.022 (0.025) using 896 unique data with I > 2.5sigma(I) at 293 K. All of the cations have cofacial bioctahedral geometries, although [Ru(2)Cl(3)(tacn)(2)](PF(6))(2).4H(2)O, [Ru(2)Br(3)(tacn)(2)](PF(6))(2).2H(2)O, and [Ru(2)I(3)(tacn)(2)](PF(6))(2) are not isomorphous. Average bond lengths and angles for the cofacial bioctahedral cores, [N(3)Ru(&mgr;-X)(3)RuN(3)](2+), are compared to those for the analogous ammine complexes [Ru(2)Cl(3)(NH(3))(6)](BPh(4))(2) and [Ru(2)Br(3)(NH(3))(6)](ZnBr(4)). The Ru-Ru distances in the tacn complexes are longer than those in the equivalent ammine complexes, probably as a result of steric interactions.  相似文献   

16.
Decaborane(14) reacts with 1-(CH(3))(3)SiC&tbd1;CC(4)H(9) in the presence of dimethyl sulfide to give the new alkenyldecaborane 5-(S(CH(3))(2))-6-[(CH(3))(3)Si(C(4)H(9))C=CH]B(10)H(11) (I). Crystal data for 5-(S(CH(3))(2))-6-[(CH(3))(3)Si(C(4)H(9))C=CH]B(10)H(11): space group P2(1)/n, monoclinic, a = 9.471(1) ?, b = 13.947(3) ?, c = 17.678(3) ?, beta = 100.32(1) degrees. A total of 3366 unique reflections were collected over the range 2.0 degrees /= 3sigma(F(o)(2)) and were used in the final refinement. R(F)() = 0.083; R(w)(F)() = 0.094. The single-crystal X-ray structure of 5-(S(CH(3))(2))-6-[((CH(3))(3)Si)(2)C=CH]B(10)H(11) (A) is also reported. Crystal data for 5-(S(CH(3))(2))-6-[((CH(3))(3)Si)(2)C=CH]B(10)H(11): space group, P2(1)2(1)2(1), orthorhombic, a = 9.059 (3) ?, b = 12.193(4) ?, c = 21.431(3) ?. A total of 4836 unique reflections were collected over the range 6 degrees /= 3sigma(F(o)(2)) and were used in the final refinement. R(F)() = 0.052; R(w)(F)() = 0.059. The reactions of 5-(S(CH(3))(2))6-[(CH(3))(3)Si(C(4)H(9))C=CH]B(10)H(11) and 5-(S(CH(3))(2))6-[((CH(3))(3)Si)(2)C=CH]B(10)H(11) with a variety of alkyl isocyanides were investigated. All of the alkenyl monocarbon carboranes reported are the result of incorporation of the carbon atom from the isocyanide into the alkenyldecaborane framework and reduction of N&tbd1;C bond to a N-C single bond. The characterization of these compounds is based on (1)H and (11)B NMR data, IR spectroscopy, and mass spectrometry.  相似文献   

17.
Photolysis of (eta(6)-arene)Cr(CO)(3) complexes and HSnPh(3) in aromatic solvents at room temperature has led to two classes of complexes: hydrido stannyl compounds containing the eta(2)-H-SnPh(3) ligand and bis(stannyl) compounds containing two SnPh(3) ligands. The ratio between the two complexes simultaneously produced depends on the choice of the arene. Complexes with different arenes (mesitylene, toluene, benzene, fluorobenzene, and difluorobenzene) have been obtained and characterized including X-ray structures for (eta(6)-C(6)H(3)(CH(3))(3))Cr(CO)(2)(H)(SnPh(3)) (1a), (eta(6)-C(6)H(3)(CH(3))(3))Cr(CO)(2)(SnPh(3))(2) (1b), (eta(6)-C(6)H(5)F)Cr(CO)(2)(SnPh(3))(2) (4b), and (eta(6)-C(6)H(4)F(2))Cr(CO)(2)(SnPh(3))(2) (5b). X-ray crystallography of the last three compounds has given the following results: 1b, monoclinic, space group P2(1)/c (No. 14), a = 13.905(4) ?, b = 18.499(2) ?, c = 17.708(2) ?, Z = 4, V = 4285(1) ?(3); 4b, orthorhombic, space group Pca2(1) (No. 29), a = 16.717(2) ?, b = 18.453(2) ?, c = 25.766(2) ?, Z = 8, V = 7948(2) ?(3); 5b, monoclinic, space group P2(1)/c (No. 14), a = 13.756(2) ?, b = 18.560(2) ?, c = 17.159(2) ?, Z = 4, V = 4372(2) ?(3). The relatively high J((119)Sn-Cr-H) and J((117)Sn-Cr-H) values as well as the X-ray structural data provide evidence for the existence of three-center two-electron bonds in the hydrido stannyl complexes. The (1)H NMR data of the complexes are compared with chromium-arene bond distances, and a sensible trend is observed and discussed.  相似文献   

18.
N-[(Dialkylamino)(thiocarbonyl)]benzimidoyl chlorides react with functionalized amines such as 2-aminophenol, 2-methylaminopyridine, and 2-aminobenzoic acid in clean and high-yield procedures with the formation of the novel tridentate N-[(N', N'-dialkylamino)(thiocarbonyl)]- N'-substituted benzamidine ligands H2L1, HL2, and H2L3. By starting from (NBu4)[MOCl4] (M = Re, Tc) or [ReOCl3(PPh3)2] and H2L1, a series of oxorhenium(V) and oxotechnetium(V) complexes of the composition [MOCl(L1)] were synthesized and characterized by spectroscopic methods and X-ray crystallography. The monomeric, five-coordinate compounds are air-stable and bind (L1)(2-) tridentate in the equatorial coordination sphere. Dimeric products of the compositions [(ReOCl(L2))2O] and [ReOCl(L3)]2 were isolated during reactions with HL2 and H2L3. While dimerization in [(ReOCl(L2))2O] is established via an oxo bridge, the metal atoms in [ReOCl(L3)]2 are connected by the carboxylic group of the ligand, and the product represents the first example of a high-oxidation state rhenium complex displaying such a bonding feature.  相似文献   

19.
Ligands (L(a-c)) based on 2,7-bis(3,5-di-R-pyrazol-1-yl)-1,8-naphthyridine (a, R = H; b, R = CH(3); c, R = Ph) were prepared for the construction of a series of dinickel complexes. Treatment of L(x) with NiCl(2) in an anhydrous methanol/THF solution resulted in the formation of dinuclear complexes [(L(x))(μ-Cl)(2)Ni(2)Cl(2)(CH(3)OH)(2)] (3, x = a; 4, x = b; 5, x = c). These new complexes were characterized by elemental analysis, IR and UV-Vis spectroscopic techniques. The structures of complexes 3 and 4 were further confirmed by X-ray diffraction studies. Interestingly, crystals of 4 were obtained as a co-crystallization of 4 and the methanol substituted species [{(L(b))(μ-Cl)(2)Ni(2)Cl(CH(3)OH)(3)}Cl] (4'). These dinickel complexes have been tested in the catalytic homo-coupling of terminal alkynes with the use O(2) as the oxidant, showing excellent activities. A clear improvement on the catalytic activity of these complexes is observed as compared to the mono-nuclear species.  相似文献   

20.
Reaction of the amide ligand N-[2-((2-pyridylmethylene)amino)phenyl]pyridine-2-carboxamide (Hcapca) with VCl(3) affords the compound trans-[VCl(2)(capca)] (1), the first example of a vanadium(III) complex containing a vanadium-deprotonated amide nitrogen bond, while reaction of bis(pentane-2,4-dionato)oxovanadium(IV) with the related ligands N-[2-((2-phenolylmethylene)amino)phenyl]pyridine-2-carboxamide (H(2)phepca), 1-(2-hydroxybenzamido)-2-(2-pyridinecarboxamido)benzene (H(3)hypyb), and 1,2-bis(2-hydroxybenzamido)benzene (H(4)hybeb) yields the complexes [VO(phepca)] (2), Na[VO(hypyb)].2CH(3)OH (4.2CH(3)OH), and Na(2)[VO(hybeb)].3CH(3)OH (5.3CH(3)OH) respectively. The preparation of the complex {N-[2-((2-thiophenoylmethylene)amino)phenyl]pyridine-2-carboxamido}oxovanadium(IV) (3) has been achieved by reaction of N-(2-aminophenyl)pyridine-2-carboxamide and 2-mercaptobenzaldehyde with [VO(CH(3)COO)(2)](x)(). Oxidation of complex 5.3CH(3)OH with silver nitrate gives its vanadium(V) analogue (8.CH(3)OH), which is readily converted to its corresponding tetraethylammonium salt (10.CH(2)Cl(2)) by a reaction with Et(4)NCl. The crystal structures of the octahedral 1.CH(3)CN, and the square-pyramidal complexes 3, 4.CH(3)CN, 5.2CH(3)OH, and 10 were demonstrated by X-ray diffraction analysis. Crystal data are as follows: 1.CH(3)CN, C(18)H(13)Cl(2)N(4)OV.CH(3)CN M(r) = 464.23, monoclinic, P2(1)/n, a = 10.5991(7) ?, b = 13.9981(7) ?, c = 14.4021(7) ?, beta = 98.649(2)(o), V = 2112.5(3) A(3), Z = 4, R = 0.0323, and R(w) 0.0335; 3, C(19)H(13)N(3)O(2)SV, M(r) = 398.34, monoclinic, P2(1)/n, a = 12.1108(10) ?, b = 19.4439(18) ?, c = 7.2351(7) ?, beta = 103.012(3) degrees, V = 1660.0(4) ?(3), Z = 4, R = 0.0355, and R(w) = 0.0376; 4.CH(3)CN, C(19)H(12)N(3)O(4)VNa.CH(3)CN, M(r) = 461.31, monoclinic, P2(1)/c, a = 11.528(1) ?, b = 11.209(1) ?, c = 16.512(2) ?, beta = 103.928(4)(o), V = 2071.0(5) ?(3), Z = 4, R = 0.0649, and R(w) = 0.0806; 5.2CH(3)OH, C(20)H(10)N(2)O(5)VNa(2).2CH(3)OH, M(r) = 519.31, triclinic, P1, a = 12.839(1) ?, b = 8.334(1) ?, c = 12.201(1) ?, alpha = 106.492(2) degrees, beta = 105.408(2) degrees, gamma = 73.465(2) degrees, V = 1175.6(3) ?(3), Z = 2, R = 0.0894, and R(w) = 0.1043; 10, C(28)H(32)N(3)O(5)V M(r) = 541.52, monoclinic, P2(1)/c, a = 11.711(3) ?, b = 18.554(5) ?, c = 12.335(3) ?, beta = 95.947(9) degrees, V = 2666(2) ?(3), Z = 4, R = 0.0904, and R(w) = 0.0879. In addition to the synthesis and crystallographic studies, we report the optical, infrared, magnetic, and electrochemical properties of these complexes. Electron paramagnetic resonance [of oxovanadium(IV) species] and (1)H, (13)C{(1)H}, and (51)V nuclear magnetic resonance [of oxovanadium(V) complex] properties are reported as well. This study represents the first systematic study of vanadium(III), V(IV)O(2+), and V(V)O(3+) species containing a vanadium-deprotonated amide nitrogen bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号