首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structural and 1H NMR data have been obtained for cobaloximes with the bulkiest substituted pyridines reported so far. We have isolated in noncoordinating solvents the complexes CH3Co(DH)2L (methylcobaloxime, where DH = the monoanion of dimethylglyoxime) with L = sterically hindered N-donor ligands: quinoline, 4-CH3quinoline, 2,4-(CH3)2pyridine, and 2-R-pyridine (R = CH3, OCH3, CH2CH3, CH=CH2). We have found that the Co-N(ax) bond is very long in the structurally characterized complexes. In particular, CH3Co(DH)2(4-CH3quinoline) has a longer Co-N(ax) bond (2.193(3) A) than any reported for methylcobaloximes. The main cause of the long bonds is unambiguously identified as the steric bulk of L by the fairly linear relationship found for Co-N(ax) distance vs CCA (calculated cone angle, CCA, a computed measure of bulk) over an extensive series of methylcobaloximes. The linear relationship improves if L basicity (quantified by pKa) is taken into account. In anhydrous CDCl3 at 25 degrees C, all complexes except the 2-aminopyridine adduct exhibit 1H NMR spectra consistent with partial dissociation of L to form the methylcobaloxime dimer. 1H NMR experiments at -20 degrees C allowed us to assess qualitatively the relative binding ability of L as follows: 2,4-(CH3)2pyridine > 4-CH3quinoline approximately = quinoline approximately = 2-CH3pyridine > 2-CH3Opyridine > 2-CH3CH2pyridine > 2-CH2=CHpyridine. The broadness of the 1H NMR signals at 25 degrees C suggests a similar order for the ligand exchange rate. The lack of dissociation by 2-aminopyridine is attributed to an intramolecular hydrogen bond between the NH2 group and an oxime O atom. The weaker than expected binding of 2-vinylpyridine relative to the Co-N(ax) bond length is attributed to rotation of the 2-vinyl group required for this bulky ligand to bind to the metal center, a conclusion supported by pronounced changes in 2-vinylpyridine signals upon coordination.  相似文献   

2.
The enzymatic "activation" of coenzyme B12 (5'-deoxyadenosylcobalamin, AdoCbl), in which homolysis of the carbon-cobalt bond of the coenzyme is catalyzed by some 10(9)- to 10(14)-fold, remains one of the outstanding problems in bioinorganic chemistry. Mechanisms which feature the enzymatic manipulation of the axial Co-N bond length have been investigated by theoretical and experimental methods. Classical mechanochemical triggering, in which steric compression of the long axial Co-N bond leads to increased upward folding of the corrin ring and stretching of the Co-C bond is found to be feasible by molecular modeling, but the strain induced in the Co-C bond seems to be too small to account for the observed catalytic power. The modeling study shows that the effect is a steric one which depends on the size of the axial nucleotide base, as substitution of imidazole (Im) for the normal 5,6-dimethylbenzimidazole (Bzm) axial base decreases the Co-C bond labilization considerably. An experimental test was thus devised using the coenzyme analog with Im in place of Bzm (Ado(Im)Cbl). Studies of the enzymatic activation of this analog by the B12-dependent ribonucleoside triphosphate reductase from Lactobacillus leichmannii coupled with studies of the non-enzymatic homolytic lability of the Co-C bond of Ado(Im)Cbl show that the enzyme is only slightly less efficient (3.8-fold, 0.8 kcal mol(-1)) at activating Ado(Im)Cbl than at activating AdoCbl itself. This suggests, in agreement with the modeling study, that mechanochemical triggering can make only a small contribution to the enzymatic activation of AdoCbl. Another possibility, electronic stabilization of the Co(II) homolysis product by compression of the axial Co-N bond, requires that enzymatic activation be sensitive to the basicity of the axial nucleotide. Preliminary studies of the enzymatic activation of a coenzyme analog with a 5-fluoroimidazole axial nucleotide suggest that the catalysis of Co-C bond homolysis may indeed be significantly slowed by the decrease in basicity.  相似文献   

3.
The solution and solid state structures of two octahedral Ru(II) complexes, cis,cis,cis-RuCl(2)(Me(2)SO)(2)(py)(Me(3)Bzm) (Me(3)Bzm = 1,5,6-trimethylbenzimidazole, py = pyridine) (1) and cis,cis,cis-RuCl(2)(Me(2)SO)(2)(Me(3)Bzm)(2) (2), were compared. 2, the subject of a preliminary report, is described in more detail here. 1 has two possible geometric isomers with py trans to Cl in one (position "a") and trans to Me(2)SO in the other (position "b"), Me(3)Bzm occupying the other position in each isomer. The X-ray structure of 1 revealed that py is at "a". Since Me(3)Bzm is lopsided, each Me(3)Bzm has two possible orientations related by a rotation of approximately 180 degrees about the Ru-N3 bond; there are two possible atropisomers for each geometric isomer of 1 and four for 2. For 1, the solid state structure shows that Me(3)Bzm adopts the orientation with H2 (H on C between the two N's) pointing between the two cis Cl ligands, the same disposition as Me(3)Bzm "b" in 2 in the solid. For 1, the py signals (two broad py alpha and beta signals, a sharp gamma signal) in CDCl(3) show that py "a" is rotating on the NMR time scale and that only one atropisomer is present. This interpretation was supported by ROESY and EXSY (1)H NMR spectra. The (1)H NMR shift pattern and the NOE data can be understood best if Me(3)Bzm "b" remains primarily in the orientation found in the solid. The solution data for 1, with the nonlopsided and sterically less demanding py ligand, provide insight into the more complicated properties of 2. For 2, there is a marked dispersion of (1)H NMR signals of Me(3)Bzm "a" between the two atropisomers, which have nearly equal stability. One atropisomer is a head-to-head (HH) and the other a head-to-tail (HT) species. Me(3)Bzm "a" flips between the two species. Thus, ligand "a" is fluxional in both complexes. The dispersion of Me(3)Bzm "a" signals is due to the effect of Me(3)Bzm "b" anisotropy. For 1 and both atropisomers of 2, Me(3)Bzm "b" prefers one orientation, which appears to be the most hindered orientation. We postulate that the H2 of Me(3)Bzm "b" is electrostatically attracted to the two cis halides, accounting for this surprising result. Crystallographic details for 1 are as follows: C(19)H(29)Cl(2)N(3)O(2)RuS(2), P2(1)/c, a = 10.947(1) ?, b = 9.046(1) ?, c = 24.221(2) ?, D(calcd) = 1.580 g cm(-)(3), Z = 4, R = 0.026 for 4627 independent reflections.  相似文献   

4.
Summary The synthesis and x-ray crystal structure oftrans-[Co(dmgH)2(Et)(1,5,6-Me3Bzm)] where dmgH=dimethylglyoximate(–1), and 1,5,6-Me3Bzm=1,5,6-trimethylbenzimidazole, is reported. The compound C19H26N6O4Co is monoclinic, space group P21/n;a=11.700(4);b=24.205(6);c=8.500(3) Å and =101.63(3)°. D(calcd) 1.299 g cm–3; Z=4 and R=0.066 for 2359 independent reflections. Comparison of Co-N(axial ligand) bond lengths for compounds of general formulaetrans-[Co(dmgH)2(R)(L)], with L=pyridine or 1,5,6-trimethylbenzimidazole and R=CH(CN)Cl, CH2NO2, Me, Et,i-Pr, cyclo-hexyl or adamantyl is made. The Co–N(1,5,6-Me3Bzm) bond lengths of the trimethylbenzimidazole derivatives show a fairly linear relationship with the electronic parameter of the axial R group, derived from the13C-n.m.r. spectra of their pyridine analogues. The influence of steric effects on the properties of these CoIII compounds is discussed.  相似文献   

5.
Cadmium(II) complexes of Imidazolidine-2-selenone (ImSe) and its derivatives have been prepared with the general formula Cd(RImSe)2Cl2 (where R=Me, Et, Pr, etc.). These complexes are characterized by elemental analysis, IR and NMR (1H, 13C, 77Se and 113Cd) spectroscopy. An upfield shift in C=Se resonance of selenones in 13C NMR and in 77Se and high-frequency shifts in N-H resonances in 1H are consistent with the selenium coordination to Cd(II). The 77Se nucleus in Cd(ImSe)2Cl2 is shielded by 38 ppm on coordination, relative to the free ligand. The principal components of the 77Se, 113Cd and 13C shielding tensors for the complexes were determined from solid-state NMR data. Large selenium chemical shift anisotropies were observed for these complexes.  相似文献   

6.
The (17)O NMR chemical shifts of several previously characterized mono- and diperoxo complexes of vanadium(V), molybdenum(VI), tungsten(VI), and titanium(IV) were measured. Compilation of NMR, electronic, and vibrational spectroscopic data and metric parameters for these and other complexes permits us to draw correlations among (17)O peroxo chemical shift, the electronic charge transfer band, the O-O vibrational frequency, and the length of the oxygen-oxygen bond. Monoperoxo complexes exhibit (17)O chemical shifts of 500-660 ppm, while those of diperoxo complexes fall in the range 350-460 ppm. The correlation of chemical shift with the inverse ligand-to-metal charge transfer energy from electronic spectra is consistent with a formalism developed by Ramsey, despite the variations in the metals, the number of peroxo ligands, and the nature of the remaining ligands in the coordination sphere. Vibrational frequency and length of the oxygen-oxygen bond also correlate with the inverse ligand-to-metal charge transfer energy. Monoperoxo complexes show values of nu(O)(-)(O) above 900 cm(-)(1) and O-O distances in the range 1.43-1.46 ?. Diperoxo complexes have values of nu(O)(-)(O) below 900 cm(-)(1) and O-O distances of 1.46-1.53 ?. The assignment of nu(O)(-)(O) = 910 cm(-)(1) for the infrared spectrum of ammonium aquaoxoperoxo(pyridine-2,6-dicarboxylato)vanadium(V), NH(4)[VO(O(2))(dipic)(H(2)O)], was made by isotopic substitution. The stretching frequency and length of the O-O bond for peroxo complexes are explained in terms of sigma-bonding between a metal d orbital and a peroxo pi orbital. A comparison of the spectroscopic properties of these complexes with their reactivity as oxidizing agents suggests that the strength of the O-O bond is an important factor. The most reactive species exhibit lambda(max) values below 400 nm, stretching frequencies below 900 cm(-)(1), and (17)O chemical shifts below 600 nm. These generalizations may permit the prediction of peroxometal reactivity from spectroscopic information.  相似文献   

7.
Complete NMR analyses with full assignments for (1)H and (13)C NMR spectral data for both epimers of menthane-1-carboxylic acid are described. The NMR properties of the recently synthesized axial isomer had not been previously described, and through use of a variety of 1D and 2D techniques, additional information is provided for the equatorial isomer. As well as assignments of chemical shifts, homonuclear coupling constants were determined for the equatorial isomer and most of coupling constants were measured for the axial isomer.  相似文献   

8.
A series of (pseudo)halo(1,3-di-tert-butylimidazol-2-ylidine)gold complexes [(But2Im)AuX](X = Cl, Br, I, CN, N3, NCO, SCN, SeCN, ONO2, OCOCH3, CH3) have been synthesized and characterised spectroscopically and structurally. 13C NMR chemical shifts for the carbene carbon vary widely with differing ancillary anion, correlating well with the sigma-donor ability of the latter and with the M-C(carbene) bond distance. These results reinforce the notion that N-heterocyclic carbene ligands are primarily sigma-donor ligands with little pi-acceptor ability.  相似文献   

9.
We wish to report the first measurements of (199)Hg NMR chemical shift data for a series of homoleptic Hg(II) complexes with thiacrown ligands and related aza and mixed thia/aza macrocycles. In mercury(II) complexes containing trithiacrown through hexathiacrown ligands, we observed (199)Hg NMR chemical shifts in the range of -298 to -1400 ppm. Upfield chemical shifts in these NMR spectra are seen whenever (a) the number of thioether sulfur donors in the complex is decreased, (b) a thioether sulfur donor is replaced by a secondary nitrogen donor, and (c) the size of the macrocycle ring increases without a change in the nature or number of the donor atoms. Changes in noncoordinating anions, such as hexafluorophosphate and perchlorate, have little effect on the (199)Hg chemical shift. For several complexes, we observed (3)J((199)Hg-(1)H) coupling in the range of 50-100 Hz, the first example of proton-mercury coupling through a C-S thioether bond. Also, we obtained unusual upfield (13)C NMR chemical shifts for methylene resonances in several of the thiacrown complexes which correspond to distortions within the five- and six-membered chelate rings bound to the mercury ion. We report the X-ray crystal structure of the complex [Hg(18S6)](PF(6))(2) (18S6 = 1,4,7,10,13,16-hexathiacyclooctadecane). The molecule crystallizes in the rare trigonal space group Pm1 with hexakis(thioether) coordination around the Hg(II) center confirming previous X-ray photoemission spectroscopic data on the compound. The lack of an observable (199)Hg NMR signal for the complex is the result of the identical length (2.689(2) Angstroms) of all six Hg-S bonds. We additionally report the X-ray structure of the complex [Hg(9N3)(2)](ClO(4))(2) (9N3 = 1,4,7-triazacyclononane) which shows hexakis(amine) coordination of the 9N3 to form a distorted trigonal prismatic structure. Solution dissociation of the one of the 9N3 ligands from the mercury ion is confirmed by multinuclear NMR experiments. For six-coordinate macrocyclic Hg(II) complexes, N6 donor sets have a preference for trigonal prisms while S6 donor sets favor octahedral structures.  相似文献   

10.
Novel 1D and multidimensional solid-state NMR (SSNMR) methods using very fast magic-angle spinning (VFMAS) (spinning speed > 20 kHz) for performing 13C high-resolution SSNMR of paramagnetic organometallic complexes are discussed. VFMAS removes a majority of 13C-1H and 1H-1H dipolar couplings, which are often difficult to remove by RF pulse techniques in paramagnetic complexes because of large paramagnetic shifts. In the first systematic approach using the unique feature of VFMAS for paramagnetic complexes, we demonstrate a means of obtaining well-resolved 1D and multidimensional 13C SSNMR spectra, sensitivity enhancements via cross polarization, and signal assignments, and applications of dipolar recoupling methods for nonlabeled paramagnetic organometallic complexes of moderate paramagnetic shifts ( approximately 800 ppm). Experimental results for powder samples of small nonlabeled coordination complexes at 1H frequencies of 400.2-400.3 MHz show that highly resolved 13C SSNMR spectra can be obtained under VFMAS, without requirements of 1H decoupling. Sensitivity enhancement in 13C SSNMR via cross polarization from 1H spins was demonstrated with an amplitude-sweep high-power CP sequence using strong RF fields ( approximately 100 kHz) available in the VFMAS probe. 13C CPMAS spectra of nonlabeled Cu(II)(dl-alanine)2.(H2O) and V(III)(acetylacetonate)3 (V(acac)3) show that it is possible to obtain high-resolution spectra for a small quantity ( approximately 15 mg) of nonlabeled paramagnetic organometal complexes within a few minutes under VFMAS. Experiments on Cu(II)(dl-alanine)2.(H2O) demonstrated that 1H-13C dipolar recoupling for paramagnetic organometal complexes can be performed under VFMAS by application of rotor-synchronous pi-pulses to 1H and 13C spins. The results also showed that signal assignments for 13CH, 13CH3, and 13CO groups in paramagnetic complexes are possible on the basis of the amount of 13C-1H dipolar dephasing induced by dipolar recoupling. Furthermore, the experimental 2D 13C/1H chemical-shift correlation NMR spectrum obtained for nonlabeled V(acac)3 exhibits well-resolved lines, which overlap in 1D 13C and 1H spectra. Signals for different chemical groups in the 2D spectrum are distinguished by the 13C-1H dipolar dephasing method combined with the 2D 13C/1H correlation NMR. The assignments offer information on the existence of nonequivalent ligands in the coordination complex in solids, without requiring a single-crystal sample.  相似文献   

11.
The X-ray structures of three new crystals of nitroxylcobalamin (NOCbl) have been determined. Unlike our earlier reported structure in which NOCbl was partially oxidized (L. Hannibal, C. A. Smith, D. W. Jacobsen and N. E. Brasch, Angew. Chem., Int. Ed. 2007, 46, 5140), the O atom of the nitroxyl ligand is located in a single position with a N=O bond distance of 1.12-1.14 ?, consistent with a double bond. The Co-N-O angle is in the 118.9-120.3 ? range. The α-axial Co-N(dimethylbenzimidazole) (Co-NB3) bond distance is a remarkable 2.32-2.35 ? in length, ~0.1 ? longer than that reported for all other cobalamin structures. The change in the Gibbs free energy for the base-on/base-off equilibrium now correlates extremely well with the Co-NB3 bond distance, as observed for other cobalamins.  相似文献   

12.
Three mixed ligand complexes of gold(I) with phosphines and selenones, [Et3PAuSe=C<]Br as analogues of auranofin (Et3PAuSR) have been prepared and characterized by elemental analysis, IR and NMR methods. A decrease in the IR frequency of the C=Se mode of selenones upon complexation is indicative of selenone binding to gold(I) via a selenone group. An upfield shift in 13C NMR for the C=Se resonance of the selenones and downfield shifts in 31P NMR for the R3P moiety are consistent with the selenium coordination to gold(I). 13C solid state NMR shows the chemical shift difference between free and bound selenone to gold(I) for ImSe and DiazSe to be ca 10 and 17?ppm respectively. Large 77Se NMR chemical shifts (55?ppm) upon complexation in the solid state for [Et3PAuDiazSe]Br compared to [Et3PAuImSe]Br (10?ppm) indicates the former to be more stable and the Au–Se bond to be stronger than in the latter complex.  相似文献   

13.
The aromatic C-H...O hydrogen bonding within the series of the structurally relative indenone derivatives has been studied. The presence of the hydrogen bonds is corroborated by the large low-field chemical shifts of the protons involved in the hydrogen bond observed experimentally and reproduced by quantum mechanical calculations. Further confirmation is provided by analysis of the orbital overlap coefficients, (13)C NMR chemical shifts, and one-bond spin-spin coupling constants J((13)C-(1)H). The relationship between molecular geometry and (1)H NMR chemical shifts of involved protons has a complex nature, but the C-H...O distance is the principal factor.  相似文献   

14.
本文测定了具有抗癌活性的咖啡咽铂、茶碱铂、可可碱铂络合物的~1H和~(13)C-NMR谱,考察了络合前后生物碱配体~1H和~(13)C化学位移的变化,结合氢-铂、碳-铂偶合常数的测定,确定了各生物碱配位原子为咪唑环上双键氮,应用核磁共振技术搞清了与一般抗癌铂类络合物结构不同的咖啡咽铂等络合物的结构,并用异核选择去偶双共振技术对全部~(13)C和~1H谱线进行了归属。  相似文献   

15.
We report the first solid-state NMR, crystallographic, and quantum chemical investigation of the origins of the 13C NMR chemical shifts of the imidazole group in histidine-containing dipeptides. The chemical shift ranges for Cgamma and Cdelta2 seen in eight crystalline dipeptides were very large (12.7-13.8 ppm); the shifts were highly correlated (R2= 0.90) and were dominated by ring tautomer effects and intermolecular interactions. A similar correlation was found in proteins, but only for buried residues. The imidazole 13C NMR chemical shifts were predicted with an overall rms error of 1.6-1.9 ppm over a 26 ppm range, by using quantum chemical methods. Incorporation of hydrogen bond partner molecules was found to be essential in order to reproduce the chemical shifts seen experimentally. Using AIM (atoms in molecules) theory we found that essentially all interactions were of a closed shell nature and the hydrogen bond critical point properties were highly correlated with the N...H...O (average R2= 0.93) and Nepsilon2...H...N (average R2= 0.98) hydrogen bond lengths. For Cepsilon1, the 13C chemical shifts were also highly correlated with each of these properties (at the Nepsilon2 site), indicating the dominance of intermolecular interactions for Cepsilon1. These results open up the way to analyzing 13C NMR chemical shifts, tautomer states (from Cdelta2, Cepsilon1 shifts), and hydrogen bond properties (from Cepsilon1 shifts) of histidine residue in proteins and should be applicable to imidazole-containing drug molecules bound to proteins, as well.  相似文献   

16.
Characterizing paramagnetic complexes in solids is an essential step toward understanding their molecular functions. However, methodologies to characterize chemical and electronic structures of paramagnetic systems at the molecular level have been notably limited, particularly for noncrystalline solids. We present an approach to obtain connectivities of chemical groups and metal-binding structures for unlabeled paramagnetic complexes by 13C and 1H high-resolution solid-state NMR (SSNMR) using very fast magic angle spinning (VFMAS, spinning speed >or=20 kHz). It is experimentally shown for unlabeled Cu(II)(Ala-Thr) that 2D 13C/1H correlation SSNMR under VFMAS provides the connectivity of chemical groups and assignments for the characterization of unlabeled paramagnetic systems in solids. We demonstrate that on the basis of the assignments provided by the VFMAS approach multiple 13C-metal distances can be simultaneously elucidated by a combination of measurements of 13C anisotropic hyperfine shifts and 13C T1 relaxation due to hyperfine interactions for this peptide-Cu(II) complex. It is also shown that an analysis of 1H anisotropic hyperfine shifts allows for the determination of electron-spin states in Fe(III)-chloroprotoporphyin-IX in solid states.  相似文献   

17.
Protein control of cobalt-axial nitrogen ligand bond length has been proposed to modulate the reactivity of vitamin B(12) coenzyme during the catalytic cycle of B(12)-dependent enzymes. In particular, hyper-long Co-N bonds may favor homolytic cleavage of the trans-cobalt-carbon bond in the coenzyme. X-ray crystallographic studies point to hyper-long bonds in two B(12) holoenzymes; however, mixed redox and ligand states in the crystals thwart clear conclusions. Since EPR theory predicts an increase in Co(II) hyperfine splitting as donation from the axial N-donor ligand decreases, EPR spectroscopy could clarify the X-ray results. However, the theory is apparently undermined by the similar splitting reported for the 2-picoline (2-pic) and pyridine (py) adducts of Co(II) cobinamide (Co(II)Cbi(+)), adducts thought to have long and normal Co-N axial bond lengths, respectively. Cobinamides, with the B(12) 5,6-dimethylbenzimidazole loop removed, are excellent B(12) models. We studied Co(II)Cbi(+) adducts of unhindered 4-substituted pyridines (4-X-py's) in ethylene glycol to separate orbital size effects from Co-N axial distance effects on these splittings. The linear increase in splitting with the decrease in 4-X-py basicity found is consistent with the theoretically predicted increase in unpaired electron spin density as axial N lone pair donation to Co(II) decreases. No adduct (and hence no hyper-long Co(II)-N axial bond) was formed even by 8 M 2-pic, if the 2-pic was purified by a novel Co(III)-affinity distillation procedure designed to remove trace nitrogenous ligand impurities present in 2-pic distilled in the regular manner. Adducts formed by impurities in 2-pic and other hindered pyridines misled previous investigators into attributing results to adducts with long Co-N bonds. We find that many 2-substituted py's known to form adducts with simple synthetic Co models do not bind Co(II)Cbi(+). Thus, the equatorial corrin ring sterically impedes binding, making Co(II)Cbi(+) a highly selective binding agent for unhindered sp(2) N-donor ligands. Our results resolve the apparent conflict between EPR experiment and theory. The reported Co(II) hyperfine splitting of the enzyme-bound cofactor in five B(12) enzymes is similar to that of the relevant free cofactor. The most reasonable interpretation of this similarity is that the Co-N axial bond of the bound cofactor is not hyper-long in any of the five cases.  相似文献   

18.
1H, 13C, and 15N NMR studies of platinide(II) (M=Pd, Pt) chloride complexes with quinolines (L=quinoline-quin, or isoquinoline-isoquin; LL=2,2'-biquinoline-bquin), having the general formulae trans-/cis-[ML2Cl2] and [M(LL)Cl2], were performed and the respective chemical shifts (delta1H, delta13C, delta15N) reported. 1H coordination shifts of various signs and magnitudes (Delta1Hcoord=delta1Hcomplex-delta1Hligand) are discussed in relation to the changes of diamagnetic contribution to the relevant 1H shielding constants. The comparison to the literature data for similar complexes containing auxiliary ligands other than chlorides exhibited a large dependence of delta1H parameters on electron density variations and ring-current effects (inductive and anisotropic phenomena). The influence of deviations from planarity, concerning either MN2Cl2 chromophores or azine ring systems, revealed by the known X-ray structures of [Pd(bquin)Cl2] and [Pt(bquin)Cl2], is discussed in respect to 1H NMR spectra. 15N coordination shifts (Delta15Ncoord=delta15Ncomplex-delta15Nligand) of ca. 78-100 ppm (to lower frequency) are attributed mainly to the decrease of the absolute value of paramagnetic contribution in the relevant 15N shielding constants, this phenomenon being noticeably dependent on the type of a platinide metal and coordination sphere geometry. The absolute magnitude of Delta15Ncoord parameter increased by ca 15 ppm upon Pd(II)-->Pt(II) replacement but decreased by ca. 15 ppm following trans-->cis transition. Experimental 1H, 13C, 15N NMR chemical shifts are compared to those quantum-chemically calculated by B3LYP/LanL2DZ+6-31G**//B3LYP/LanL2DZ+6-31G*, both in vacuo and in CHCl3 or DMF solution.  相似文献   

19.
A series of intramolecularly hydrogen-bonded N-substituted 3-(piperidine, morpholine, N-methylpiperazine)thiopropionamides and some corresponding amides have been studied with special emphasis on hydrogen bonding. The compounds have been selected in order to vary and to minimize the N...N distance. Geometries, charge distributions, and chemical shifts of these compounds are obtained from DFT-type BP3LYP calculations. 1H and 13C 1D and 2D NMR experiments were performed to obtain H,H coupling constants, 13C chemical shifts assignments, and deuterium isotope effects on13C chemical shifts. Variable-temperature NMR studies and 2D exchange NMR spectra have been used to describe the rather complicated conformational behavior mainly governed by the ring flipping of the piperidine (morpholine) rings and intramolecular hydrogen bonding. Unusual long-range deuterium isotope effects on 13C chemical shifts are observed over as far as eight bonds away from the site of deuteriation. The isotope effects are related to the N...N distances, thus being related to the hydrogen bonding and polarization of the N-H bond. Arguments are presented showing that the deuterium isotope effects on 13C chemical shifts originate in electric field effects.  相似文献   

20.
Summary Crystalline copper(I) complexes of the general formula [LCuCl] and [L2CuCl] were prepared for imidazolidine-2-thiones and 1,3-diazinane-2-thiones by the reduction of copper(II) halides with an excess of the ligands. The13C n.m.r. and i.r. spectra of these complexes are consistent with thione sulphur (ligand) donation in all cases. The magnitude of the high-field shift in the13C resonance of the thioureide carbon in the complexes as compared with that of the free ligands is interpreted in terms of coordination geometry around the metal atoms. A comparison of the chemical shifts for gold(I), silver(I) and copper(I) revealed a displacement ofca. 6–8 ppm for the mono- and 2–4 ppm for the bis-complexes, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号