首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gas phase structure of O-nitrobis(trifluoromethyl)hydroxylamine, (CF(3))(2)NONO(2), has been determined with gas electron diffraction and quantum chemical calculations (HF, MP2, and B3LYP with 6-31G basis sets). The calculations predict a structure with C(s) overall symmetry, a planar NONO(2) skeleton, and the NO(2) group oriented anti with respect to the CNC plane. The electron diffraction intensities are reproduced very well with such a model. The molecule possesses pyramidal configuration at the amino nitrogen atom, and the following geometric parameters (r(a) values with 3sigma uncertainties) were obtained for the NONO(2) skeleton: N-O = 1.392(18) A, O-N = 1.597(16) A, (N=O)(mean) = 1.192(4) A, N-O-N = 106.9(25) degrees, O=N=O = 138.4(24) degrees. The extremely long O-N distance is rationalized by very weak bonding between the two stable radicals (CF(3))(2)NO and NO(2). Whereas the ab initio methods HF (O-N = 1.395 A) and MP2 (O-N = 1.664 A) fail to reproduce this bond length correctly, the hybrid method B3LYP (O-N = 1.584 A) results in good agreement.  相似文献   

2.
As shown previously by X-ray structure determinations, [tris(1,3-dithiole-2-thione-4,5-dithiolato)stannate(IV)](2-) salts, [Q](2)[Sn(dmit)(3)], contain isolated cations and dianions. While the tin centres generally having octahedral geometries, the overall shapes of the dianions of these complexes in the solid state can differ with conformations varying from T, Y to asymmetrical arrangements. We now report, as a follow up to our earlier study on the Y-shaped complex, [NEt(4)](2)[Sn(dmit)(3)], an experimental and theoretical study of the vibrational spectra of solid solvated {[AsPh(4)](2)[Sn(dmit)(3)] x Me(2)CO}, in which the dianion has a T-shaped conformation. The infrared and Raman spectra, recorded from 4000 to 150 cm(-1), have been analysed by different ab initio calculations based on restricted Hartree-Fock (RHF) and density functional theory (DFT-Beck3LYP). The calculations were carried out on isolated dianions and cations with the 6-31G and 6-31G(d) basis sets and effective core potentials of Steven, Bash and Krauss (SBK). Fundamentals, overtones and combinations have been assigned. Generally, the Y- and T-shaped dianions exhibit similar infrared/Raman spectra, apart from differences in the C=C and the symmetrical M-S stretching frequencies: such differences can be used diagnostically to distinguish the overall shape of the tris(chelated)metallate dianion.  相似文献   

3.
Fourier transform polarized IR and Raman spectra of bis(guanidine) zirconium bis(nitrilotriacetate) hydrate single crystal [C(NH(2))(3)](2)[Zr[N(CH(2)COO)(3)](2)](H(2)O) have been measured in the regions 30-4000 and 80-4000 cm(-1) and correlated with X-ray structural data. The factor group analysis has been applied in the discussion of the dichroic dependence of the vibrational modes. The assignment of the internal vibrations for the [Zr(nitrilotriacetate)2]2- complex ion has been based on the ab initio quantum chemical calculations. The usefulness of the studied crystal as Raman laser converter was analyzed basing on the comparison of the spontaneous and stimulated Raman spectra.  相似文献   

4.
The changes in the structural parameters and vibrational characteristics (vibrational frequencies, infrared intensities and Raman activities) arising from the hydrogen bonding between NO(2) and HONO(2) have been studied employing ab initio 6-31G(d, p)/UHF and 6-31+G(d, p)/UHF, and B3LYP/6-31G(d, p) calculations. The charge rearrangement upon hydrogen bonding have been, estimated using the Mulliken population analyses. It was established that the complexation between NO(2) and HONO(2) leads to changes in the structural parameters and the vibrational characteristics of the monomers. The most sensitive to the hydrogen bond formation are the vibrational characteristics of the normal modes of the monomer bonds participating in the hydrogen bonding. The predicted shifts in the vibrational frequencies by ab initio and B3LYP/6-31G(d, p) calculations are in very good agreement with the experimentally observed, which is an evidence for the reliance of the studied structure.  相似文献   

5.
The highly explosive molecules As(N(3))(3) and Sb(N(3))(3) were obtained in pure form by the reactions of the corresponding fluorides with (CH(3))(3)SiN(3) in SO(2) and purification by sublimation. The crystal structures and (14)N NMR, infrared, and Raman spectra were determined, and the results compared to ab initio second-order perturbation theory calculations. Whereas Sb(N(3))(3) possesses a propeller-shaped, pyramidal structure with perfect C(3) symmetry, the As(N(3))(3) molecule is significantly distorted from C(3) symmetry due to crystal packing effects.  相似文献   

6.
The BrO(3)F(2)(-) anion has been prepared by reaction of BrO(3)F with the fluoride ion donors KF, RbF, CsF, [N(CH(3))(4)][F], and NOF. The BrO(3)F(2)(-) anion is only the fourth Br(VII) species to have been isolated in macroscopic quantities, and it is one of only three oxide fluorides that possess D(3)(h)() symmetry, the others being XeO(3)F(2) and OsO(3)F(2). The fluoride ion acceptor properties of BrO(3)F contrast with those of ClO(3)F, which does not react with the strong fluoride ion donor [N(CH(3))(4)][F] to form the analogous ClO(3)F(2)(-) salt. The single-crystal X-ray structures of [NO](2)[BrO(3)F(2)][F] and [N(CH(3))(4)][BrO(3)F(2)] confirm the D(3)(h)() symmetry of the BrO(3)F(2)(-) anion and provide accurate Br-O (1.593(3)-1.610(6) A) and Br-F (1.849(5)-1.827(4) A) bond lengths. The salt, [NO](2)[BrO(3)F(2)][F], is fully ordered, crystallizing in the monoclinic space group, C2/c, with a = 9.892(3) A, b = 12.862(4) A, c = 10.141(4) A, beta = 90.75(2) degrees , V = 12460(7) A(3), Z = 4, and R(1) = 0.0671 at -173 degrees C, whereas [N(CH(3))(4))][BrO(3)F(2)] exhibits a 2-fold disorder of the anion, crystallizing in the tetragonal space group, P4/nmm, with a = 8.5718(7) A, c = 5.8117(6) A, V = 427.02(7) A(3), Z = 2, and R(1) = 0.0314 at -173 degrees C. The (19)F chemical shift of [N(CH(3))(4))][BrO(3)F(2)] in CH(3)CN is 237.0 ppm and is more deshielded than those of the previously investigated Br(VII) species, BrO(3)F and BrF(6)(+). The vibrational frequencies of the BrO(3)F(2)(-) anion were determined by use of Raman and infrared spectroscopy and were assigned with the aid of electronic structure calculations and by analogy with the vibrational assignments reported for XeO(3)F(2) and OsO(3)F(2). The internal and symmetry force constants of BrO(3)F(2)(-) were determined by use of general valence force field and B-matrix methods, respectively, and are compared with those of XeO(3)F(2), OsO(3)F(2), and the unknown ClO(3)F(2)(-) anion. The instability of ClO(3)F(2)(-) relative to BrO(3)F(2)(-) has been investigated by electronic structure calculations and rationalized in terms of atomic charges, Mayer bond orders, and Mayer valencies, and the enthalpies of fluoride ion attachment to BrO(3)F and ClO(3)F.  相似文献   

7.
Variable temperature (-55--100 degrees C) studies of the infrared spectra (3500-400 cm(-1)) of ethylphosphine-borane, CH3CH2PH2BH3, and ethylphosphine-borane-d5 dissolved in liquid xenon have been recorded. From these data, the enthalpy difference has been determined to be 86 +/- 8 cm(-1) (1.03 +/- 0.10 kJ/mol), with the trans conformer the more stable rotamer. Complete vibrational assignments are presented for both conformers, which are consistent with the predicted frequencies obtained from the ab initio MP2/6-31G(d) calculations. The optimized geometries, conformational stabilities, harmonic force fields, infrared intensities, Raman activities, and depolarization ratios have been obtained from RHF/6-31G(d) and/or MP2/6-31G(d) ab initio calculations. These quantities are compared to the corresponding experimental quantities when appropriate as well as with some corresponding results for some similar molecules. The r0 structural parameters have been obtained from a combination of the previously reported microwave rotational constants and ab initio predicted parameters.  相似文献   

8.
The infrared and Raman spectra of UO(2)(NH(3))(2)(NO(3))(2) with (14)NH(3)/(15)NH(3) isotopic substitution were measured. The structure was optimized and the vibrational spectrum was calculated by DFT (B3LYP/6-31G(d)) methodology using relativistic effective core potential for U atom. The results for force constant and vibrational frequencies support the experimental assignments and the proposed model, mainly in the far-infrared region, where the metal-ligand bond and lattice vibrations are observed. Based on the theoretical findings and the observed spectra a structure of distorted D(2h) symmetry with the nitrate group acting like bidentate ligands for the UO(2)(NH(3))(2)(NO(3))(2) is proposed.  相似文献   

9.
Fourier transform-infrared (4000-400 cm-1) and Raman (3500-50 cm-1) spectral measurements have been made for 6-methyl-4-bromomethylcoumarin. Equilibrium structures, harmonic vibrational frequencies, infrared intensities, and depolarization ratios have been computed at RHF/6-31G* and B3LYP/6-31G* levels of theory. Twisting CH2Br moiety in the geometry optimization leads to the most stable conformer lacking symmetry (C1). This is reflected in the richness of bands in the experimental spectra. A complete assignments of the bands, aided by the ab initio calculations, has been proposed for the 6-methyl-4-bromomethylcoumarin. Due to lack of symmetry, several normal vibrations have been found to be mixed ones.  相似文献   

10.
The conformational and tautomeric compositions of malonamide, NH2-C(O)-CH2-C(O)-NH2 were determined by vibrational spectroscopy and theoretical calculations (HF/6-31G*, B3PW91/6-31G*). Solid state Fourier transform infrared and Raman spectra were analysed. They reveal the existence of a diketo tautomer. Theoretical calculations predict a diketo structure belonging to the C1 symmetry group. No enol form is present in the molecule in the solid. 13C-NMR studies show only signals of a diketo tautomer.  相似文献   

11.
Spectroscopic data are presented for the [V(OH(2))(6)](3+) and [Ru(OH(2))(6)](3+) cations, from which inferences are drawn regarding their structures in aqueous solution. EPR and absorption spectra of solutions and glasses are supplemented by spectra of the aqua ions in various crystalline environments, and the electronic and molecular structures inter-related through elementary angular overlap model calculations. It is concluded that in aqueous solution the [Ru(OH(2))(6)](3+) cation is localized in the all-horizontal D(3)(d)geometry, whereas the structure of the [V(OH(2))(6)](3+) cation is close to T(h) symmetry. These results are consistent with the most energetically favored geometries predicted by ab initio calculations.  相似文献   

12.
From analysis of the infrared and Raman spectra along with support from the ab initio predictions it is concluded that there is only one stable conformer of dimethylaminodifluorophosphine, (CH(3))(2)NPF(2), in the gaseous and liquid phases which has a planar PNC(2) moiety with C(s) symmetry. The adjusted r(0) structural parameters have been obtained by combining the MP2(full)/6-311+G(d) predicted values with the previous reported rotational constants for four isotopomers obtained from previously reported microwave studies. The difference in the two NC distances is 0.002A whereas, these two parameters were previously assumed to have the same values from the microwave and electron diffraction studies but a reported difference of 0.025A from the structural parameters of the crystal. The adjusted r(0) heavy atom distances and angles are: r(PF)=1.593(3); r(NP)=1.654(3); r(NC(i))=1.455(3); r(NC(o))=1.453(3) A; angleFPF=93.5(5); angleNPF=100.8(5); angleCNC=116.0(5); angleC(i)NP=124.1(5); angleC(o)NP=120.0 degrees . The planar bonding around the nitrogen atom is consistent with the previously reported structural information from the microwave study but differs from the slightly pyramidal bonding obtained in the electron diffraction investigation. To support the vibrational assignment MP2(full) ab initio calculations with the 6-31G(d) basis set were carried out to predict the fundamental vibrational frequencies, infrared intensities, Raman activities, depolarization values, infrared band contours, and centrifugal distortion constants. Vibrational assignments are given for (CH(3))(2)NPF(2) and (CD(3))(2)NPF(2) and comparisons are made with the predicted intensities, frequencies and centrifugal distortion constants. Frequencies of some of the lattice modes are reported from both the infrared and Raman spectra with suggested assignments based on the factor group symmetry of the crystal of D(2h)(16) (Pnma) with four molecules per primitive cell. These results are compared to the corresponding quantities of some similar molecules.  相似文献   

13.
Infrared predissociation (IRPD) spectra of Li(+)(C(6)H(6))(1-4)(H(2)O)(1-2)Ar(0-1) and Na(+)(C(6)H(6))(2-4)(H(2)O)(1-2)Ar(1) are presented along with ab initio calculations. The results indicate that the global minimum energy structure for Li(+)(C(6)H(6))(2)(H(2)O)(2) has each water forming a π-hydrogen bond with the same benzene molecule. This bonding motif is preserved in Li(+)(C(6)H(6))(3-4)(H(2)O)(2)Ar(0-1) with the additional benzene ligands binding to the available free OH groups. Argon tagging allows high-energy Li(+)(C(6)H(6))(2-4)(H(2)O)(2)Ar isomers containing water-water hydrogen bonds to be trapped and detected. The monohydrated, Li(+) containing clusters contain benzene-water interactions with varying strength as indicated by shifts in OH stretching frequencies. The IRPD spectra of M(+)(C(6)H(6))(1-4)(H(2)O)(1-2)Ar are very different for lithium-bearing versus sodium-bearing cluster ions emphasizing the important role of ion size in determining the most favorable balance of competing noncovalent interactions.  相似文献   

14.
Three Co(II)-malonate complexes, namely, (C(5)H(7)N(2))(4)[Co(C(3)H(2)O(4))(2)(H(2)O)(2)](NO(3))(2) (1), (C(5)H(7)N(2))(4)[Co(C(3)H(2)O(4))(2)(H(2)O)(2)](ClO(4))(2) (2), and (C(5)H(7)N(2))(4)[Co(C(3)H(2)O(4))(2)(H(2)O)(2)](PF(6))(2) (3) [C(5)H(7)N(2) = protonated 2-aminopyridine, C(3)H(4)O(4) = malonic acid, NO(3)(-) = nitrate, ClO(4)(-) = perchlorate, PF(6)(-) = hexafluorophosphate], have been synthesized from purely aqueous media, and their crystal structures have been determined by single crystal X-ray diffraction. A thorough analysis of Hirshfeld surfaces and fingerprint plots facilitates a comparison of intermolecular interactions in 1-3, which are crucial in building supramolecular architectures. When these complexes are structurally compared with their previously reported analogous Ni(II) or Mg(II) compounds, a very interesting feature regarding the role of counteranions has emerged. This phenomenon can be best described as anion-induced formation of extended supramolecular networks of the type lone pair-π/π-π/π-anion-π/π-lone pair and lone pair-π/π-π/π-anion involving various weak forces like lone pair-π, π-π, and anion-π interactions. The strength of these π contacts has been estimated using DFT calculations (M06/6-31+G*), and the formation energy of the supramolecular networks has been also evaluated. The influence of the anion (NO(3)(-), ClO(4)(-), and PF(6)(-)) on the total interaction energy of the assembly is also studied.  相似文献   

15.
We report on ab initio calculations at the G2(MP2) level of the structures and Al-N(P) bond complexation energies of the (CH(3))(n)H(3)(-)(n)AlNX(3) and (CH(3))(n)H(3)(-)(n)()AlPX(3) (X = H, F, and Cl; n = 0-3) donor-acceptor complexes. For the (CH(3))(3)AlNX(3) and (CH(3))(3)AlPX(3) complexes, the C(3)(v) symmetry is found to be favored, and for the other complexes the C(s) symmetry is found to be favored. The G2(MP2) calculated complexation energies show for the amine ligands the trend NH(3) > NCl(3) > NF(3). A similar trend PH(3) approximately PCl(3) > PF(3) is predicted for the phosphane ligands. The NBO partitioning scheme shows that there is no correlation between the stability and the charge transfer.  相似文献   

16.
Photoelectron spectroscopy is combined with ab initio calculations to study the microsolvation of the dicyanamide anion, N(CN)(2)(-). Photoelectron spectra of [N(CN)(2)(-)](H2O)n (n = 0-12) have been measured at room temperature and also at low temperature for n = 0-4. Vibrationally resolved photoelectron spectra are obtained for N(CN)(2)(-), allowing the electron affinity of the N(CN)2 radical to be determined accurately as 4.135 +/- 0.010 eV. The electron binding energies and the spectral width of the hydrated clusters are observed to increase with the number of water molecules. The first five waters are observed to provide significant stabilization to the solute, whereas the stabilization becomes weaker for n > 5. The spectral width, which carries information about the solvent reorganization upon electron detachment in [N(CN)(2)(-)](H2O)n, levels off for n > 6. Theoretical calculations reveal several close-lying isomers for n = 1 and 2 due to the fact that the N(CN)(2)(-) anion possesses three almost equivalent hydration sites. In all the hydrated clusters, the most stable structures consist of a water cluster solvating one end of the N(CN)(2)(-) anion.  相似文献   

17.
The Raman and infrared spectra of solid K2(12)C2O4 x H2O are reported together with, for the first time, the corresponding Raman and infrared spectra of solid K2(13)C2O4 x H2O. Raman spectra of aqueous solutions of both isotopomers are also reported. In the solid state the oxalate anion is planar with D2h symmetry in this salt, whereas in aqueous solution the Raman spectra of the anion are best interpreted on the basis of D2d symmetry. The Raman spectra of solid (NH4)2(12)C2O4 x H2O and (NH4)2(13)C2O4 x H2O, in which the oxalate anion is twisted from planarity by 28 degrees about the CC bond, have also been recorded. Several reassignments have been made. The harmonic force field for the oxalate anion in the D2h, D2 and D2d geometries has been determined in part, and approximate values of key valence force constants determined. All the observed band wavenumbers and 12C/13C isotopic shifts are well reproduced by the force fields. The potential energy distribution of the totally symmetric normal modes of planar oxalate indicates that each mode consists of extensively mixed symmetry corrdinates and that the labels previously used for the bands seen here at 475 and 879 cm(-1) would better be described as v(CC) and deltaS(CO2), respectively, putting them in the same wavenumber order as v(NN) and deltaS(NO2) for the isoelectronic and isostructural molecule N2O4. The stretching force constants of N2O4 and planar C2O4(2-) are established to be in the order f(NN) < f(CC) and f(NO) > f(CO), consistent with the known relative bond lengths.  相似文献   

18.
Fourier transform infrared and Raman spectra of dimethylterephthalate (DMT), as microcrystalline powder, have been investigated. The vibrational spectra were calculated using the AM1 and PM3 semi empirical procedures, and the M?ller-Plesset (MP2/DZV), and the Becke-Lee, Yang and Parr gradient-corrected correlation functional: B3LYP/6-31G(d) ab initio calculations. On this basis, and assisted with the FT-IR and Raman spectra of the terephthalic acid, an assignment of the vibrational spectra of dimethylterephthalate was proposed. In the calculations, remarkable differences concerning the assignments of the vibrational spectra were noted between the AM1 and PM3 methods. Also, the ab initio procedure shows differences in interpreting the spectra compared with the semi empiric procedures, and among themselves. Calculated geometrical parameters were compared with the experimental values of dimethylterephthalate, diethylterephthalate and terephthalic acid.  相似文献   

19.
The FT-Raman and FT-infrared spectra of (1-methyluracilato)silver, [Ag(C(5)H(5)N(2)O(2))] in the solid state have been studied. The complex is a polymer in which one silver ion is linearly bonded to two 1-MeU ligands through the deprotonated N(3) sites and another silver ion is tetrahedrally coordinated to the four 1-MeU ligands through the O2 and O4 carbonyl oxygen atoms. The harmonic vibrational frequencies, infrared intensities and Raman scattering activities of the N(3)-deprotonated 1-methyluracilate anion have been calculated using density functional (B3LYP) and ab initio (HF and MP2) methods with the 6-31G(d,p) and 6-31++G(df,pd) basis sets. The calculated potential energy distribution (PED) for the 1-MeU anion has proved to be of great help in assigning the spectra of the title complex. It can be concluded that the two strong Raman bands at 1263 and 796 cm(-1) are diagnostic for the N3-deprotonation of the 1-methyluracilate ring and complexation with silver ion. The linear N-Ag-N stretching vibrations are assigned to the bands at 448 and 362 cm(-1) (IR) and 453, 362 cm(-1) (Raman). The Ag-O stretching vibrations are assigned to the bands in the range of 280-250 cm(-1).  相似文献   

20.
The infrared (3200-30 cm(-1) spectra of gaseous and solid and the Raman spectra of liquid (3200-30 cm(-1), with quantitative depolarization values, and solid vinyldichlorosilane, CH2=CHSiHCl2, have been recorded. Both the gauche and the cis conformers have been identified in the fluid phases. Variable temperature (105-150 degrees C) studies of the infrared spectra of the sample dissolved in liquid krypton have been carried out. From these data the enthalpy difference has been determined to be 20 +/- 5 cm(-1) (235 +/- 59 J mol(-1) with the gauche conformer the more stable rotamer. It was not possible to obtain a single conformer in the solid even with repeated annealing of the sample. The experimental enthalpy difference is in agreement with the prediction from MP2/6-311 + G(2d,2p) ab initio calculations with full electron correlation. However, when smaller basis sets, i.e. 6-31G(d) and 6-311 + G(d,p) were utilized the cis conformer was predicted to be the more stable form. Complete vibrational assignments are proposed for both conformers based on infrared contours, relative infrared and Raman intensities, depolarization values and group frequencies, which are supported by normal coordinate calculations utilizing the force constants from ab initio MP2/6-31G(d) calculations. From the frequencies of the Si-H stretches, the Si-H bond distance of 1.474 A has been determined for both the gauche and the cis conformers. Complete equilibrium geometries have been determined for both rotamers by ab initio calculations employing the 6-31G(d), 6-311 + G(d,p) and 6-311 + (2d,2p) basis sets at level of Hartree-Fock (RHF) and/or Moller Plesset to the second order (MP2) with full electron correlation. The potential energy terms for the conformer interconversion have been obtained from the MP2/6-31G(d) calculations. The results are discussed and compared with those obtained for some similar molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号