首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The syntheses and properties of tetra- and pentanuclear vanadium(IV,V) carboxylate complexes are reported. Reaction of (NBzEt(3))(2)[VOCl(4)] (1a) with NaO(2)CPh and atmospheric H(2)O/O(2) in MeCN leads to formation of (NBzEt(3))(2)[V(5)O(9)Cl(O(2)CPh)(4)] 4a; a similar reaction employing (NEt(4))(2)[VOCl(4)] (1b) gives (NEt(4))(2)[V(5)O(9)Cl(O(2)CPh)(4)] (4b). Complex 4a.MeCN crystallizes in space group P2(1)2(1)2(1) with the following unit cell dimensions at -148 degrees C: a = 13.863(13) ?, b = 34.009(43) ?, c = 12.773(11) ?, and Z = 4. The reaction between (NEt(4))(2)[VOBr(4)] (2a) and NaO(2)CPh under similar conditions gives (NEt(4))(2)[V(5)O(9)Br(O(2)CPh)(4)] (6a), and the use of (PPh(4))(2)[VOBr(4)] (2b) likewise gives (PPh(4))(2)[V(5)O(9)Br(O(2)CPh)(4)] (6b). Complex 6b crystallizes in space group P2(1)2(1)2(1) with the following unit cell dimensions at -139 degrees C: a = 18.638(3) ?, b = 23.557(4) ?, c = 12.731(2) ?, and Z = 4. The anions of 4a and 6b consist of a V(5) square pyramid with each vertical face bridged by a &mgr;(3)-O(2)(-) ion, the basal face bridged by a &mgr;(4)-X(-) (X = Cl, Br) ion, and a terminal, multiply-bonded O(2)(-) ion on each metal. The RCO(2)(-) groups bridge each basal edge to give C(4)(v)() virtual symmetry. The apical and basal metals are V(V) and V(IV), respectively (i.e., the anions are trapped-valence). The reaction of 1b with AgNO(3) and Na(tca) (tca = thiophene-2-carboxylate) in MeCN under anaerobic conditions gives (NEt(4))(2)[V(4)O(8)(NO(3))(tca)(4)] (7). Complex 7.H(2)O crystallizes in space group C2/c with the following unit cell dimensions at -170 degrees C: a = 23.606(4) ?, b = 15.211(3) ?, c = 23.999(5) ?, and Z = 4. The anion of 7 is similar to those of 4a and 6b except that the apical [VO] unit is absent, leaving a V(4) square unit, and the &mgr;(4)-X(-) ion is replaced with a &mgr;(4),eta(1)-NO(3)(-) ion. The four metal centers are now at the V(IV), 3V(V) oxidation level, but the structure indicates four equivalent V centers, suggesting an electronically delocalized system. Variable-temperature magnetic susceptibility data were collected on powdered samples of 4b, 6a, and 7 in the 2.00-300 K range in a 10 kG applied field. 4b and 6a both show a slow increase in effective magnetic moment (&mgr;(eff)) from approximately 3.6-3.7 &mgr;(B) at 320 K to approximately 4.5-4.6 &mgr;(B) at 11.0 K and then a slight decrease to approximately 4.2 &mgr;(B) at 2.00 K. The data were fit to the theoretical expression for a V(IV)(4) square with two exchange parameters J = J(cis)() and J' = J(trans)() (H = -2JS(i)()S(j)()): fitting of the data gave, in the format 4b/6a, J= +39.7/+46.4 cm(-)(1), J' = -11.1/-18.2 cm(-)(1) and g = 1.83/1.90, with the complexes possessing S(T) = 2 ground states. The latter were confirmed by magnetization vs field studies in the 2.00-30.0 K and 0.500-50.0 kG ranges: fitting of the data gave S(T) = 2 and D = 0.00 cm(-)(1) for both complexes, where D is the axial zero-field splitting parameter. Complex 7 shows a nearly temperature-independent &mgr;(eff) (1.6-2.0 &mgr;(B)) consistent with a single d electron per V(4) unit. The (1)H NMR spectra of 4b and 6a in CD(3)CN are consistent with retention of their pentanuclear structure on dissolution. The EPR spectrum of 7 in a toluene/MeCN (1:2) solution at approximately 25 degrees C yields an isotropic signal with a 29-line hyperfine pattern assignable to hyperfine interactions with four equivalent I = (7)/(2) (51)V nuclei.  相似文献   

2.
The compounds (I)-(IV) are prepared by reaction of V2O5 with 40% HF in the presence of suitable amounts of the corresponding cations.  相似文献   

3.
New synthesis procedures are described to tetranuclear manganese carboxylate complexes containing the [Mn(4)O(2)](8+) or [Mn(4)O(3)X](6+) (X(-) = MeCO(2)(-), F(-), Cl(-), Br(-), NO(3)(-)) core. These involve acidolysis reactions of [Mn(4)O(3)(O(2)CMe)(4)(dbm)(3)] (1; dbm is the anion of dibenzoylmethane) or [Mn(4)O(2)(O(2)CEt)(6)(dbm)(2)] (8) with HX (X(-) = F(-), Cl(-), Br(-), NO(3)(-)); high-yield routes to 1 and 8 are also described. The X(-) = NO(3)(-) complexes [Mn(4)O(3)(NO(3))(O(2)CR)(3)(R'(2)dbm)(3)] (R = Me, R' = H (6); R = Me, R' = Et (7); R = Et, R' = H (12)) represent the first synthesis of the [Mn(4)O(3)(NO(3))](6+) core, which contains an unusual eta(1):mu(3)-NO(3)(-) group. Treatment of known [Mn(4)O(2)(O(2)CEt)(7)(bpy)(2)](ClO(4)) with HNO(3) gives [Mn(4)O(2)(NO(3))(O(2)CEt)(6)(bpy)(2)](ClO(4)) (15) containing a eta(1):eta(1):mu-NO(3)(-) group bridging the two body Mn(III) ions of the [Mn(4)O(2)](8+) butterfly core. Complex 7 x 4CH(2)Cl(2) crystallizes in space group P2(1)2(1)2(1) with (at -168 degrees C) a = 21.110(3) A, b = 22.183(3) A, c = 15.958(2) A, Z = 4, and V = 7472.4(3) A(3). Complex 15 x (3)/(2)CH(2)Cl(2) crystallizes in space group P2(1)/c with (at -165 degrees C) a = 26.025(4) A, b = 13.488(2) A, c = 32.102(6) A, beta = 97.27(1) degrees, Z = 8, and V = 11178(5) A(3). Complex 7 contains a [Mn(4)(mu(3)-O)(3)(mu(3)-NO(3))](6+) core (3Mn(III), Mn(IV)) as seen for previous [Mn(4)O(3)X](6+) complexes. Complex 15 contains a butterfly [Mn(4)(mu(3)-O)(2)](8+) core. (1)H NMR spectra have been recorded for all complexes reported in this work and the various resonances assigned. All complexes retain their structural integrity on dissolution in chloroform and dichloromethane. Magnetic susceptibility (chi(M)) data were collected on 12 in the 5-300 K range in a 10.0 kG (1 T) field. Fitting of the data to the theoretical chi(M) vs T expression appropriate for a [Mn(4)O(3)X](6+) complex of C(3)(v)() symmetry gave J(34) = -23.9 cm(-)(1), J(33) = 4.9 cm(-)(1), and g = 1.98, where J(34) and J(33) refer to the Mn(III)Mn(IV) and Mn(III)Mn(III) pairwise exchange interactions, respectively. The ground state of the molecule is S = 9/2, as found previously for other [Mn(4)O(3)X](6+) complexes. This was confirmed by magnetization data collected at various fields and temperatures. Fitting of the data gave S = 9/2, D = -0.45 cm(-1), and g = 1.96, where D is the axial zero-field splitting parameter.  相似文献   

4.
The two complexes, [Ln(Ala)2(Im)(H2O)](ClO4)3 (Ln=Pr, Gd), were synthesized and characterized. Using a solution-reaction isoperibol calorimeter, standard enthalpies of reaction of two reactions: LnCl3⋅6H2O(s)+2Ala(s)+Im(s)+3NaClO4(s)=[Ln(Ala)2(Im)(H2O)](ClO4)3(s)+3NaCl(s)+5H2O(l) (Ln=Pr, Gd), at T=298.15 K, were determined to be (39.26±0.10) and (5.33±0.12) kJ mol–1 , respectively. Standard enthalpies of formation of the two complexes at T=298.15 K, ΔfHΘm {[Ln(Ala)2(Im)(H2O)](ClO4)3(s)} (Ln=Pr, Gd), were calculated as –(2424.2±3.3) and –(2443.4±3.3) kJ mol–1 , respectively.  相似文献   

5.
Three-dimensional network structures of [Ru(II/III)(2)(O(2)CMe)(4)](3)[M(III)(CN)(6)] (M = Cr, Fe, Co) composition have been formed and their magnetic properties characterized. [Ru(II/III)(2)(O(2)CMe)(4)](3)[M(III)(CN)(6)] (M = Cr, Fe, Co) have nu(CN) IR absorptions at 2138, 2116, and 2125 cm(-1) and have body-centered unit cells (a = 13.34, 13.30, and 13.10 A, respectively) with -M-Ctbd1;N-Ru=Ru-Ntbd1;C-M- linkages along all three Cartesian axes. [Ru(II/III)(2)(O(2)CMe)(4)](3)[Cr(III)(CN)(6)] magnetically orders as a ferrimagnet (T(c) = 33 K) and has an unusual constricted hysteresis loop.  相似文献   

6.
Reactions of the previously reported dinuclear vanadium(III) thiolate anion [V(2)(edt)(4)](2)(-) (edtH(2) = ethane-1,2-dithiol) are described. Treatment of (NEt(4))(2)[V(2)(edt)(4)] (1) in MeCN with equimolar (C(12)H(8)S(2))BF(4) (C(12)H(8)S(2)(+) = the thianthrenium radical cation) results in a one-electron oxidation and isolation of the V(III),V(IV) complex (NEt(4))[V(2)(edt)(4)] (2). The same product can also be obtained by controlled-potential electrolysis of 1 at -0.20 V vs Ag/AgCl. Treatment of 1 in CH(2)Cl(2) with py gives no reaction, but addition of Me(3)SiCl leads to formation of the known V(2)OCl(4)(py)(6) (3). The latter is also formed by the reduction of a 1:1 mixture of VOCl(3) and VCl(3)(THF)(3) in CH(2)Cl(2)/py and by the reaction in CH(2)Cl(2) of VCl(3)(THF)(3) and py with edt(2)(-). Treatment of 1 in MeCN with bpy (2,2'-bipyridine) gives no reaction, but addition of Me(3)SiCl results in formation and isolation of [V(2)OCl(2)(bpy)(4)]Cl(2) (4) identified by spectroscopic comparison with literature data. The reaction of 1 in MeCN with equimolar VCl(3)(THF)(3) and NEt(4)Cl gives (NEt(4))(3)[V(3)Cl(6)(edt)(3)] (5). A more convenient procedure to 5 is the reaction in MeCN of VCl(3)(THF)(3), Na(2)edt, and NEt(4)Cl in a 1:1:1 molar ratio. Complex 5.MeCN crystallizes in triclinic space group P&onemacr; with (at -154 degrees C) a = 14.918(3) ?, b = 17.142(5) ?, c = 11.276(3) ?, alpha = 106.78(1) degrees, beta = 95.03(1) degrees, gamma = 106.18(1) degrees, and Z = 2. The anion contains a near-linear V(3) unit with a face-sharing trioctahedral structure: the three edt(2)(-) groups provide the six bridging S atoms; two edt(2)(-) groups are in a &mgr;-eta(2):eta(2) mode (as in 1), but the third is in a &mgr;(3)-eta(1):eta(2):eta(1) mode. The V.V separations (>3.1 ?) preclude V-V bonding. Variable-temperature solid-state magnetic susceptibility studies have been performed on complexes 1, 2, and 5 in a 1.0 kG field and 5.00-300 K temperature range. For 1, the effective magnetic moment (&mgr;(eff)) gradually decreases from 1.09 &mgr;(B) at 300 K to 0.26 &mgr;(B) at 5.00 K. The data were fit to the Bleaney-Bowers equation, and the fitting parameters were J = -419(11) cm(-)(1) and g = 2.05. The singlet-triplet gap is thus 838 cm(-)(1). For 2, &mgr;(eff) is essentially temperature-independent, slowly decreasing from 1.90 &mgr;(B) at 300 K to 1.86 &mgr;(B) at 55 K and then to 1.63 &mgr;(B) at 5.00 K. The complex thus is S = (1)/(2) with no thermally accessible S = (3)/(2) state. The combined data on 1 and 2, together with the results of EHT calculations, show that 1 and 2 contain a V-V single bond tying up two of the d electrons and that the remaining two d electrons in 1 are antiferromagnetically coupled to give an S = 0 ground state and S = 1 excited state; for 2, the one remaining d electron gives an S = (1)/(2) state. For 5, &mgr;(eff) increases from 5.17 &mgr;(B) at 320 K to a maximum of 6.14 &mgr;(B) at 30.0 K and then decreases slightly to 6.08 &mgr;(B) at 5.00 K. The data were fit to the appropriate theoretical expression to give J = +42.5(6) cm(-)(1), J' = -1.8(5) cm(-)(1), and g = 1.77, where J and J' gauge the interactions between adjacent and terminal V(III) atoms, respectively. The complex has an S = 3 ground state and represents a very rare example of ferromagnetic coupling between V(III) centers.  相似文献   

7.
We present studies of the resonance Raman and electronic luminescence spectra of the [Au(2)(dmpm)(3)](ClO(4))(2) (dmpm = bis(dimethylphosphine)methane) complex, including excitation into an intense band at 256 nm and into a weaker absorption system centered about approximately 300 nm. The resonance Raman spectra confirm the assignment of the 256 nm absorption band to a (1)(dsigma --> psigma) transition, a metal-metal-localized transition, in that nu(Au-Au) and overtones of it are strongly enhanced. A resonance Raman intensity analysis of the spectra associated with the 256 nm absorption band gives the ground-state and excited-state nu(Au-Au) stretching frequencies to be 79 and 165 cm(-1), respectively, and the excited-state Au-Au distance is calculated to decrease by about 0.1 A from the ground-state value of 3.05 A. The approximately 300 nm absorption displays a different enhancement pattern, in that resonance-enhanced Raman bands are observed at 103 and 183 cm(-1) in addition to nu(Au-Au) at 79 cm(-1) The compound exhibits intense, long-lived luminescence (in room-temperature CH(3)CN, for example, tau = 0.70 micros, phi(emission) = 0.037) with a maximum at 550-600 nm that is not very medium-sensitive. We conclude, in agreement with an earlier proposal of Mason (Inorg. Chem. 1989, 28, 4366-4369), that the lowest-energy, luminescent excited state is not (3)(dsigma --> psigma) but instead derives from (3)(d(x2-y2,xy --> psigma) excitations. We compare the Au(I)-Au(I) interaction shown in the various transitions of the [Au(2)(dmpm)(3)](ClO(4))(2) tribridged compound with previous results for solvent or counterion exciplexes of [Au(2)(dcpm)(2)](2+) salts (J. Am. Chem. Soc. 1999, 121, 4799-4803; Angew. Chem. 1999, 38, 2783-2785; Chem. Eur. J. 2001, 7, 4656-4664) and for planar, mononuclear Au(I) triphosphine complexes. It is proposed that the luminescent state in all of these cases is very similar in electronic nature.  相似文献   

8.
9.
The preparations, X-ray structures, and detailed physical characterizations are presented for three new tetranuclear Fe(III)/RCO(2)(-)/phen complexes, where phen = 1,10-phenanthroline: [Fe(4)(OHO)(OH)(2)(O(2)CMe)(4)(phen)(4)](ClO(4))(3).4.4MeCN.H(2)O (1.4.4MeCN.H(2)O); [Fe(4)O(2)(O(2)CPh)(7)(phen)(2)](ClO(4)).2MeCN (2.2MeCN); [Fe(4)O(2)(O(2)CPh)(8)(phen)(2)].2H(2)O (3.2H(2)O). Complex 1.4.4MeCN.H(2)O crystallizes in space group P2(1)/n, with a = 18.162(9) A, b = 39.016(19) A, c = 13.054(7) A, beta = 104.29(2) degrees, Z = 4, and V = 8963.7 A(3). Complex 2.2MeCN crystallizes in space group P2(1)/n, with a = 18.532(2) A, b = 35.908(3) A, c = 11.591(1) A, beta = 96.42(1) degrees, Z = 4, and V = 7665(1) A(3). Complex 3.2H(2)O crystallizes in space group I2/a, with a = 18.79(1) A, b = 22.80(1) A, c = 20.74(1) A, beta = 113.21(2) degrees, Z = 4, and V = 8166(1) A(3). The cation of 1 contains the novel [Fe(4)(mu(4)-OHO)(mu-OH)(2)](7+) core. The core structure of 2 and 3 consists of a tetranuclear bis(mu(3)-O) cluster disposed in a "butterfly" arrangement. Magnetic susceptibility data were collected on 1-3 in the 2-300 K range. For the rectangular complex 1, fitting the data to the appropriate theoretical chi(M) vs T expression gave J(1) = -75.4 cm(-1), J(2) = -21.4 cm(-1), and g = 2.0(1), where J(1) and J(2) refer to the Fe(III)O(O(2)CMe)(2)Fe(III) and Fe(III)(OH)Fe(III) pairwise exchange interactions, respectively. The S = 0 ground state of 1 was confirmed by 2 K magnetization data. The data for 2 and 3 reveal a diamagnetic ground state with antiferromagnetic exchange interactions among the four high-spin Fe(III) ions. The exchange coupling constant J(bb) ("body-body" interaction) is indeterminate due to prevailing spin frustration, but the "wing-body" antiferromagnetic interaction (J(wb)) was evaluated to be -77.6 and -65.7 cm(-1) for 2 and 3, respectively, using the appropriate spin Hamiltonian approach. M?ssbauer spectra of 1-3 are consistent with high-spin Fe(III) ions. The data indicated asymmetry of the Fe(4) core of 1 at 80 K, which is not detected at room temperature due to thermal motion of the core. The spectra of 2 and 3 analyze as two quadrupole-split doublets which were assigned to the body and wing-tip pairs of metal ions. (1)H NMR spectra are reported for 1-3 with assignment of the main resonances.  相似文献   

10.
11.
The structure and spin-crossover magnetic behavior of [Fe(II)1(6)][BF(4)](2) (1 = isoxazole) and [Fe(II)1(6)][ClO(4)](2) have been studied. [Fe(II)1(6)][BF(4)](2) undergoes two reversible spin-crossover transitions at 91 and 192 K, and is the first two-step spin transition to undergo a simultaneous crystallographic phase transition, but does not exhibit thermal hysteresis. The single-crystal structure determinations at 260 [space group P3, a = 17.4387(4) A, c = 7.6847(2) A] and at 130 K [space group P1, a = 17.0901(2) A, b = 16.7481(2) A, c = 7.5413(1) A, alpha = 90.5309(6) degrees, beta = 91.5231(6) degrees, gamma = 117.8195(8) degrees ] reveal two different iron sites, Fe1 and Fe2, in a 1:2 ratio. The room-temperature magnetic moment of 5.0 mu(B) is consistent with high-spin Fe(II). A plateau in mu(T) having a moment of 3.3 mu(B) centered at 130 K suggests a mixed spin system of some high-spin and some low-spin Fe(II) molecules. On the basis of the Fe-N bond distances at the two temperatures, and the molar fraction of high-spin molecules at the transition plateau, Fe1 and Fe2 can be assigned to the 91 and 192 K transitions, respectively. [Fe(II)1(6)][ClO(4)](2) [space group P3, a = 17.5829(3) A, c = 7.8043(2) A, beta = 109.820 (3) degrees, T = 295 K] also possesses Fe1:Fe2 in a 1:2 ratio, and magnetic measurements show a single spin transition at 213 K, indicating that both Fe1 and Fe2 undergo a simultaneous spin transition. [Fe(II)1(6)][ClO(4)](2) slowly decomposes in solutions containing acetic anhydride to form [Fe(III)(3)O(OAc)(6)1(3)][ClO(4)] [space group I2, a = 10.1547(7) A, b = 16.5497(11) A, c = 10.3205(9) A, beta = 109.820 (3) degrees, T = 200 K]. The isosceles Fe(3) unit contains two Fe.Fe distances of 3.2844(1) A and a third Fe.Fe distance of 3.2857(1) A. The magnetic data can be fit to a trinuclear model with H = -2J(S(1)xS(2) + S(2)xS(3)) - 2J(13)(S(1)xS(3)), where J = -27.1 and J(13) = -32.5 cm(-1).  相似文献   

12.
《Polyhedron》1999,18(20):2625-2631
Treatment of RuHCl(CO)(L)3 with a slight excess amount of K[HB(3,5-Me2pz)3] in boiling MeOH solution yielded unusual 3,5-dimethylpyrzaole (Hdmpz) complexes, RuHCl(CO)(Hdmpz)(L)2 (L=PPh3, 1 or AsPh3, 2). Unexpectedly the dissociation of the bonds between the boron atom and the nitrogen atoms of the potentially tridentate [HB(3,5-Me2pz)3] ligand during the coordination of the ligand to the RuII metal has been observed. In a separate preparation, the RuHCl(CO)(Hdmpz)(PPh3)2 complex has also been synthesized from the reaction between RuHCl(CO)(PPh3)3 and the monodentate Hdmpz ligand. Complexes 1 and 2 have been characterized by elemental analysis, IR and 1H NMR spectroscopies. Compound 1 has also been prepared by the reaction between RuHCl(CO)(PPh3)3 and K[H2B(3,5-Me2pz)2] in boiling toluene solution. The crystal structure of 2 has been studied by X-ray crystallography. The geometrical structure around RuII of 2 is a distorted octahedral structure. The crystal structure of 2 consists of a discrete monomeric compound. It is interesting to find that the sterically-demanding [HB(3,5-Me2pz)3] or [H2B(3,5-Me2pz)2] ligands break up during the reaction with the RuII complexes to form the neutral 3,5-dimethylpyrazole complexes. In contrast to these observations, [H2Bpz2] and [H2B(4-Brpz)2] ligands form very stable RuII complexes.  相似文献   

13.
14.
The photophysical properties of Rh(2)(O(2)CCH(3))(4)(L)(2) (L = CH(3)OH, THF = tetrahydrofuran, PPh(3) = triphenylphosphine, py = pyridine) were explored upon excitation with visible light. Time-resolved absorption shows that all the complexes possess a long-lived transient (3.5-5.0 micros) assigned as an electronic excited state of the molecules, and they exhibit an optical transition at approximately 760 nm whose position is independent of axial ligand. No emission from the Rh(2)(O(2)CCH(3))(4)(L)(2) (L = CH(3)OH, THF, PPh(3), py) systems was detected, but energy transfer from Rh(2)(O(2)CCH(3))(4)(PPh(3))(2) to the (3)pipi excited state of perylene is observed. Electron transfer from Rh(2)(O(2)CCH(3))(4)(PPh(3))(2) to 4,4'-dimethyl viologen (MV(2+)) and chloro-p-benzoquinone (Cl-BQ) takes place with quenching rate constants (k(q)) of 8.0 x 10(6) and 1.2 x 10(6) M(-1) s(-1) in methanol, respectively. A k(q) value of 2 x 10(8) M(-1) s(-1) was measured for the quenching of the excited state of Rh(2)(O(2)CCH(3))(4)(PPh(3))(2) by O(2) in methanol. The observations are consistent with the production of an excited state with excited-state energy, E(00), between 1.34 and 1.77 eV.  相似文献   

15.
16.
Interaction of the lacunary [alpha-XW(9)O(33)](9-) (X = As(III), Sb(III)) with Fe(3+) ions in acidic, aqueous medium leads to the formation of dimeric polyoxoanions, [Fe(4)(H(2)O)(10)(beta-XW(9)O(33))(2)](6-) (X = As(III), Sb(III)) in high yield. X-ray single-crystal analyses were carried out on Na(6)[Fe(4)(H(2)O)(10)(beta-AsW(9)O(33))(2)] x 32H(2)O, which crystallizes in the monoclinic system, space group C2/m, with a = 20.2493(18) A, b = 15.2678(13) A, c = 16.0689(14) A, beta = 95.766(2) degrees, and Z = 2; Na(6)[Fe(4)(H(2)O)(10)(beta-SbW(9)O(33))(2)] x 32H(2)O is isomorphous with a = 20.1542(18) A, b = 15.2204(13) A, c = 16.1469(14) A, and beta = 95.795(2) degrees. The selenium and tellurium analogues are also reported, [Fe(4)(H(2)O)(10)(beta-XW(9)O(33))(2)](4-) (X = Se(IV), Te(IV)). They are synthesized from sodium tungstate and a source of the heteroatom as precursors. X-ray single-crystal analysis was carried out on Cs(4)[Fe(4)(H(2)O)(10)(beta-SeW(9)O(33))(2)] x 21H(2)O, which crystallizes in the triclinic system, space group P macro 1, with a = 12.6648(10) A, b = 12.8247(10) A, c = 16.1588(13) A, alpha = 75.6540(10) degrees, beta = 87.9550(10) degrees, gamma = 64.3610(10) gamma, and Z = 1. All title polyanions consist of two (beta-XW(9)O(33)) units joined by a central pair and a peripheral pair of Fe(3+) ions leading to a structure with idealized C(2h) symmetry. It was also possible to synthesize the Cr(III) derivatives [Cr(4)(H(2)O)(10)(beta-XW(9)O(33))(2)](6-) (X = As(III), Sb(III)), the tungstoselenates(IV) [M(4)(H(2)O)(10)(beta-SeW(9)O(33))(2)]((16)(-)(4n)-) (M(n+) = Cr(3+), Mn(2+), Co(2+), Ni(2+), Zn(2+), Cd(2+), and Hg(2+)), and the tungstotellurates(IV) [M(4)(H(2)O)(10)(beta-TeW(9)O(33))(2)]((16-4n)-) (M(n+) = Cr(3+), Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), and Hg(2+)), as determined by FTIR. The electrochemical properties of the iron-containing species were also studied. Cyclic voltammetry and controlled potential coulometry aided in distinguishing between Fe(3+) and W(6+) waves. By variation of pH and scan rate, it was possible to observe the stepwise reduction of the Fe(3+) centers.  相似文献   

17.
Pleochroistic crystals (dark green to colorless) of a mixed-valence V(IV)-V(V) compound, K(6)(VO)(4)(SO(4))(8), suitable for X-ray determination have been obtained from the catalytically important K(2)S(2)O(7)-V(2)O(5)/SO(2)-O(2)-SO(3)-N(2) molten salt-gas system, at approximately 400 degrees C. The compound crystallizes in the monoclinic space group P2(1) (No. 4) with a = 8.931(2) ?, b = 18.303 (3) ?, c = 9.971(2) ?, beta = 90.11(2) degrees, and Z = 2. It contains two rather similar V(IV)-V(V) pairs of VO(6) octahedra distorted as usual having a short V-O bond of around 1.57 ?, a long bond of around 2.40 ? trans to this, and four equatorial bonds around 2.00 ?. The bond lengths of the V(V)O(6) octahedra are significantly shorter than those found for the V(IV)O(6) octahedra. The eight different SO(4)(2)(-) groups are all bridging bidentate between the V(IV) and V(V) atoms; a third oxygen is coordinated to a vanadium atom of a neighboring chain trans to the short V=O bond, and the fourth oxygen remains uncoordinated. The measured bond distances and angles show a considerable distortion of the SO(4) tetrahedra. This is confirmed by the IR spectra of the compound, where large shift and splitting of the sulfate nu(3) bands up to wave numbers of around 1300 cm(-)(1) is observed. The ESR spectra of the compound exhibit weak anisotropy with g(iso) = 1.972 +/- 0.002 and DeltaB(pp) = 65 +/- 2 G. The compound may cause the deactivation for industrial sulfuric acid catalysts observed around 400 degrees C in highly converted SO(2)-O(2)-N(2) gas mixtures.  相似文献   

18.
We present herein the VLS growth of SWNTs from oxo-hexacarboxylate-triron precursors, [Fe(3)O(O(2)CCH(3))(6)(EtOH)(3)] and [Fe(3)O(O(2)CCH(2)OMe)(6)(H(2)O)(3)][FeCl(4)], on spin-on-glass surfaces, using C(2)H(4)/H(2) (750 degrees C) and CH(4)/H(2) (800 and 900 degrees C) growth conditions. The SWNTs have been characterized by AFM, SEM and Raman spectroscopy. The characteristics of the SWNTs are found to be independent of the identity of the precursor complex or the solvent from which it is spin-coated. The as grown SWNTs show a low level of side-wall defects and have an average diameter of 1.2-1.4 nm with a narrow distribution of diameters. At 750 and 800 degrees C the SWNTs are grown with a range of lengths (300 nm-9 microm), but at 900 degrees C only the longer SWNTs are observed (6-8 microm). The yield of SWNTs per unit area of catalyst nanoparticle decreases with the growth temperature. We have demonstrated that spin coating of molecular precursors allows for the formation of catalyst nanoparticles suitable for growth of SWNTs with a high degree of uniformity in the diameter, without the formation of preformed clusters of a set diameter.  相似文献   

19.
Yeh CY  Chiang YL  Lee GH  Peng SM 《Inorganic chemistry》2002,41(16):4096-4098
The one-electron oxidized linear pentanuclear nickel complexes [Ni(5)(tpda)(4)(H(2)O)(BF(4))](BF(4))(2) (1) and [Ni(5)(tpda)(4)(SO(3)CF(3))(2)](SO(3)CF(3)) (2) have been synthesized by reacting the neutral compound [Ni(5)(tpda)(4)Cl(2)] with the corresponding silver salts. These compounds have been characterized by various spectroscopic techniques. Compound 1 crystallizes in the monoclinic space group P2(1)/n with a = 15.3022(1) A, b = 31.0705(3) A, c = 15.8109(2) A, beta = 92.2425(4) degrees, V = 7511.49(13) A(3), Z = 4, and compound 2 crystallizes in the monoclinic space group C2/c with a = 42.1894(7) A, b = 17.0770(3) A, c = 21.2117(4) A, beta = 102.5688(8) degrees, V = 14916.1(5) A(3), Z = 8. X-ray structural studies reveal an unsymmetrical Ni(5) unit for both compounds 1 and 2. Compounds 1 and 2 show stronger Ni-Ni interactions as compared to those of the neutral compounds.  相似文献   

20.
The discrete heteropolyaurate [Au(III)(4)O(4)(Se(IV)O(3))(4)](4-) () represents only the second member of this class ever reported, and was synthesized via one-pot room temperature condensation in aqueous medium. was structurally characterized in the solid state and in solution by single-crystal XRD, TGA, FT-IR, (77)Se NMR, mass spectrometry and electrochemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号