首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
A detailed spectroscopic and electrochemical study of a series of novel phenolate bound complexes, of general formulas [M(L-L)(2)(box)](PF(6)), where M is Os and Ru, L-L is 2,2-bipyridine or 2,2-biquinoline, and box is 2-(2-hydroxyphenyl)benzoxazole, is presented. The objectives of this study were to probe the origin of the LUMOs and HOMOs in these complexes, to elucidate the impact of metal and counter ligand on the electronic properties of the complex, and to identify the extent of orbital mixing in comparison with considerably more frequently studied quinoid complexes. [M(L-L)(2)(box)](PF(6)) complexes exhibit a rich electronic spectroscopy extending into the near infrared region and good photostability, making them potentially useful as solar sensitizers. Electrochemistry and spectroscopy indicate that the first oxidation is metal based and is associated with the M(II)/(III) redox states. A second oxidative wave, which is irreversible at slow scan rates, is associated with the phenolate ligand. The stabilities of the oxidized complexes are assessed using dynamic electrochemistry and discussed from the perspective of metal and counter ligand (LL) identity and follow the order of increasing stability [Ru(biq)(2)(box)](+) < [Ru(bpy)(2)(box)](+) < [Os(bpy)(2)(box)](+). Electronic and resonance Raman spectroscopy indicate that the lowest energy optical transition for the ruthenium complexes is a phenolate (pi) to L-L (pi) interligand charge-transfer transition (ILCT) suggesting the HOMO is phenolate based whereas electrochemical data suggest that the HOMO is metal based. This unusual lack of correlation between redox and spectroscopically assigned orbitals is discussed in terms of metal-ligand orbital mixing which appears to be most significant in the biquinoline based complex.  相似文献   

2.
《Polyhedron》1988,7(12):1067-1070
Anionic [Rh(diolefin)X2] species (X = Cl, Br) have been prepared and their reactions studied. The reactions with monodentate ligands led to neutral tetracoordinated complexes, and with N-donor bidentate ligands (Rh : LL = 2 : 1) gave Rh(X)(diolefin)(LL), [Rh(diolefin)(LL)]+[Rh(diolefin)X2], or [Rh(diolefin)(LL)]X compounds, depending on the nature of LL or X. Reactions with carbon monoxide involved diolefin displacement. A trichlorostannato complex was obtained from the [Rh(COD)Cl2] species. Reactions of [Rh(COD)Br]2 with bidentate N-donor ligands were also studied.  相似文献   

3.
We report a theoretical study on a series of heteroleptic cyclometalated Ir(III) complexes for OLED application. The geometries, electronic structures, and the lowest-lying singlet absorptions and triplet emissions of [(fppy)(2)Ir(III)(PPh(2)Np)] (1), and theoretically designed models [(fppy)(2)Ir(III)(PH(2)Np)] (2) and [(fppy)(2)Ir(III)Np](-)(3) were investigated with density functional theory (DFT)-based approaches, where, fppyH = 4-fluorophenyl-pyridine and NpH = naphthalene. The ground and excited states were, respectively, optimized at the M062X/LanL2DZ;6-31G* and CIS/LanL2DZ:6-31G* level of theory within CH(2)Cl(2) solution provided by PCM. The lowest absorptions and emissions were evaluated at M062X/Stuttgart;cc-pVTZ;cc-pVDZ level of theory. Though the lowest absorptions and emissions were all attributed as the ligand-based charge-transfer transition with slight metal-to-ligand charge-transfer transition character, the subtle differences in geometries and electronic structures result in the different quantum yields and versatile emission color. The newly designed molecular 3 is expected to be highly emissive in deep blue region.  相似文献   

4.
A series of molybdenum and tungsten nitrido, [M(N)(X)(diphos)2], and imido complexes, [M(NH)(X)(diphos)2)]Y, (M = Mo, W) with diphosphine coligands (diphos = dppe/depe), various trans ligands (X = N3-, Cl-, NCCH3) and different counterions (Y-= Cl-, BPh4-) is investigated. These compounds are studied by infrared and Raman spectroscopies; they are also studied with isotope-substitution and optical-absorption, as well as emission, spectroscopies. In the nitrido complexes with trans-azido and -chloro coligands, the metal-N stretch is found at about 980 cm(-1); upon protonation, it is lowered to about 920 cm(-1). The 1A1 --> 1E (n --> pi) electronic transition is observed for [Mo(N)(N3)(depe)2] at 398 nm and shows a progression in the metal-N stretch of 810 cm(-1). The corresponding 3E --> 1A (pi --> n) emission band is observed at 542 nm, exhibiting a progression in the metal-N stretch of 980 cm(-1). In the imido system [Mo(NH)(N3)(depe)2]BPh4, the n --> pi transition is shifted to lower energy (518 nm) and markedly decreases in intensity. In the trans-nitrile complex [Mo(N)(NCCH3)(dppe)2]BPh4, the metal-N(nitrido) stretching frequency increases to 1016 cm(-1). The n --> pi transition now is found at 450 nm, shifting to 525 nm upon protonation. Most importantly, the reduction of this nitrido trans-nitrile complex is drastically facilitated compared to its counterparts with anionic trans-ligands (Epred = -1.5 V vs Fc+/Fc). On the other hand, the basicity of the nitrido group is decreased (pKa{[Mo(NH)(NCCH3)(dppe)2](BPh4)2} = 5). The implications of these findings with respect to the Chatt cycle are discussed.  相似文献   

5.
The reaction of new dinuclear gold(I) organometallic complexes containing mesityl ligands and bridging bidentate phosphanes [Au(2)(mes)(2)(μ-LL)] (LL=dppe: 1,2-bis(diphenylphosphano)ethane 1a, and water-soluble dppy: 1,2-bis(di-3-pyridylphosphano)ethane 1b) with Ag(+) and Cu(+) lead to the formation of a family of heterometallic clusters with mesityl bridging ligands of the general formula [Au(2)M(μ-mes)(2) (μ-LL)][A] (M=Ag, A=ClO(4)(-), LL=dppe 2a, dppy 2b; M=Ag, A=SO(3)CF(3)(-), LL=dppe 3a, dppy 3b; M=Cu, A=PF(6)(-), LL=dppe 4a, dppy 4b). The new compounds were characterized by different spectroscopic techniques and mass spectrometry The crystal structures of [Au(2)(mes)(2)(μ-dppy)] (1b) and [Au(2)Ag(μ-mes)(2)(μ-dppe)][SO(3)CF(3)] (3a) were determined by a single-crystal X-ray diffraction study. 3a in solid state is not a cyclic trinuclear Au(2)Ag derivative but it gives an open polymeric structure instead, with the {Au(2)(μ-dppe)} fragments "linked" by {Ag(μ-mes)(2)} units. The very short distances of 2.7559(6)?? (Au-Ag) and 2.9229(8)?? (Au-Au) are indicative of gold-silver (metallophilic) and aurophilic interactions. A systematic study of their luminescence properties revealed that all compounds are brightly luminescent in solid state, at room temperature (RT) and at 77?K, or in frozen DMSO solutions with lifetimes in the microsecond range and probably due to the self-aggregation of [Au(2)M(μ-mes)(2)(μ-LL)](+) units (M=Ag or Cu; LL=dppe or dppy) into an extended chain structure, through Au-Au and/or Au-M metallophilic interactions, as that observed for 3a. In solid state the heterometallic Au(2)M complexes with dppe (2a-4a) show a shift of emission maxima (from ca. 430 to the range of 520-540?nm) as compared to the parent dinuclear organometallic product 1a while the complexes with dppy (2b-4b) display a more moderate shift (505 for 1b to a max of 563?nm for 4b). More importantly, compound [Au(2)Ag(μ-mes)(2)(μ-dppy)]ClO(4) (2b) resulted luminescent in diluted DMSO solution at room temperature. Previously reported compound [Au(2)Cl(2)(μ-LL)] (LL dppy 5b) was also studied for comparative purposes. The antimicrobial activity of 1-5 and Ag[A] (A=ClO(4)(-), SO(3)CF(3)(-)) against gram-positive and gram-negative bacteria and yeast was evaluated. Most tested compounds displayed moderate to high antibacterial activity while heteronuclear Au(2)M derivatives with dppe (2a-4a) were the more active (minimum inhibitory concentration 10 to 1?μg?mL(-1)). Compounds containing silver were ten times more active to gram-negative bacteria than the parent dinuclear compound 1a or silver salts. Au(2)Ag compounds with dppy (2b, 3b) were also potent against fungi.  相似文献   

6.
A series of homodinuclear platinum(II) complexes containing bridging chalcogenido ligands, [Pt(2)(mu-E)(2)(P empty set N)(4)] (P empty set N=dppy, E=S (1), Se (2); P empty set N=tBu-dppy, E=S (3)) (dppy=2-(diphenylphosphino)pyridine, tBu-dppy=4-tert-butyl-2-(diphenylphosphino)pyridine) have been synthesized and characterized. The nucleophilicity of the [Pt(2)E(2)] unit towards a number of d(10) metal ions and complexes has been demonstrated through the successful isolation of a number of novel heteropolynuclear platinum(II)-copper(I), -silver(I), and -gold(I) complexes: [[Pt(2)(mu(3)-E)(2)(dppy)(4)](2)Ag(3)](PF(6))(3) (E=S (4); Se (5)) and [Pt(2)(dppy)(4)(mu(3)-E)(2)M(2)(dppm)]X(2) (E=S, M=Ag, X=BF(4) (6); E=S, M=Cu, X=PF(6) (7); E=S, M=Au, X=PF(6) (8); E=Se, M=Ag, X=PF(6) (9); E=Se, M=Au, X=PF(6) (10)). Some of them display short metal.metal contacts. These complexes have been found to possess interesting luminescence properties. Through systematic comparison studies, the emission origin has been probed.  相似文献   

7.
A series of [Pt(ii)(diimine)(dithiolate)] complexes of general formula [Pt{X,X'-(CO(2)R)(2)-bpy}(mnt)] (where X = 3, 4 or 5; R = H or Et, bpy = 2,2'-bipyridyl and mnt = maleonitriledithiolate), have been spectroscopically, electrochemically and computationally characterised and compared with the precursors [Pt{X,X'-(CO(2)R)(2)-bpy}Cl(2)] and X,X'-(CO(2)R)(2)-bpy. The study includes cyclic voltammetry, in situ EPR spectroelectrochemical studies of fluid solution and frozen solution samples, UV/Vis/NIR spectroelectrochemistry, hyrid DFT and TD-DFT calculations. The effect of changing the position of the bpy substituents from 3,3' to 4,4' and 5,5' is discussed with reference to electronic changes seen within the different members of the family of molecules. The performance of the mnt complexes in dye-sensitised solar cells has been previously described and the superior performance of [Pt{3,3'-(CO(2)R)(2)-bpy}(mnt)] is now explained in terms of decreased electronic delocalisation through twisting of the bipyridyl ligand as supported by the EPR and computational results.  相似文献   

8.
A series of Schiff-base complexes are prepared and characterized by elemental and thermal analyses, IR and electronic spectra, and magnetic measurements. SO2 interacted with solutions of the complexes forming complexes [M(SB)(SO2)2] where M = Mg(II), Cu(II), Mn(II), and [M(SB)(SO2)2]OH where M = Fe(III). These complexes are subjected to elemental and thermal analyses, conductance measurements and IR, electronic, and ESR spectra to indicate changes from interaction of SO2 with the Schiff-base complexes.  相似文献   

9.
The complexes of Cr(III), Mn(II) and Ni(II) were synthesized with macrocyclic ligand i.e. 5,11-dimethyl-6,12-diethyl-dione-1,2,4,7,9,10-hexazacyclododeca -1,4,6,10-tetraene. The ligand (L) was prepared by [2+2] condensation reaction of 2,3-pentanedione and semicarbazide hydrochloride. These complexes were found to have the general composition [Cr(L)X(2)]X and [M(L)X(2)] (where M=Mn(II) and Ni(II); X=Cl(-), NO(3)(-), (1/2)SO(4)(2-), NCS(-) and L=ligand [N(6)]). The ligand and its transition metal complexes were characterized by the elemental analysis, molar conductance, magnetic susceptibility, mass, IR, electronic and EPR spectral studies. On the basis of IR, electronic and EPR spectral studies, an octahedral geometry has been assigned for these complexes except sulphato complexes which are of five coordinated geometry.  相似文献   

10.
The isolation, structural characterization, and electronic properties of two six-coordinated chloromanganese (III) complexes, [Mn(terpy)(Cl)3] (1) and [Mn(Phterpy)(Cl)3] (2), are reported (terpy = 2,2':6'2"-terpyridine, Phterpy = 4'-phenyl-2,2':6',2"-terpyridine). These complexes complement a series of mononuclear azide and fluoride Mn(lll) complexes synthesized with neutral N-tridentate ligands, [Mn(L)(X)3] (X = F- or N3 and L = terpy or bpea [N,N-bis(2-pyridylmethyl)-ethylamine)], previously described. Similar to these previous complexes, 1 and 2 exhibit a Jahn-Teller distortion of the octahedron, characteristic of a high-spin Mn(III) complex (S = 2). The analysis of the crystallographic data shows that, in both cases, the manganese ion lies in the center of a distorted octahedron characterized by an elongation along the tetragonal axis. Their electronic properties were investigated by multifrequency EPR (190-475 GHz) performed in the solid state at different temperatures (5-15 K). This study confirms our previous results and further shows that: i) the sign of D is correlated with the nature of the tetragonal distortion; ii) the magnitude of D is not sensitive to the nature of the anions in our series of rhombic complexes, contrary to the porphyrinic systems; iii) the [E/D] values (0.124 for 1 and 0.085 for 2) are smaller compared to those found for the [Mn(L)(X)3] complexes (in the range of 0.146 to 0.234); and iv) the E term increases when the ligand-field strength of the equatorial ligands decreases.  相似文献   

11.
Nickel(II) and copper(II) complexes are synthesized with a novel tetradentate macrocyclic ligand, i.e. 2,6,12,16,21,22-hexaaza;3,5,13,15-tetraphenyltricyclo[15,3,1,1(7-11)] docosa;1(21),2,5,7,9,11(22),12,15,17,19-decaene (L) and characterized by the elemental analysis, magnetic susceptibility measurements, mass, (1)H NMR, IR, electronic and EPR spectral studies. All the complexes are non-electrolytic in nature. Thus, these may be formulated as [M(L)X(2)] [M=Ni(II), Cu(II) and X=Cl(-), NO(3)(-) and (1/2)SO(4)(2-)]. Ni(II) and Cu(II) complexes show magnetic moments corresponding to two and one unpaired electron, respectively. On the basis of IR, electronic and EPR spectral studies an octahedral geometry has been assigned for Ni(II) and tetragonal geometry for Cu(II) complexes.  相似文献   

12.
13.
The series of complexes [CdX(2)(C(5)H(4)NCOOR)] (X = Cl or Br; R = Me, Et, Pr(n)() or Pr(i)()) and [CdX(2)(C(5)H(4)NCOOR)(2)] (X = I; R = Me, Et, Pr(n)(), or Pr(i)()) have been obtained by the addition reaction of esters of 2-pyridinecarboxylic acid to cadmium(II) halides. X-ray crystal structures of two complexes [CdI(2)(C(5)H(4)NCOOR)(2)], R = Me (10) and R = Pr(n)() (12), have been determined. In both cases, the structure consists of discrete neutral monomeric units where the cadmium atom has a distorted octahedral coordination with CdI(2)N(2)O(2) core, two halides being in cis disposition. Structural information is compared with that deduced from (113)Cd CPMAS NMR experiments. Chemical shift anisotropies are discussed in terms of distortions produced in cadmium octahedra. The orientation of the principal axes of (113)Cd shielding tensor is also analyzed and related to the disposition of ligands in the structures of two analyzed compounds.  相似文献   

14.
The structures of trans-[M(2)(CN)(4)(PH(2)CH(2)PH(2))(2)] (M = Pt (1), Pd (2), and Ni (3)), trans-[Pt(2)X(4)(PH(2)CH(2)PH(2))(2)] (X = Cl (4) and Br (5)), and trans-[M(CN)(2)(PH(3))(2)] (M = Pt (6), Pd (7), and Ni (8)) in the ground state were optimized using the MP2 method. Frequency calculations reveal that the weak metal-metal interaction is essentially attractive for 1, 2, 4, and 5 but not for 3. The TD-DFT calculations associated with the polarized continuum model (PCM) were performed to predict absorption spectra in CH(2)Cl(2) solution. Experimental spectra are well reproduced by our results. With respect to analogous mononuclear d(8) complexes (6-8), a large red shift of the absorption wavelength was calculated for the binuclear d(8) complexes (1-3). Relative to 1 with unsaturated CN- donors, introduction of saturated halogen donors into 4 and 5 changes their electronic structures, especially the HOMO and LUMO. The TD-DFT and subsequent unrestricted MP2 calculations predict that 1 produces the lowest-energy d --> p emission while 2-5 favor the d --> d emissions, agreeing with experimental observations.  相似文献   

15.
The salts of Zn(II), Cd(ii) and Hg(II) react instantaneously with Kpmf (pmf(-) = anion of N,N'-bis(pyrimidine-2-yl)formamidine, Hpmf) in THF, producing bimetallic complexes of the types [M(2)(pmf)(3)](X) (M = Zn(II), X = I(3)(-), ; M = Zn(II), X = NO(3)(-), ; M = Zn(II), X = ClO(4)(-), ; M = Cd(II), X = NO(3)(-), ; M = Cd(II), X = ClO(4)(-), ) and Hg(2)(pmf)(2)X(2) (X = Cl, ; Br, ; I, ). New tridentate and tetradentate coordination modes were observed for the pmf(-) ligands and their fluxional behaviors investigated by measuring variable-temperature (1)H NMR spectra. Complexes and , which possess only tetradentate coordination modes for the pmf(-) ligands in the solid state show larger free energy of activation (DeltaG(c)( not equal)) for the exchange than complexes and with tetradentate and/or tridentate coordination modes. Complexes and are the first dinuclear Zn(II) and Hg(II) complexes containing formamidinate ligands. Moreover, the separation between the two Hg(II) atoms are 3.4689(9), 3.4933(13) and 3.5320(10) A for complexes , respectively, similar to the sum of van der Waals radii of two Hg(II) atoms which is 3.50(7) A. All the complexes exhibit emissions and the nature of the anions hardly change the emission wavelengths of the complexes with the same metal centers. The emission bands may be tentatively assigned as intraligand (IL) pi-->pi* transitions.  相似文献   

16.
Ni(II) and Cu(II) complexes having the general composition [M(L)(2)X(2)] [where L=2-pyridinecarboxaldehyde thiosemicarbazone, M=Ni(II) and Cu(II), X=Cl(-), NO(3)(-) and 1/2 SO(4)(2-)] have been synthesized. All the metal complexes were characterized by elemental analysis, molar conductance, magnetic moment, mass, IR, EPR and electronic spectral studies. The magnetic moment measurements of the complexes indicate that all the complexes are of high-spin type. On the basis of spectral studies an octahedral geometry has been assigned for Ni(II) complexes whereas tetragonal geometry for Cu(II) except [Cu(L)(2)SO(4)] which posseses five coordinated geometry. The ligand and its metal complexes were screened against phytopathogenic fungi and bacteria in vitro.  相似文献   

17.
A series of cyano-bridged binuclear mixed valence complexes of the general formula M-Ru(III)(NH(3))(4)pyCOOH [pyCOOH = isonicotinic acid; M = cis-Ru(bpy)(2)(CN)(2), 1 (bpy = 2,2' bipyridine); trans-Ru(py)(4)(CN)(2), 2 (py = pyridine); [Ru(CN)(6)](4)(-), 3; [Fe(CN)(6)](4)(-), 4] have been prepared and anchored through the carboxylic function to nanocrystalline TiO(2) or SnO(2) electrodes. The complexes display a reversible electrochromic behavior in the range of applied potential from -0.5 to +0.5 V, versus SCE. Tuning of the electronic transitions in the visible and near-infrared spectral regions is achieved through changes of the solvent and of the cyano-bridged metal moiety M.  相似文献   

18.
A reinvestigation of the NMR spectra of the complexes (NBu4)2[M2(mu-LL)2R4] (M = Pd, Ni, Pt, LL = pyrazolate (pz), 3,5-dimethylpyrazolate (dmpz), 3-methylpyrazolate (mpz), indazolate (indz), R = C6F5; M = Pd, LL = pz, dmpz, mpz, indz, R = 2,4,6-C6F3H2) shows that the boat-shaped dimeric structures of their anions are quite stable in solution, and the previously proposed fast equilibria or dissociations to give species such as [R2M(N-N)(acetone)]-, [R2M(acetone)2] + 2dmpz-, or [R2M(N1-N2)(acetone)]- + [R2M(N2-N1)(acetone)]- in no case occur. A mixture of the two diastereoisomers (head-to-head, HH, and head-to-tail, HT) is present for the asymmetrically substituted azolates (mpz and indz), in a ratio ranging from 1:7 to 1:30 for the different complexes. Strong through-space coupling between the endo ortho fluorine nuclei of different MR2 fragments is observed in the 19F NMR spectra of these diastereoisomers whose boatlike structures place these atoms at short distances.  相似文献   

19.
Complexes analogous to the active site of dissimilatory nitrate reductase from Desulfovibrio desulfuricans are synthesized. The hexacoordinated complexes [PPh 4][Mo (IV)(PPh 3)(SR)(mnt) 2] (R = -CH 2CH 3 ( 1), -CH 2Ph ( 2)) released PPh 3 in solution to generate the active model cofactor, {Mo (IV)(SR)(mnt) 2} (1-), ready with a site for nitrate binding. Kinetics for nitrate reduction by the complexes 1 and 2 followed Michaelis-Menten saturation kinetics with a faster rate in the case of 1 ( V Max = 3.2 x 10 (-2) s (-1), K M = 2.3 x 10 (-4) M) than that reported earlier ( V Max = 4.2 x 10 (-3) s (-1), K M = 4.3 x 10 (-4) M) ( Majumdar, A. ; Pal, K. ; Sarkar, S. J. Am. Chem. Soc. 2006, 128, 4196- 4197 ). The oxidized molybdenum species may be reduced back by PPh 3 to the starting complex, and a catalytic cycle involving [Bu 4N][NO 3] and PPh 3 as the oxidizing and reducing substrates, respectively, is established with the complexes 1 and 2. Isostructural complexes, [Et 4N][Mo (IV)(PPh 3)(X)(mnt) 2] (X = -Br ( 3), -I ( 4)) did not show any reductive activity toward nitrate. The selectivity of the thiolate ligand for the functional activity and the cessation of such activity in isostructural halo complexes demonstrate the necessity of thiolate coordination. Electrochemical data of all these complexes correlate the ability of the thiolated species for such oxotransfer activity. Compounds 1 and 2 are capable of reducing substrates like TMANO or DMSO, but after the initial 15-20% conversion, the product trimethylamine or dimethylsulfide formed interacts with the active parent complexes 1 and 2 thereby slowing down further oxo-transfer reaction similar to feedback type reactions. From the functional nitrate reduction, the molybdenum species finally reacts with the nitrite formed leading to nitrosylation similar to the NO evolution reaction by periplasmic nitrate reductase from Pseudomonas dentrificans. All these complexes ( 1- 4) are characterized structurally by X-ray, elemental analysis, electrochemistry, electronic, FT-IR, mass and (31)P NMR spectroscopic measurements.  相似文献   

20.
A series of new mixed ligand hexacoordinated ruthenium(III) Schiff base complexes of the type [RuX(2)(EPh(3))(2)(LL')] (X=Cl, E=P; X=Cl or Br, E=As and LL'=anion of the Schiff bases derived from the condensation of 2-hydroxy-1-naphthaldehyde with aniline, 4-chloroaniline, 2-methyl aniline and 4-methoxy aniline) are reported. All the complexes have been characterized by analytical and spectral (IR, electronic and EPR) data. The redox behavior of the complexes has also been studied. The complexes exhibit catalytic activity in the oxidation of benzyl alcohol to benzaldehyde in the presence of N-methyl morpholine-N-oxide (NMO). An octahedral structure has been proposed for all of the complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号