首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Temperature gradient interaction chromatography (TGIC) is a powerful technique for molecular weight fractionation of polymers, in which the interaction strength is controlled by varying the column temperature. In the present paper, the effects of the sign of the temperature dependence of the retention and the direction of the temperature gradient (raising or lowering) on TGIC in the normal-phase mode were studied for the molecular weight fractionation of polystyrene samples in organic mobile phases. It was found that a positive temperature gradient was effective in the system consisting of amino-modified silica (NH(2)) column and the eluent mixture of tetrahydrofuran and n-hexane where retention decreased with increasing temperature. A negative temperature gradient was effective for the systems consisting of a bare-silica column//chloroform/n-hexane and NH(2)-column//chloroform/n-hexane, where retention increased with increasing temperature. Increasing retention with increasing temperature has been found, so far, only for a water-soluble polymer (PEO) in an aqueous mobile phase in RP-TGIC.  相似文献   

2.
Temperature gradient interaction chromatography (TGIC) has been established as a high-resolution technique for the characterization of synthetic polymers. So far, most of the TGIC investigations focused on the high-resolution analysis and little effort has been made on the reduction of the analysis time. In this study, we examined the effect of the column heating rate, the eluent flow rate, and the column length on the TGIC analysis time. We found that the heating rate is the most important experimental parameter to control the TGIC retention time. With a C18 silica column (50 mm x 4.6mm I.D.), a set of PS standards of wide molecular weight range (5 - 648 kg/mol) could be separated within 4 min at a heating rate of 8 degrees C/min.  相似文献   

3.
Temperature gradient interaction chromatography (TGIC) is applied to the characterization of polyisoprene (PI) and polystyrene (PS) using normal-phase (NP) stationary phase--bare silica or diol bonded silica. Tetrahydrofuran-isooctane mixtures are used as a mobile phase. PI and linear and star shaped PS samples are successfully fractionated in terms of the molecular mass with a high resolution comparable to that of reversed-phase (RP) HPLC. Temperature dependence of the retention shows that the enthalpy of adsorption of PS to the stationary phase is exothermic. In addition, some characteristic features of the NP-TGIC system relative to those of RP-TGIC are presented, which include a high sensitivity on the polar end group and the simultaneous size-exclusion chromatographic and TGIC characterization of PS and PI mixtures.  相似文献   

4.
Temperature gradient interaction chromatography (TGIC) was employed to fractionate a commodity polymer, poly(vinyl chloride) (PVC) with wide molecular weight distribution (MWD). The TGIC fractionation was carried out with C18 bonded silica and dimethylformamide (DMF) as the stationary and mobile phase, respectively. TGIC exhibited a high resolution to fractionate the PVC into the fractions with a narrow MWD comparable to the anionically polymerized standards. In combination with light scattering detection, TGIC is able to characterize the polymers with wide MWD and shows a good potential to be further developed as a new preparative fractionation method of synthetic polymers.  相似文献   

5.
Temperature gradient interaction chromatography (TGIC) is an interactive polymer chromatography technique varying the column temperature during the elution in a programmed manner to control the solute retention. In the present paper, the effect of the pore size of packing materials on the molecular-weight separation of polystyrene and poly(methyl methacrylate) standard samples by TGIC was studied by using the columns (octadecyl modified silica) with different pore size (100, 300 and 1000 Å) and eluent mixture of CH2Cl2/CH3CN. By rising temperature gradient, both polymers were separated by molecular weight from lower to higher. It became clear that each sample elutes out earlier as the pore size is larger. These experimental results could be explained by the theory based on the scaling concept of Gorbunov and Skvortsov.  相似文献   

6.
Hongzhe Tian 《Talanta》2007,72(2):813-818
The effect of axial temperature gradient (ATG) along a microcolumn on the separation performance at both isocratic and gradient elution mode was investigated. A thermostat system was designed to form an ATG along the packed column. Polycyclic aromatic hydrocarbons (PAHs) were separated on a 0.53 mm  × 150 mm i.d. 5 μm C18 microcolumn, with water and acetonitrile as mobile phase. The separation results obtained at mobile phase gradient (MPG) and ATG in microcolumn HPLC were compared with the results performed at ambient conditions. Extrapolated curves of peak width at half height (wh)versus lnk showed that wh is narrower at the same retention time when ATG was applied in addition to MPG. The column efficiency was enhanced 20-30% and the resolution was slightly reduced because of reduction of selectivity at elevated temperature at ATG condition. The RSD of retention time in ATG mode was less than 2.5%.  相似文献   

7.
Addition of 3-[(3-cholamidopropyl)dimethylammonio]-l-propanesulphonate (CHAPS) to mobile phases in gradient elution hydrophobic interaction chromatography (HIC) on SynChropak Propyl causes changes in observed elution times for nine globular proteins. The nine proteins showed different percentage reductions in capacity factor, k', demonstrating the ability of CHAPS to change the selectivity of the separations. Three basic types of gradient experiments have been explored for surfactant-mediated gradient elution HIC. Type I gradients are conducted with constant salt and variable surfactant concentration. Type II gradients with variable salt and constant surfactant concentration, and Type III gradients with variable salt and surfactant concentrations. By the criterion of a linear relationship between gradient time and retention time the linear solvent strength condition applies to Type II and Type III gradients. Type III gradients, with the fastest re-equilibration time, are preferable for repetitive analyses. Type I gradients are relatively ineffective in making use of the solvent strength of CHAPS, and Types I and II gradients require long equilibration times due to large changes in surface concentration of CHAPS which occur during elution. The presence of CHAPS had a negligible effect on peak shapes of the proteins examined, except for bovine serum albumin which yielded a narrower, less distorted peak in the presence of CHAPS.  相似文献   

8.
On-chip chromatography: the last twenty years   总被引:2,自引:0,他引:2  
de Mello A 《Lab on a chip》2002,2(3):48N-54N
  相似文献   

9.
10.
The effect of mobile phase modifier and temperature on gradient reequilibration is examined using three different stationary phases. The stationary phases studied are a traditional C18 phase, a polar endcapped C18 phase, and an alkyl phase with a polar embedded group. It was observed that both temperature and choice of mobile phase organic modifier had an effect on gradient reequilibration volume on both the traditional C18 stationary phase and the polar endcapped phase. On both these phases, at any given temperature, the reequilibration volume was generally smaller when methanol was used as the mobile phase modifier as compared to acetonitrile. As the temperature is increased from 10 to 50 degrees C, significant reductions in reequilibration volume were observed with both mobile phase modifiers. In contrast, neither temperature nor choice of modifier appeared to have much effect on reequilibration volume when the polar embedded group stationary phase was considered.  相似文献   

11.
A new model describing the retention in temperature gradient interaction chromatography of polymers is developed. The model predicts that polymers might elute in temperature gradient interaction chromatography in either an increasing or decreasing order or even nearly independent of molar mass, depending on the rate of the temperature increase relative to the flow rate. This is in contrast to solvent gradient elution, where polymers elute either in order of increasing molar mass or molar mass independent. The predictions of the newly developed model were verified with the literature data as well as new experimental data.  相似文献   

12.
The development and application of new separation mechanisms such as hydrophilic interaction chromatography (HILIC) is of high importance for the simultaneous analysis of polar molecules such as primary metabolites. However the retention mechanism in HILIC is not fully understood and as a result retention prediction tools are not at hand for this chromatographic approach. In the present report we study the utility of a simple algorithm, based on a simple linear and/or a simple logarithmic retention model, for retention prediction in HILIC gradient separation of a mixture of 23 selected compounds including (poly)amines, amino acids, saccharides, and other molecules. Utilizing two types of gradient elution programs with or without an isocratic part, retention data were collected in order to build prediction models. Starting from at least three gradient runs the prediction of analyte retention was very satisfactory for all gradient programs tested, providing useful evidence of the value of such retention time prediction methodologies.  相似文献   

13.
The influence of temperature on the retention of several species separated by reverse-phase liquid chromatography by gradient elution is shown to be of enough importance to warrant careful control of temperature if reproducible results are to be obtained. The smaller the particle size in the column, the greater the effect of temperature, and therefore the control should be greater. Likewise, it has been verified that for a given solvent gradient, independent of its complexity, there is a linear relation between ln k′ and 1/T, which also occurs in separations by isocratic elution. Dufek's equation can be adjusted perfectly to the experimental data obtained from gradient elutions, and may be used in the simulation and optimization of gradient chromatographic processes.  相似文献   

14.
Feng HT  Wei HP  Li SF 《Electrophoresis》2004,25(6):909-913
A portable chip-CE system with potential gradient detection (PGD) was developed and applied to the determinations of alkali metals and alkaloids. The separation efficiency appeared to be satisfactory and nonaqueous capillary electrophoresis (NACE) proved to be applicable to PGD or conductivity detection. The power supplies, separation and detection were built on a device of 3 kg in weight. A branch channel near the end of the separation channel was designed to perform PGD and make the application of relatively high field strength possible. The study is the first report on the application of PGD on the microchip platform. The design of the chip-CE system shows several advantages, such as simplicity, miniaturization and wide applicability.  相似文献   

15.
Chen J  Abell J  Huang YW  Zhao Y 《Lab on a chip》2012,12(17):3096-3102
We demonstrate that silver nanorod (AgNR) array substrates can be used for on-chip separation and detection of chemical mixtures by combining ultra-thin layer chromatography (UTLC) and surface enhanced Raman spectroscopy (SERS). The UTLC-SERS plate consists of an AgNR array fabricated by oblique angle deposition. The capability of the AgNR substrates to separate the different compounds in a mixture was explored using a mixture of four dyes and a mixture of melamine and Rhodamine 6G at varied concentrations with different mobile phase solvents. After UTLC separation, spatially-resolved SERS spectra were collected along the mobile phase development direction and the intensities of specific SERS peaks from each component were used to generate chromatograms. The AgNR substrates demonstrate the potential for separating the test dyes with plate heights as low as 9.6 μm. The limits of detection are between 10(-5)-10(-6) M. Furthermore, we show that the coupling of UTLC with SERS improves the SERS detection specificity, as small amounts of target analytes can be separated from the interfering background components.  相似文献   

16.
A miniature valve that operates between a chip port and a tube fitting was developed. The valve functions by means of a rotor, 3 mm in diameter and 1.5 mm in height, made of Teflon, with a 0.2-mm diameter hole at its center that is co-axial with the tube fitting. It also has a radial groove, 0.85 mm long, 0.2 mm wide, and 0.2 mm deep, at the bottom surface, starting at its center. The chip port and the tube fitting have an offset of 0.75 mm, and, thus, the rotation of the rotor can make an on and off connection between the chip port and the groove, which is connected to the tubing. The valve had a pressure resistance of at least 1.0 MPa. The on-chip valve can be placed in position by adding only a single part, a valve rotor, and no changes in the fabrication of the glass microchip are required. Since the valve functions as a part of a connector, we refer to it as an on-chip connector valve. Immunoaffinity chromatography of a fluorescence-labeled recombinant antibody fragment was carried out in a glass microchip using the valves.  相似文献   

17.
High-speed counter-current chromatography was applied to the preparative separation and purification of naphthopyranone glycosides from a crude 70% ethanolic extract of the capitula of Paepalanthus microphyllus. The solvent system used was composed of water-ethanol-ethyl acetate-hexane (10:4:10:4, v/v). This technique led to the separation of four different naphthopyranone glycosides in pure form in only 7 h.  相似文献   

18.
Molander P  Olsen R  Lundanes E  Greibrokk T 《The Analyst》2003,128(11):1341-1345
The impact of column inner diameter on chromatographic performance in temperature gradient liquid chromatography has been investigated in the present study. Columns with inner diameters of 0.32, 0.53, 3.2 and 4.6 mm were compared with respect to retention and efficiency characteristics using temperature gradients from 30 to 90 degrees C with temperature ramps of 1, 5, 10 and 20 degrees C min(-1). The columns were all of 15 cm length and were packed with 3 microm Hypersil ODS particles. Alkylbenzenes served as model compounds, and the mobile phase consisted of acetonitrile-water (50:50, v/v). The study revealed that the column ID is not a critical limiting factor when performing temperature programming in LC, at least for columns narrower than 4.6 mm inner diameter in the temperature interval 30-90 degrees C. The retention times for all components on all columns were highly comparable, with similar peak profiles without any signs of peak splitting. The use of mobile phase pre-heating when using the larger bore columns was avoided by starting the temperature gradients close to ambient. However, the relative apparent efficiency was inversely proportional to column inner diameter, making the capillary columns generally more functional towards temperature gradients than the larger bore columns with respect to chromatographic efficiency. In addition, the capillary columns possessed higher robustness towards temperature programming than the conventional columns.  相似文献   

19.
The coupled effect of salt concentration and temperature on the retention behavior of proteins in hydrophobic interaction chromatography has been studied. The retention data of four model proteins, i.e., myoglobin, lysozyme, α-chymotrypsinogen and bovine serum albumin, have been acquired by isocratic experiments of chromatographic elution within the temperature range 5–25 °C at different ammonium sulphate concentrations in the mobile phase. The retention dependencies quantified as functions of the salt concentration and temperature have been exploited in designing the process of gradient elution. The propagation velocity of proteins under conditions of the step gradient of salt and temperature has been determined by use of the equilibrium theory. To evaluate kinetic effects accompanying the band propagation the transport-dispersive model has been employed. It has been shown that altering the propagation of the salt and temperature waves in a proper manner allows improving the separation efficiency. Moreover, manipulation of specific kinetics effects can also be exploited in protein separations.  相似文献   

20.
Eight deoxynucleoside triphosphates (dNTPs) and nucleoside triphosphates (NTPs): ATP, CTP, GTP, UTP, dATP, dCTP, dGTP and dTTP, were separated with two 15 cm ZIC-pHILIC columns coupled in series, using LC-UV instrumentation. The polymer-based ZIC-pHILIC column gave significantly better separations and peak shape than a silica-based ZIC-HILIC column. Better separations were obtained with isocratic elution as compared to gradient elution. The temperature markedly affected the selectivity and could be used to fine tune separation. The analysis time was also affected by temperature, as lower temperatures surprisingly reduced the retention of the nucleotides. dNTP/NTP standards could be separated in 35 min with a flow rate of 200 μL/min. In Escherichia coli cell culture samples dNTP/NTPs could be selectively separated in 7 0min using a flow rate of 100 μL/min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号