首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The objective of this paper is to examine the effect of bubbles on the turbulence levels of a water jet. Simultaneous measurements of the axial and radial velocity components were taken in a bubbly jet with a Laser Doppler Velocimeter (LDV) and then compared to the velocities of a single phase jet at the same liquid flow rate. Mean bubble diameters ranged from 0.6 to 2 mm and the void fractions were up to about 20%. The liquid Reynolds numbers were from 5,000 to 10,000 approximately. The measurements extended to from an axial distance of 4–12 cm. It was observed that bubbles did not affect significantly the average velocity profiles in the jet. However bubbles increased the turbulence intensities in the core of the jet near the jet exit. The increase in turbulence intensities was more pronounced at lower Reynolds numbers and at higher void fractions.  相似文献   

2.
Measurements have been obtained, by laser-Doppler anemometry (LDA), of the axisymetric, recirculating liquid flow caused by a column of air bubbles (5–612mm dia.) rising through caster oil in a cylindrical enclosure (100 mm dia.). The liquid velocities correspond to creeping flow. Axial and radial liquid velocity profiles are reported at eight axial stations and, close to within the bubble column, as a function of time. The maximum liquid velocity found outside the bubble column is about 0.5 of that of the bubbles and a very rapid radical decay from this value is noted. The temporal variation of the velocity field, due to the passage of the air bubbles, is undetectable at radial locations greater than about 112 bubble radii from the centreline.The variation of bubble velocity with axial distance was aise measured by LDA for liquid height to enclosure diámeter ratios of 0.98 and 2.78. The maximum bubble velocities were about 0.1–0.2 higher than the Strokes law terminal velocity. The increase is due to the convection of the bubble column by the liquid flow. The maximum bubble velocity is established within approximately three bubble diameters of the air inlet.The motion of the liquid has been calculated by the numerical solution of the steady form of the equations of motion, with the inner boundary of the area of integration lying 1.3 bubble radii from the centerline. The boundary conditions at this surface are assumed to be steady and are taken from measurements of the time-averaged velocity components. The assumption of steady flow at this boundary is supported by experimental observation and results in calculations which are generally in close agreement with the measurements. Discrepancies are confined to the immediate vicinity of the bubble column near to the top and bottom of the enclosure. These are ascribed to a combination of small asymmetries in the experiment and inadequate numerical resolution in these regions.  相似文献   

3.
The problem of the mass, thermal and dynamic interaction between a bubble containing a soluble gas and a liquid is considered. It is shown that this problem can be reduced to the problem of the behavior of a vapor bubble with phase transitions investigated in detail in [1–3]. Expressions are obtained for the rate of decay of the radially symmetric oscillations of the bubbles due to the solubility of the gas in the liquid. The effective coefficients of mass transfer between the radially pulsating bubbles and the liquid are determined. A numerical solution is obtained for the problem of the radial motion of a bubble created by a sudden change of pressure in the liquid which, in particular, corresponds to the behavior of the bubbles behind the shock front when a shock wave enters a bubble screen.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 52–59, November–December, 1985.  相似文献   

4.
The rise velocity of long gas bubbles (Taylor bubbles) in round tubes is modeled by an ovary ellipsoidal cap bubble rising in an irrotational flow of a viscous liquid. The analysis leads to an expression for the rise velocity which depends on the aspect ratio of the model ellipsoid and the Reynolds and Eötvös numbers. The aspect ratio of the best ellipsoid is selected to give the same rise velocity as the Taylor bubble at given values of the Eötvös and Reynolds numbers. The analysis leads to a prediction of the shape of the ovary ellipsoid which rises with same velocity as the Taylor bubble.  相似文献   

5.
The problem of mass transfer between an isolated bubble and the continuous phase in a pseudofluidized layer is considered, when the rising velocity of the bubble exceeds the pseudofluidization rate. In this case the bubble with the surrounding region, a so-called two-phase system, is surrounded by a surface current impermeable to the liquid [1–3], and the problem reduces to determining the concentration field and the total flow on the material surface. The problem is solved for large and small Peclet numbers by a boundary layer diffusion method and by asymptotic expansion matching.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 42–49, July–August, 1973.  相似文献   

6.
The present study seeks to investigate horizontal bubbly-to-plug and bubbly-to-slug transition flows. The two-phase flow structures and transition mechanisms in these transition flows are studied based on experimental database established using the local four-sensor conductivity probe in a 3.81 cm inner diameter pipe. While slug flow needs to be distinguished from plug flow due to the presence of large number of small bubbles (and thus, large interfacial area concentration), both differences and similarities are observed in the evolution of interfacial structures in bubbly-to-plug and bubbly-to-slug transitions. The bubbly-to-plug transition is studied by decreasing the liquid flow rate at a fixed gas flow rate. It is found that as the liquid flow rate is lowered, bubbles pack near the top wall of the pipe due to the diminished role of turbulent mixing. As the flow rate is lowered further, bubbles begin to coalesce and form the large bubbles characteristic of plug flow. Bubble size increases while bubble velocity decreases as liquid flow rate decreases, and the profile of the bubble velocity changes its shape due to the changing interfacial structure. The bubbly-to-slug transition is investigated by increasing the gas flow rate at a fixed liquid flow rate. In this transition, gas phase becomes more uniformly distributed throughout the cross-section due to the formation of large bubbles and the increasing bubble-induced turbulence. The size of small bubbles decreases while bubble velocity increases as gas flow rate increases. The distributions of bubble size and bubble velocity become more symmetric in this transition. While differences are observed in these two transitions, similarities are also noticed. As bubbly-to-plug or bubbly-to-slug transition occurs, the formation of large elongated bubbles is observed not in the uppermost region of bubble layer, but in a lower region. At the beginning of transitions, relative differences in phase velocities near the top of the pipe cross-section to those near the pipe center become larger for both gas and liquid phases, because more densely packed bubbles introduce more resistance to both phases.  相似文献   

7.
A study is made of mass transfer in an inhomogeneous fluidized bed whose cross section varies over the height. The field of the liquid phase around a bubble is constructed, conditions are obtained for the existence of a region of closed circulation of the liquid phase, and the boundaries of this region are determined. A solution is given to the problem of convective diffusion of the substance to the region of closed circulation, and the mass-transfer coefficient between a bubble and the continuous phase is determined as a function of the flow parameters. By the same token, the results of [1] are generalized to a fluidized bed of variable cross section. It is shown that in this case the mass transfer is improved.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 20–29, November–December, 1974.  相似文献   

8.
The paper presents numerical simulations modeling the ascent of an argon bubble in liquid metal with and without an external magnetic field. The governing equations for the fluid and the electric potential are discretized on a uniform Cartesian grid and the bubble is represented with a highly efficient immersed boundary method. The simulations performed were conducted matching experiments under the same conditions so that sound validation is possible. The three-dimensional trajectory of the bubble is analyzed quantitatively and related to the flow structures in the wake. Indeed, the substantial impact of the magnetic field in the bubble trajectory results from its influence on the wake. Quantitative data describing the selective damping of vortex structures are provided and discussed. As a result of applying a longitudinal field, the time-averaged bubble rise velocity increases for large bubbles, it reaches a maximum and then decreases when further increasing the magnetic interaction parameter. For small bubbles, the time-averaged bubble rise velocity decreases when increasing the magnetic field. The bubble Strouhal number as a dimensionless frequency is reduced with the application of a magnetic field for all bubbles considered and the zig–zag trajectory of the bubble becomes more rectilinear.  相似文献   

9.
This paper summarizes the results of a flow visualization study on the liquid motion around barbotage bubbles during growth and departure. Flow patterns, as well as for the first time, instantaneous velocities, are reported as a function of time and location about the bubbles. The experiments, employing the hydrogen-bubble technique and high-speed cine photography, were with: water as the liquid, air as the bubbled gas, orifice diameters of 0.116 and 0.252 cm, and different air flow rates; the two limiting cases of constant supply pressure and constant volumetric flow rate were covered. It was found that the liquid around a barbotage bubble assumes two velocity maxima, the first an outward maximum during bubble growth and the second in the opposite direction approximately at the time of bubble departure; further, liquid velocities were found to be higher close to the bubbling site. Certain differences in liquid velocities between the constant pressure and constant flow cases are explained in terms of available theoretical solutions to the bubble growth rate. Qualitative comparisons of the barbotage liquid flow patterns and those recently reported for boiling flow patterns are also presented.  相似文献   

10.
In this work, we present a numerical study to investigate the hydrodynamic characteristics of slug flow and the mechanism of slug flow induced CO2 corrosion with and without dispersed small bubbles. The simulations are performed using the coupled model put forward by the authors in previous paper, which can deal with the multiphase flow with the gas–liquid interfaces of different length scales. A quasi slug flow, where two hypotheses are imposed, is built to approximate real slug flow. In the region ahead of the Taylor bubble and the liquid film region, the presence of dispersed small bubbles has less impacts on velocity field, because there are no non-regular intensive disturbance forces or centrifugal forces breaking the balance of the liquid and the dispersed small bubbles. In the liquid slug region, the strong centrifugal forces generated by the recirculation below the Taylor bubble lead to the effect of heterogeneity, which makes the profile of the radial liquid velocity component sharper with higher volume fraction of dispersed small bubbles. The volume fraction has a maximum value in the range of r/R = 0.5–0.6. Meanwhile, it is usually higher than 0.35, which means that larger dispersed bubbles can be formed by coalescences in this region. These calculated results are in good agreement with experimental results. The wall shear stress and the mass transfer coefficient with dispersed small bubbles are higher than those without dispersed small bubbles due to enhanced fluctuations. For short Taylor bubble length, the average mass transfer coefficient is increased when the gas or liquid superficial velocity is increased. However, there may be an inflection point at low mixture superficial velocities. For the slug with dispersed small bubbles, the product scales still cannot be damaged directly despite higher wall shear stress. In fact, the alternate wall shear stress and the pressure fluctuations perpendicular to the pipe wall with high frequency are the main cause for breaking the product scales.  相似文献   

11.
The dynamics and heat and mass transfer of vapor bubbles in binary systems are investigated. An anomalous effect of the component composition on the bubble dynamics in boiling nonideal solutions is established. It is shown that in some binary systems the value of the logarithmic decay rate for small free radial oscillations does not lie within the limiting values calculated for the pure components, which is associated with the cardinal importance of the effect of diffusion in the liquid phase on the intensity of the phase transitions.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 108–113, May–June, 1989.  相似文献   

12.
The dynamics of bubble formation from a submerged nozzle in a highly viscous liquid with relatively fast inflow gas velocity is studied numerically. The numerical simulations are carried out using a sharp interface coupled level set/volume-of-fluid (CLSVOF) method and the governing equations are solved through a hydrodynamic scheme with formal second-order accuracy. Numerical results agree well with experimental results and it is shown that the sharp interface CLSVOF method enables one to reproduce the bubble formation process for a wide range of inflow gas velocities. From numerical results, one can improve their understanding of the mechanisms regarding the dynamics of bubble formation. For example, it is found that for some sets of parameters that the bubble formation process reaches steady state after several bubbles are released from the nozzle. At steady state, bubbles uniformly rise freely in the viscous liquid. It is observed that the fluid flow around a formed bubble has a significant role in determining the overall dynamic process of bubble formation; e.g. the effect of the fluid flow from the preceding bubble can be seen on newly formed bubbles.  相似文献   

13.
14.
The use of microbubbles to enhance mass transfer in a compact bubble column has become a valuable topic recently. When the liquid flow induced by the presence of microbubbles is taken into account, the behavior of the microbubbles may differ widely from simple estimations. One example is the change of the residence time, which is determined not only by slip velocity but also the velocity of the surrounding liquid. In the present study the effect of the bubble-induced liquid flow on mass transfer in microbubble plumes is analyzed numerically. A two-way coupling Eulerian–Lagrangian approach is used to simulate oxygen bubble plumes with initial bubble diameters from 100 μm to 1 mm and a maximum local void fraction of less than 2% in compact rectangular tanks. The simulations illustrate that the effect of bubble-induced liquid velocity on the residence time of microbubbles increases with the decrease of initial bubble diameters, and also increases with the reduction of initial water depth. The differences between the concentrated and uniform bubble injections are compared. The results show that the uniform injection of microbubbles provides much better mass transfer efficiency than the concentrated injection, because the bubble-induced liquid flow is suppressed when bubbles are injected uniformly over the entire bottom of the tank.  相似文献   

15.
Evolution and decay of pressure waves of moderate amplitude in a vertical shock tube filled by a gas–liquid medium with a nonuniform (stepwise) distribution of bubbles over the tube cross section are studied experimentally. The gas–liquid layer has the form of a ring located near the tube wall or the form of a gas–liquid column located in the center of the tube. It is shown that the nonuniformity of bubble distribution over the tube cross section increases the attenuation rate of pressure waves.  相似文献   

16.
The evolution of a small distortion of the spherical shape of a gas bubble which undergoes strong radial expansion-compression upon a single oscillation of the ambient liquid pressure under a harmonic law are analyzed by numerical experiments. It is assumed that the distortions of the spherical bubble shape are axisymmetric and have the form of individual spherical surface harmonics with numbers of 2–5. Bubble-shape oscillations prior to the beginning of expansion are taken into account. Generally, the distortion value during bubble expansion-compression depends on the phase of bubble-shape oscillation at the beginning of the expansion (initial phase). Emphasis is placed on the dependence of the maximum distortions in the initial phase at certain characteristic times of bubble expansion-compression on the amplitude of the external excitation, liquid viscosity, and distortion mode (harmonic number). The parameters of the problem are typical of the stable periodic sonolumiescence of an individual air bubble in water at room temperature. An exception is the liquid pressure oscillation amplitude, which is varied up to values that are five times the static pressure. That large excitation amplitudes are beyond the stability threshold of periodic oscillations of spherical bubbles. Their consideration is of interest from the point of view of increasing the compression ratio of the bubble gas, i. e., increasing the maximum temperature and density achievable in the final compression stage.__________Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 4, pp. 17–28, July–August, 2005.  相似文献   

17.
The propagation of small perturbations in a liquid with vapor-gas bubbles is studied. Heat and mass transfer between the phases is taken into account on the basis of the exact equations of heat conduction and diffusion. The aim of the present investigation is to make more precise the results of an earlier paper [1] of the author and verify the applicability of using fixed coefficients of heat and mass transfer for nonstationary heat and mass transfer between a pulsating bubble and the liquid.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 157–162, July–August, 1979.  相似文献   

18.
 An experimental technique for the measurement of the local slip velocity of spherical bubbles is reported. It is based on the measurement of the local liquid velocity by an electrodiffusional method, and the bubble velocity by a specially adapted LDA (Laser Doppler anemometer) with a short measuring volume. The bubble velocity is measured taking into account the shift between the bubble centre and the centre of the LDA measuring volume. The slip velocity is obtained by subtracting the liquid velocity from the bubble velocity at the point corresponding to the bubble centre. The technique is applicable for flows with high velocity gradients. Results of the slip velocity measurements in an upward bubbly flow at laminar pipe Reynolds numbers are presented. Received: 25 July 1996/Accepted: 13 April 1998  相似文献   

19.
The nonlinear problem of thermal, mass, and dynamic interaction between a vapor-gas bubble and a liquid is considered. The results of numerical solution of the problem of radial motion of the bubble caused by a sudden pressure change in the liquid, illustrating the behavior of vapor-gas bubbles in compression and rarefaction waves, are presented. The corresponding problem for single-component gas and vapor bubbles was considered in [1, 2].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 56–61, November–December. 1976.  相似文献   

20.
In plunging jet flows and at hydraulic jumps, large quantities of air are entrained at the intersection of the impinging flow and the receiving body of water. The air bubbles are entrained into a turbulent shear layer and strong interactions take place between the air bubble advection/diffusion process and the momentum shear region. New air-water flow experiments were conducted with two free shear layer flows: a vertical supported jet and a horizontal hydraulic jump. The inflows were partially developed boundary layers, characterized by the presence of a velocity potential core next to the entrapment point. In both cases, the distributions of air concentration exhibit a Gaussian distribution profile with an exponential longitudinal decay of the maximum air content. Interestingly, the location of the maximum air content and the half-value band width are identical for both flow situations, i.e. independent of buoyancy effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号